Amplitude Attenuation

Size: px
Start display at page:

Download "Amplitude Attenuation"

Transcription

1 Amplitude Attenuation 1

2 Overview Seismic signals become quieter as they propagate. Two different processes are responsible for this: Spherical Divergence True Attenuation 2

3 Spherical Divergence Bang! Bang! Energy of explosion is initially concentrated in a small volume close to the source. 3

4 Spherical Divergence Bang! Seismic wave spreads out at the speed of sound 4

5 Spherical Divergence Bang! Same energy as initially but spread over a larger volume. NB energy spreads out in 3 dimensions, i.e. over a Hemisphere. 5

6 Spherical Divergence Sounds from distant sources are quieter than near ones. Energy density, in a uniform medium, decreases with 1/t 2 because the surface area of a sphere increases with radius squared. E.g. energy drops by 1/4 at 2 seconds compared to 1 second. 6

7 Spherical Divergence Energy of a seismic wave is proportional to amplitude squared. Hence, in a uniform medium, amplitude decreases with 1/t. E.g. signal amplitude at 2 seconds is half of that at 1 second. 7

8 Attenuation No energy is lost during spherical divergence. It is simply being diluted as the seismic waves spread out. In addition however, there is true loss of energy as friction converts sound into heat. This additional factor is called attenuation and it is frequency dependent. 8

9 Attenuation Frequency dependent attenuation of sound waves should be familiar to you. Think of the sound of a distant thunderstorm. It is a low rumble rather than a sharp crack because the high frequencies have been attenuated as the sound has travelled towards you. The same thing happens with seismic waves. 9

10 Attenuation Frequency dependent loss of amplitude with travel time. Controlled by quality factor (Q) of the medium. A = A o exp(-pft /Q ) A is amplitude at time, t, with A o the initial amplitude and f the frequency. A o Curves showing typical amount of attenuation with time 10

11 Attenuation A = A o exp(-pft /Q ) Q varies with the material through which the waves travel. Pillows have very low Q, that s why they muffle sounds if you put them over your ears! For rocks, Q ~100. In seismic reflection surveys, we are usually interested in reflectors a few kilometres down and so, at typical P-wave velocities of 2000 m/s, travel times are usually a few seconds. Let s assume 2 seconds. What would happen to a 100 Hz signal after 2 seconds? From above, A / A o = exp(-pft /Q ) = exp(-6.28) = The signal strength has dropped by more than a factor of 500. This is why frequencies above 100 Hz are usually undetectable in seismic surveys. 11

12 Attenuation Frequency dependent loss of amplitude with travel time. Results in change of signal shape with time as well as a loss of amplitude Initial short, sharp signal Signal after propagating for 2 seconds with Q=50. time (s)

13 Quick Test As you ve just seen, frequencies above 100 Hz are not normally useful. However, in some surveys, higher frequencies can be used. Under what circumstances might this happen? Hint: attenuation is small if ft /Q is small. 13

14 Quick Test Answers Attenuation is small if ft /Q is small. Hence, if f is large, t /Q should be small. High frequencies useable if t is small or ifq is large. Most frequent case is when t is small, e.g. if a shallow survey is required for engineering purposes. 14

Geophysical Applications Seismic Reflection Surveying

Geophysical Applications Seismic Reflection Surveying Seismic sources and receivers Basic requirements for a seismic source Typical sources on land and on water Basic impact assessment environmental and social concerns EPS435-Potential-08-01 Basic requirements

More information

An image is being formed by a mirror with a spherical radius of R=+40cm. Draw mirror spherical surface curving to the right!

An image is being formed by a mirror with a spherical radius of R=+40cm. Draw mirror spherical surface curving to the right! Image formation by Reflection at a Spherical Mirror An image is being formed by a mirror with a spherical radius of R=+40cm. Left side of room: Right side of room: Draw mirror spherical surface curving

More information

ANTENNA INTRODUCTION / BASICS

ANTENNA INTRODUCTION / BASICS ANTENNA INTRODUCTION / BASICS RULES OF THUMB: 1. The Gain of an antenna with losses is given by: 2. Gain of rectangular X-Band Aperture G = 1.4 LW L = length of aperture in cm Where: W = width of aperture

More information

Chapter 17 Waves in Two and Three Dimensions

Chapter 17 Waves in Two and Three Dimensions Chapter 17 Waves in Two and Three Dimensions Slide 17-1 Chapter 17: Waves in Two and Three Dimensions Concepts Slide 17-2 Section 17.1: Wavefronts The figure shows cutaway views of a periodic surface wave

More information

Effect of Frequency and Migration Aperture on Seismic Diffraction Imaging

Effect of Frequency and Migration Aperture on Seismic Diffraction Imaging IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Effect of Frequency and Migration Aperture on Seismic Diffraction Imaging To cite this article: Y. Bashir et al 2016 IOP Conf. Ser.:

More information

7. Consider the following common offset gather collected with GPR.

7. Consider the following common offset gather collected with GPR. Questions: GPR 1. Which of the following statements is incorrect when considering skin depth in GPR a. Skin depth is the distance at which the signal amplitude has decreased by a factor of 1/e b. Skin

More information

Th-P08-11 Deblending of Single Source Vibroseis Land Data in Egypt with V1 Noise Attenuation Algorithm

Th-P08-11 Deblending of Single Source Vibroseis Land Data in Egypt with V1 Noise Attenuation Algorithm Th-P08-11 Deblending of Single Source Vibroseis Land Data in Egypt with V1 Noise Attenuation Algorithm N. Gulunay* (CGG), E. Shaker (CGG), A. Karagul (CGG), A. Ramadan (CGG), T. Bianchi (CGG), J. Ross

More information

GENERAL GUIDELINES FOR APPLICATION OF THE EXTENDED SUBTRACTION METHOD IN SASSI SOIL-STRUCTURE INTERACTION ANALYSIS

GENERAL GUIDELINES FOR APPLICATION OF THE EXTENDED SUBTRACTION METHOD IN SASSI SOIL-STRUCTURE INTERACTION ANALYSIS Transactions, SMiRT-22 GENERAL GUIDELINES FOR APPLICATION OF THE EXTENDED SUBTRACTION METHOD IN SASSI SOIL-STRUCTURE INTERACTION ANALYSIS C. C. Chin 1, Nan Deng 2, and Farhang Ostadan 3 1 Senior Engineer,

More information

Understanding Seismic Amplitudes

Understanding Seismic Amplitudes Understanding Seismic Amplitudes The changing amplitude values that define the seismic trace are typically explained using the convolutional model. This model states that trace amplitudes have three controlling

More information

ANTENNA INTRODUCTION / BASICS

ANTENNA INTRODUCTION / BASICS Rules of Thumb: 1. The Gain of an antenna with losses is given by: G 0A 8 Where 0 ' Efficiency A ' Physical aperture area 8 ' wavelength ANTENNA INTRODUCTION / BASICS another is:. Gain of rectangular X-Band

More information

Magnitude & Intensity

Magnitude & Intensity Magnitude & Intensity Lecture 7 Seismometer, Magnitude & Intensity Vibrations: Simple Harmonic Motion Simplest vibrating system: 2 u( x) 2 + ω u( x) = 0 2 t x Displacement u ω is the angular frequency,

More information

Exercise 1-4. The Radar Equation EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS

Exercise 1-4. The Radar Equation EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS Exercise 1-4 The Radar Equation EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the different parameters in the radar equation, and with the interaction between these

More information

Acoustic Emission Basic Process and Definition

Acoustic Emission Basic Process and Definition Acoustic Emission Basic Process and Definition Words from the Definition:... transient... elastic... waves... rapid... localized... source M2 Many Processes Produce Acoustic Emission Problem or Solution?»

More information

NON CONTACT VIBRATION MEASUREMENTS ON PARABOLIC SURFACE ANTENNA. Dorin Simoiu 1, Liviu Bereteu 1

NON CONTACT VIBRATION MEASUREMENTS ON PARABOLIC SURFACE ANTENNA. Dorin Simoiu 1, Liviu Bereteu 1 Analele Universităţii de Vest din Timişoara Vol. LVII, 2013 Seria Fizică NON CONTACT VIBRATION MEASUREMENTS ON PARABOLIC SURFACE ANTENNA Dorin Simoiu 1, Liviu Bereteu 1 1 Mechanical and Vibration Department,

More information

A-130 VCA-LIN. doepfer System A VCA A-130 / A Introduction

A-130 VCA-LIN. doepfer System A VCA A-130 / A Introduction doepfer System A - 100 VCA A-130 / A-131 1. Introduction 1 Audio Audio A-130 VCA-LIN. Audio Modules A-130 (Linear VCA) and A-131 (Exp. VCA) provide voltage-controlled amplification. H This section of the

More information

ERTH3021 Note: Terminology of Seismic Records

ERTH3021 Note: Terminology of Seismic Records ERTH3021 Note: Terminology of Seismic Records This note is intended to assist in understanding of terminology used in practical exercises on 2D and 3D seismic acquisition geometries. A fundamental distinction

More information

3/23/2015. Chapter 11 Oscillations and Waves. Contents of Chapter 11. Contents of Chapter Simple Harmonic Motion Spring Oscillations

3/23/2015. Chapter 11 Oscillations and Waves. Contents of Chapter 11. Contents of Chapter Simple Harmonic Motion Spring Oscillations Lecture PowerPoints Chapter 11 Physics: Principles with Applications, 7 th edition Giancoli Chapter 11 and Waves This work is protected by United States copyright laws and is provided solely for the use

More information

Theoretical Aircraft Overflight Sound Peak Shape

Theoretical Aircraft Overflight Sound Peak Shape Theoretical Aircraft Overflight Sound Peak Shape Introduction and Overview This report summarizes work to characterize an analytical model of aircraft overflight noise peak shapes which matches well with

More information

Propagation It s Not Always Free Space

Propagation It s Not Always Free Space Propagation It s Not Always Free Space I can talk to the International Space Station with my handie-talkie why can t I talk to friends across town?, 2015 Oct 27 Gold Coast ARA How Far Can a Pair of 2-meter

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

Seismic Reflection Method

Seismic Reflection Method 1 of 25 4/16/2009 11:41 AM Seismic Reflection Method Top: Monument unveiled in 1971 at Belle Isle (Oklahoma City) on 50th anniversary of first seismic reflection survey by J. C. Karcher. Middle: Two early

More information

More problems for Chapter 12 of Introduction to Wave Phenomena (Hirose- Lonngren) θ =.

More problems for Chapter 12 of Introduction to Wave Phenomena (Hirose- Lonngren) θ =. More problems for Chapter 1 of Introduction to Wave Phenomena (Hirose- Lonngren). In the 18-th century, Bradley observed apparent change in angular location of distant stars by " when the earth is moving

More information

Chapter 10: Light Reflection and Refraction Q1. What do you mean by principal focus? Ans:

Chapter 10: Light Reflection and Refraction Q1. What do you mean by principal focus? Ans: Chapter 10: Light Reflection and Refraction Q1. What do you mean by principal focus? Ans: All incident light rays which are passing parallel to the principal axis of the concave mirror meet at a specific

More information

Anisotropic Frequency-Dependent Spreading of Seismic Waves from VSP Data Analysis

Anisotropic Frequency-Dependent Spreading of Seismic Waves from VSP Data Analysis Anisotropic Frequency-Dependent Spreading of Seismic Waves from VSP Data Analysis Amin Baharvand Ahmadi* and Igor Morozov, University of Saskatchewan, Saskatoon, Saskatchewan amin.baharvand@usask.ca Summary

More information

LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION LIGHT REFLECTION AND REFRACTION 1. List four properties of the image formed by a plane mirror. Properties of image formed by a plane mirror: 1. It is always virtual and erect. 2. Its size is equal to that

More information

12: PRELAB: INTERFERENCE

12: PRELAB: INTERFERENCE 1. Introduction 12: PRELAB: INTERFERENCE As you have seen in your studies of standing waves, a wave and its reflection can add together constructively (peak meets peak, giving large amplitude) or destructively

More information

Comparison of Q-estimation methods: an update

Comparison of Q-estimation methods: an update Q-estimation Comparison of Q-estimation methods: an update Peng Cheng and Gary F. Margrave ABSTRACT In this article, three methods of Q estimation are compared: a complex spectral ratio method, the centroid

More information

LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION LIGHT REFLECTION AND REFRACTION REFLECTION OF LIGHT A highly polished surface, such as a mirror, reflects most of the light falling on it. Laws of Reflection: (i) The angle of incidence is equal to the

More information

03/11/13, Eikonal Equations, Superposition of EM Waves. Lecture Note (Nick Fang)

03/11/13, Eikonal Equations, Superposition of EM Waves. Lecture Note (Nick Fang) 03/11/13, Eikonal Equations, Superposition of EM Waves Lecture Note (Nick Fang) Outline: onnection of EM wave to geometric optics Path of Light in an Inhomogeneous Medium Superposition of waves, coherence

More information

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

More information

MTE 360 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering

MTE 360 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering MTE 36 Automatic Control Systems University of Waterloo, Department of Mechanical & Mechatronics Engineering Laboratory #1: Introduction to Control Engineering In this laboratory, you will become familiar

More information

Radar Methods General Overview

Radar Methods General Overview Environmental and Exploration Geophysics II Radar Methods General Overview tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Brown (2004)

More information

Survey results obtained in a complex geological environment with Midwater Stationary Cable Luc Haumonté*, Kietta; Weizhong Wang, Geotomo

Survey results obtained in a complex geological environment with Midwater Stationary Cable Luc Haumonté*, Kietta; Weizhong Wang, Geotomo Survey results obtained in a complex geological environment with Midwater Stationary Cable Luc Haumonté*, Kietta; Weizhong Wang, Geotomo Summary A survey with a novel acquisition technique was acquired

More information

Wireless Physical Layer Concepts: Part II

Wireless Physical Layer Concepts: Part II Wireless Physical Layer Concepts: Part II Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at:

More information

Rec. ITU-R P RECOMMENDATION ITU-R P PROPAGATION BY DIFFRACTION. (Question ITU-R 202/3)

Rec. ITU-R P RECOMMENDATION ITU-R P PROPAGATION BY DIFFRACTION. (Question ITU-R 202/3) Rec. ITU-R P.- 1 RECOMMENDATION ITU-R P.- PROPAGATION BY DIFFRACTION (Question ITU-R 0/) Rec. ITU-R P.- (1-1-1-1-1-1-1) The ITU Radiocommunication Assembly, considering a) that there is a need to provide

More information

Name: Date: Period: Physics: Study guide concepts for waves and sound

Name: Date: Period: Physics: Study guide concepts for waves and sound Name: Date: Period: Physics: Study guide concepts for waves and sound Waves Sound What is a wave? Identify parts of a wave (amplitude, frequency, period, wavelength) Constructive and destructive interference

More information

INTRODUCTION TO AC FILTERS AND RESONANCE

INTRODUCTION TO AC FILTERS AND RESONANCE AC Filters & Resonance 167 Name Date Partners INTRODUCTION TO AC FILTERS AND RESONANCE OBJECTIVES To understand the design of capacitive and inductive filters To understand resonance in circuits driven

More information

CBSE Physics Set I Outer Delhi Board 2012

CBSE Physics Set I Outer Delhi Board 2012 Q21. You are given three lenses L 1, L 2 and L 3, each of focal length 20 cm. An object is kept at 40 cm in front of L 1, as shown. The final real image is formed at the focus I of L 3. Find the separations

More information

2. The radius of curvature of a spherical mirror is 20 cm. What is its focal length?

2. The radius of curvature of a spherical mirror is 20 cm. What is its focal length? 1. Define the principle focus of a concave mirror? The principle focus of a concave mirror is a point on its principle axis to which all the light rays which are parallel and close to the axis, converge

More information

Improvement of signal to noise ratio by Group Array Stack of single sensor data

Improvement of signal to noise ratio by Group Array Stack of single sensor data P-113 Improvement of signal to noise ratio by Artatran Ojha *, K. Ramakrishna, G. Sarvesam Geophysical Services, ONGC, Chennai Summary Shot generated noise and the cultural noise is a major problem in

More information

EE273 Lecture 3 More about Wires Lossy Wires, Multi-Drop Buses, and Balanced Lines. Today s Assignment

EE273 Lecture 3 More about Wires Lossy Wires, Multi-Drop Buses, and Balanced Lines. Today s Assignment EE73 Lecture 3 More about Wires Lossy Wires, Multi-Drop Buses, and Balanced Lines September 30, 998 William J. Dally Computer Systems Laboratory Stanford University billd@csl.stanford.edu Today s Assignment

More information

Air-noise reduction on geophone data using microphone records

Air-noise reduction on geophone data using microphone records Air-noise reduction on geophone data using microphone records Air-noise reduction on geophone data using microphone records Robert R. Stewart ABSTRACT This paper proposes using microphone recordings of

More information

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics Sound Section 1 Preview Section 1 Sound Waves Section 2 Sound Intensity and Resonance Section 3 Harmonics Sound Section 1 TEKS The student is expected to: 7A examine and describe oscillatory motion and

More information

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects.

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. Light i) Light is a form of energy which helps us to see objects. ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. iii) Light

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #8: Thin Lenses Lab Writeup Due: Mon/Wed/Thu/Fri, April 2/4/5/6, 2018 Background In the previous lab

More information

Analysis of Fast Fading in Wireless Communication Channels M.Siva Ganga Prasad 1, P.Siddaiah 1, L.Pratap Reddy 2, K.Lekha 1

Analysis of Fast Fading in Wireless Communication Channels M.Siva Ganga Prasad 1, P.Siddaiah 1, L.Pratap Reddy 2, K.Lekha 1 International Journal of ISSN 0974-2107 Systems and Technologies IJST Vol.3, No.1, pp 139-145 KLEF 2010 Fading in Wireless Communication Channels M.Siva Ganga Prasad 1, P.Siddaiah 1, L.Pratap Reddy 2,

More information

Wireless Point to Point Quick Reference Sheet

Wireless Point to Point Quick Reference Sheet Wireless Point to Point Quick Reference Sheet Document ID: 98 Contents Introduction Prerequisites Requirements Components Used Conventions Formulas Frequency Bands Antenna Gain Receiver Sensitivity Some

More information

Tomostatic Waveform Tomography on Near-surface Refraction Data

Tomostatic Waveform Tomography on Near-surface Refraction Data Tomostatic Waveform Tomography on Near-surface Refraction Data Jianming Sheng, Alan Leeds, and Konstantin Osypov ChevronTexas WesternGeco February 18, 23 ABSTRACT The velocity variations and static shifts

More information

Ground Penetrating Radar

Ground Penetrating Radar Ground Penetrating Radar Begin a new section: Electromagnetics First EM survey: GPR (Ground Penetrating Radar) Physical Property: Dielectric constant Electrical Permittivity EOSC 350 06 Slide Di-electric

More information

Today: Finish Chapter 15 (Temp, Heat, Expansion) Chapter 19 (Vibrations and Waves)

Today: Finish Chapter 15 (Temp, Heat, Expansion) Chapter 19 (Vibrations and Waves) Today: Finish Chapter 15 (Temp, Heat, Expansion) Chapter 19 (Vibrations and Waves) Vibrations Some Preliminaries Vibration = oscillation = anything that has a back-and-forth to it Eg. Draw a pen back and

More information

ENERGY- CONTENT AND SPECTRAL ANALYSES OF SHOTS FOR OPTIMUM SEISMOGRAM GENERATION IN THE NIGER DELTA

ENERGY- CONTENT AND SPECTRAL ANALYSES OF SHOTS FOR OPTIMUM SEISMOGRAM GENERATION IN THE NIGER DELTA ENERGY- CONTENT AND SPECTRAL ANALYSES OF SHOTS FOR OPTIMUM SEISMOGRAM GENERATION IN THE NIGER DELTA Alaminiokuma G.I. and *Emudianughe J.E. Department of Earth Sciences, Federal University of Petroleum

More information

Ultrasonic Level Detection Technology. ultra-wave

Ultrasonic Level Detection Technology. ultra-wave Ultrasonic Level Detection Technology ultra-wave 1 Definitions Sound - The propagation of pressure waves through air or other media Medium - A material through which sound can travel Vacuum - The absence

More information

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE July 22, 2008 AC Currents, Voltages, Filters, Resonance 1 Name Date Partners AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE V(volts) t(s) OBJECTIVES To understand the meanings of amplitude, frequency, phase,

More information

ORE 654 Applications of Ocean Acoustics. Homework Problem Set #2. Assigned 27 October 2011 Due 10 November 2011

ORE 654 Applications of Ocean Acoustics. Homework Problem Set #2. Assigned 27 October 2011 Due 10 November 2011 ORE 654 Applications of Ocean Acoustics Homework Problem Set #2 Assigned 27 October 2011 Due 10 November 2011 Please use standard 8.5x11 paper. Write clearly in dark pencil/ink, or you can use this document

More information

SPNA 2.3. SEG/Houston 2005 Annual Meeting 2177

SPNA 2.3. SEG/Houston 2005 Annual Meeting 2177 SPNA 2.3 Source and receiver amplitude equalization using reciprocity Application to land seismic data Robbert van Vossen and Jeannot Trampert, Utrecht University, The Netherlands Andrew Curtis, Schlumberger

More information

Module 2 WAVE PROPAGATION (Lectures 7 to 9)

Module 2 WAVE PROPAGATION (Lectures 7 to 9) Module 2 WAVE PROPAGATION (Lectures 7 to 9) Lecture 9 Topics 2.4 WAVES IN A LAYERED BODY 2.4.1 One-dimensional case: material boundary in an infinite rod 2.4.2 Three dimensional case: inclined waves 2.5

More information

Seismic reflection method

Seismic reflection method Seismic reflection method Seismic reflection method is based on the reflections of seismic waves occurring at the contacts of subsurface structures. We apply some seismic source at different points of

More information

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves Section 1 Sound Waves Preview Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect Section 1 Sound Waves Objectives Explain how sound waves are produced. Relate frequency

More information

APPLICATION NOTE

APPLICATION NOTE THE PHYSICS BEHIND TAG OPTICS TECHNOLOGY AND THE MECHANISM OF ACTION OF APPLICATION NOTE 12-001 USING SOUND TO SHAPE LIGHT Page 1 of 6 Tutorial on How the TAG Lens Works This brief tutorial explains the

More information

Introduction. Strand F Unit 3: Optics. Learning Objectives. Introduction. At the end of this unit you should be able to;

Introduction. Strand F Unit 3: Optics. Learning Objectives. Introduction. At the end of this unit you should be able to; Learning Objectives At the end of this unit you should be able to; Identify converging and diverging lenses from their curvature Construct ray diagrams for converging and diverging lenses in order to locate

More information

PHYS 241 FINAL EXAM December 11, 2006

PHYS 241 FINAL EXAM December 11, 2006 1. (5 points) Light of wavelength λ is normally incident on a diffraction grating, G. On the screen S, the central line is at P and the first order line is at Q, as shown. The distance between adjacent

More information

E X P E R I M E N T 12

E X P E R I M E N T 12 E X P E R I M E N T 12 Mirrors and Lenses Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics II, Exp 12: Mirrors and Lenses

More information

The Virgo detector. L. Rolland LAPP-Annecy GraSPA summer school L. Rolland GraSPA2013 Annecy le Vieux

The Virgo detector. L. Rolland LAPP-Annecy GraSPA summer school L. Rolland GraSPA2013 Annecy le Vieux The Virgo detector The Virgo detector L. Rolland LAPP-Annecy GraSPA summer school 2013 1 Table of contents Principles Effect of GW on free fall masses Basic detection principle overview Are the Virgo mirrors

More information

Properties of Waves, Magnetism, & Electricity Unit 4 Summative Assessment

Properties of Waves, Magnetism, & Electricity Unit 4 Summative Assessment 1. When a sound wave travels through a medium, what is being transmitted in the direction of the movement of the wave? density mass energy velocity 2. An iron rod changes colors when heated in a hot flame.

More information

1. Introduction. 2. Concept. reflector. transduce r. node. Kraftmessung an verschiedenen Fluiden in akustischen Feldern

1. Introduction. 2. Concept. reflector. transduce r. node. Kraftmessung an verschiedenen Fluiden in akustischen Feldern 1. Introduction The aim of this Praktikum is to familiarize with the concept and the equipment of acoustic levitation and to measure the forces exerted by an acoustic field on small spherical objects.

More information

Transmission Line Transient Overvoltages (Travelling Waves on Power Systems)

Transmission Line Transient Overvoltages (Travelling Waves on Power Systems) Transmission Line Transient Overvoltages (Travelling Waves on Power Systems) The establishment of a potential difference between the conductors of an overhead transmission line is accompanied by the production

More information

Investigating the low frequency content of seismic data with impedance Inversion

Investigating the low frequency content of seismic data with impedance Inversion Investigating the low frequency content of seismic data with impedance Inversion Heather J.E. Lloyd*, CREWES / University of Calgary, Calgary, Alberta hjelloyd@ucalgary.ca and Gary F. Margrave, CREWES

More information

12/26/2017. Alberto Ardon M.D.

12/26/2017. Alberto Ardon M.D. Alberto Ardon M.D. 1 Preparatory Work Ultrasound Physics http://www.nysora.com/mobile/regionalanesthesia/foundations-of-us-guided-nerve-blockstechniques/index.1.html Basic Ultrasound Handling https://www.youtube.com/watch?v=q2otukhrruc

More information

Capabilities of the IMS Seismic Auxiliary Network

Capabilities of the IMS Seismic Auxiliary Network May 12, 2009 Capabilities of the IMS Seismic Auxiliary Network David Hafemeister Center for International Security and Cooperation Stanford University The 2002 US National Academy of Sciences study, Technical

More information

A COMPARISON OF SITE-AMPLIFICATION ESTIMATED FROM DIFFERENT METHODS USING A STRONG MOTION OBSERVATION ARRAY IN TANGSHAN, CHINA

A COMPARISON OF SITE-AMPLIFICATION ESTIMATED FROM DIFFERENT METHODS USING A STRONG MOTION OBSERVATION ARRAY IN TANGSHAN, CHINA A COMPARISON OF SITE-AMPLIFICATION ESTIMATED FROM DIFFERENT METHODS USING A STRONG MOTION OBSERVATION ARRAY IN TANGSHAN, CHINA Wenbo ZHANG 1 And Koji MATSUNAMI 2 SUMMARY A seismic observation array for

More information

Rutgers Analytical Physics 750:228, Spring 2013 ( RUPHYS228S13 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman

Rutgers Analytical Physics 750:228, Spring 2013 ( RUPHYS228S13 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman Signed in as RONALD GILMAN, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2013 ( RUPHYS228S13 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman

More information

Experiment-4 Study of the characteristics of the Klystron tube

Experiment-4 Study of the characteristics of the Klystron tube Experiment-4 Study of the characteristics of the Klystron tube OBJECTIVE To study the characteristics of the reflex Klystron tube and to determine the its electronic tuning range EQUIPMENTS Klystron power

More information

3-D tomographic Q inversion for compensating frequency dependent attenuation and dispersion. Kefeng Xin* and Barry Hung, CGGVeritas

3-D tomographic Q inversion for compensating frequency dependent attenuation and dispersion. Kefeng Xin* and Barry Hung, CGGVeritas P-75 Summary 3-D tomographic Q inversion for compensating frequency dependent attenuation and dispersion Kefeng Xin* and Barry Hung, CGGVeritas Following our previous work on Amplitude Tomography that

More information

Light and Reflection. Chapter 13 Page 444

Light and Reflection. Chapter 13 Page 444 Light and Reflection Chapter 13 Page 444 Characteristics of Light Let s talk about the electromagnetic spectrum. This includes visible light. What looks like white light can be split into many different

More information

Draw and label this wave: - What do waves transfer? (They do this without transferring what?) What do all electromagnetic waves have in common?

Draw and label this wave: - What do waves transfer? (They do this without transferring what?) What do all electromagnetic waves have in common? What do waves transfer? Draw and label this wave: - (They do this without transferring what?) What do all electromagnetic waves have in common? Name the electromagnetic spectrum from shortest to longest

More information

The Law of Reflection

The Law of Reflection PHY132H1F Introduction to Physics II Class 5 Outline: Reflection and Refraction Fibre-Optics Colour and Dispersion Thin Lens Equation Image Formation Quick reading quiz.. virtual image is. the cause of

More information

Waves and Sound Practice Test 43 points total Free- response part: [27 points]

Waves and Sound Practice Test 43 points total Free- response part: [27 points] Name Waves and Sound Practice Test 43 points total Free- response part: [27 points] 1. To demonstrate standing waves, one end of a string is attached to a tuning fork with frequency 120 Hz. The other end

More information

E) all of the above E) 1.9 T

E) all of the above E) 1.9 T 1. The figure shows a uniform magnetic field that is normal to the plane of a conducting loop, which has a resistance R. Which one of the following changes will cause an induced current to flow through

More information

SODAR- sonic detecting and ranging

SODAR- sonic detecting and ranging Active Remote Sensing of the PBL Immersed vs. remote sensors Active vs. passive sensors RADAR- radio detection and ranging WSR-88D TDWR wind profiler SODAR- sonic detecting and ranging minisodar RASS RADAR

More information

14. COMMUNICATION SYSTEM

14. COMMUNICATION SYSTEM 14. COMMUNICATION SYSTEM SYNOPSIS : INTRODUCTION 1. The exchange of information between a sender and receiver is called communication. 2. The arrangement of devices to transfere the information is called

More information

Borehole vibration response to hydraulic fracture pressure

Borehole vibration response to hydraulic fracture pressure Borehole vibration response to hydraulic fracture pressure Andy St-Onge* 1a, David W. Eaton 1b, and Adam Pidlisecky 1c 1 Department of Geoscience, University of Calgary, 2500 University Drive NW Calgary,

More information

Lab 12 Microwave Optics.

Lab 12 Microwave Optics. b Lab 12 Microwave Optics. CAUTION: The output power of the microwave transmitter is well below standard safety levels. Nevertheless, do not look directly into the microwave horn at close range when the

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies SOURCE AND PATH EFFECTS ON REGIONAL PHASES IN INDIA FROM AFTERSHOCKS OF THE JANUARY 26, 2001, BHUJ EARTHQUAKE Arthur Rodgers 1, Paul Bodin 2, Luca Malagnini 3, Kevin Mayeda 1, and Aybige Akinci 3 Lawrence

More information

Optical System Design

Optical System Design Phys 531 Lecture 12 14 October 2004 Optical System Design Last time: Surveyed examples of optical systems Today, discuss system design Lens design = course of its own (not taught by me!) Try to give some

More information

Chapter 5 5.1 What are the factors that determine the thickness of a polystyrene waveguide formed by spinning a solution of dissolved polystyrene onto a substrate? density of polymer concentration of polymer

More information

TIME VARIABLE GAIN FOR LONG RANGE SONAR WITH CHIRP SOUNDING SIGNAL

TIME VARIABLE GAIN FOR LONG RANGE SONAR WITH CHIRP SOUNDING SIGNAL TIME VARIABLE GAIN FOR LONG RANGE SONAR WITH CHIRP SOUNDING SIGNAL JACEK MARSZAL, ZAWISZA OSTROWSKI, JAN SCHMIDT LECH KILIAN, ANDRZEJ JEDEL, ALEKSANDER SCHMIDT Gdansk University of Technology, Faculty

More information

Answer: TGC is needed to amplify echoes from deeper structures so that they appear as bright as similar structures located at more shallow depths.

Answer: TGC is needed to amplify echoes from deeper structures so that they appear as bright as similar structures located at more shallow depths. Q47. When performing a sonogram why the sonographer needs to use the TGC? TGC is needed to amplify echoes from deeper structures so that they appear as bright as similar structures located at more shallow

More information

Chapter 4 The RF Link

Chapter 4 The RF Link Chapter 4 The RF Link The fundamental elements of the communications satellite Radio Frequency (RF) or free space link are introduced. Basic transmission parameters, such as Antenna gain, Beamwidth, Free-space

More information

SPHERICAL NEAR-FIELD MEASUREMENTS AT UHF FREQUENCIES WITH COMPLETE UNCERTAINTY ANALYSIS

SPHERICAL NEAR-FIELD MEASUREMENTS AT UHF FREQUENCIES WITH COMPLETE UNCERTAINTY ANALYSIS SPHERICAL NEAR-FIELD MEASUREMENTS AT UHF FREQUENCIES WITH COMPLETE UNCERTAINTY ANALYSIS Allen Newell, Patrick Pelland Nearfield Systems Inc. 19730 Magellan Drive, Torrance, CA 90502-1104 Brian Park, Ted

More information

P and S wave separation at a liquid-solid interface

P and S wave separation at a liquid-solid interface and wave separation at a liquid-solid interface and wave separation at a liquid-solid interface Maria. Donati and Robert R. tewart ABTRACT and seismic waves impinging on a liquid-solid interface give rise

More information

Relative Energy in Cross-Hole Ultrasonic (CSL)

Relative Energy in Cross-Hole Ultrasonic (CSL) Relative Energy in Cross-Hole Ultrasonic (CSL) Erez I Amir. Piletest Piletest Technical Notes Nov-2016 Background Right after First Arrival Time (FAT), the relative energy (RE) is the second most important

More information

Physics of ultrasound

Physics of ultrasound 1 Physics of ultrasound Basic principles Nature of ultrasound Sound = longitudinal, mechanical wave particles move parallel to direction of travel Audible sound < 20 khz Ultrasound > 20 khz Sound cannot

More information

Chapter: Sound and Light

Chapter: Sound and Light Table of Contents Chapter: Sound and Light Section 1: Sound Section 2: Reflection and Refraction of Light Section 3: Mirrors, Lenses, and the Eye Section 4: Light and Color 1 Sound Sound When an object

More information

Physics 2A Chapters 16: Waves and Sound. Problem Solving

Physics 2A Chapters 16: Waves and Sound. Problem Solving Physics 2A Chapters 16: Waves and Sound We are what we believe we are. Benjamin Cardozo We would accomplish many more things if we did not think of them as impossible C. Malesherbez The only limit to our

More information

Joint Time/Frequency Analysis, Q Quality factor and Dispersion computation using Gabor-Morlet wavelets or Gabor-Morlet transform

Joint Time/Frequency Analysis, Q Quality factor and Dispersion computation using Gabor-Morlet wavelets or Gabor-Morlet transform Joint Time/Frequency, Computation of Q, Dr. M. Turhan (Tury Taner, Rock Solid Images Page: 1 Joint Time/Frequency Analysis, Q Quality factor and Dispersion computation using Gabor-Morlet wavelets or Gabor-Morlet

More information

How to Attenuate Diffracted Noise: (DSCAN) A New Methodology

How to Attenuate Diffracted Noise: (DSCAN) A New Methodology How to Attenuate Diffracted Noise: (DSCAN) A New Methodology Ali Karagul* CGG Canada Service Ltd., Calgary, Alberta, Canada akaragul@cgg.com Todd Mojesky and XinXiang Li CGG Canada Service Ltd., Calgary,

More information

REFRACTION OF LIGHT VERY SHORT ANSWER QUESTIONS

REFRACTION OF LIGHT VERY SHORT ANSWER QUESTIONS REFRACTION OF LIGHT VERY SHORT ANSWER QUESTIONS Q-1. The earth takes 24 h to rotate once about its axis. How much time does the sun take to shift by 1 0 when viewed from the earth? Q-2. What is the maximum

More information

UNIT Explain the radiation from two-wire. Ans: Radiation from Two wire

UNIT Explain the radiation from two-wire. Ans:   Radiation from Two wire UNIT 1 1. Explain the radiation from two-wire. Radiation from Two wire Figure1.1.1 shows a voltage source connected two-wire transmission line which is further connected to an antenna. An electric field

More information

Math 2321 Review for Test 2 Fall 11

Math 2321 Review for Test 2 Fall 11 Math 2321 Review for Test 2 Fall 11 The test will cover chapter 15 and sections 16.1-16.5 of chapter 16. These review sheets consist of problems similar to ones that could appear on the test. Some problems

More information

Results of seismic reflection lines at California Wash Fault and the Astor Pass Tufa Tower. May 6, 2011 GPH492

Results of seismic reflection lines at California Wash Fault and the Astor Pass Tufa Tower. May 6, 2011 GPH492 CA Wash Results Results of seismic reflection lines at California Wash Fault and the Astor Pass Tufa Tower May 6, 2011 GPH492 A bandpass filter of 80-400 Hz was used to process the data. This filter did

More information