REFRACTION OF LIGHT VERY SHORT ANSWER QUESTIONS

Size: px
Start display at page:

Download "REFRACTION OF LIGHT VERY SHORT ANSWER QUESTIONS"

Transcription

1 REFRACTION OF LIGHT VERY SHORT ANSWER QUESTIONS Q-1. The earth takes 24 h to rotate once about its axis. How much time does the sun take to shift by 1 0 when viewed from the earth? Q-2. What is the maximum angle of refraction when a ray of light is refracted from glass into air? Q-3. A ray of light is incident normally on a glass slab. What is the angle of refraction? Q-4. What is the power of the combination of a convex lens and a concave lens of the same focal length? Q-5. How is power of a lens related to its focal length? Q-6. Can the absolute refractive index of a medium be less than unity? Q-7. To a fish under water viewing obliquely a fisherman standing on the bank of a lake, does the man look taller or shorter than what actually he is? Q-8. A beam of light is converging towards a certain point. A parallel sided glass plate is introduced in the path of the converging beam. How will the point of convergence be shifted? Q-9. What should be the position of an object relative to biconvex lens so that this lens behaves like a magnifying glass? Q-10. What happens to the frequency when light passes from one medium to another? Q-11. What is critical angle for a material of refractive index 2? Q-12. Does critical angle depend on colour of light? Q-13. What is the focal length and power of a plane glass plate? Q-14. A convex lens is placed in a medium in which it behaves as an ordinary plate. What is the refractive index of the medium relative to the lens? Q-15. What type of lens is an air bubble inside water? Q-16. What is lens maker s formula? Q-17. What is the ratio of velocities of two light waves travelling in vacuum and having wave lengths 4000 Ǻ and 8000 Ǻ? 1

2 Q-18. A lens when immersed in a transparent liquid becomes invisible. Under what condition does it happen? Q-19. Define critical angle for total internal reflection. Q-20. Which of the following does not change when light goes from one medium to another? Frequency, wavelength, speed and intensity. Q-21. What is refraction? Q-22. What is the unit of power of lens? Q-23. What is the physical principle on which the working of optical fibre is based? Q-24. An object is placed at the focus of a concave lens. Where will its image be formed? Q-25. Which of the two main parts of an optical fibre has a higher value of refractive index? Q-26. What happens to the focal length of a convex lens when immersed in water? Q-27. State Snell s law of refraction of light. Q-28. What is the basic cause of refraction of light? Q-29. A double convex lens, made from a material of refractive index μ 1, is immersed in a liquid of refractive index μ 2 where μ 2 > μ 1. What change, if any, would occur in the nature of the lens? SHORT ANSWER QUESTIONS Q-30. A magician during a show makes a glass lens n = 1.47 disappear in a trough of liquid. What is the refractive index of the liquid? Could the liquid be water? Q-31. What do you understand by the term superior mirage? Q-32. What do you understand by the term inferior mirage? Q-33. The image of a candle formed by a convex lens is obtained on a screen. Will full size of the image be obtained if the lower half of the lens is painted completely opaque? Q-34. Why goggles (Sun glasses) have zero power even through their surface are curved? Q-35. Explain why a convex lens behaves as a diverging lens when immersed in carbon disulphide? While the refractive index of glass in 1.5, the refractive index of carbon disulphide is Q-36. Explain the shining of an air bubble in water. 2

3 Q-37. Show analytically from the lens equation that when the object is at the principal focus, the image is formed at infinity. Q-38. Use the lens equation to deduce algebraically the following : A concave lens produces a virtual and diminished image independent of the location of the object. Q-39. Use the lens equation to deduce algebraically the following : An object placed within the focus of a convex lens produces a virtual and enlarged image. Q-40. A 35 mm slide with a 24 mm 36 mm picture is projected on a screen placed 12 m from the slide. The image of the slide picture on the screen measures 1.0 m 1.5 m. Determine the location of the projection lens, and its focal length. Q-41. Why do we need a condensing lens at all? Can we not project a slide simply by illuminating it by a lamp and obtaining its magnified image on a screen? Q-42. For projecting the slide in Q. 40, how much should be the least diameter of the condensing lens? Where should the slide be placed relative to this lens? Q-43. The image of the source formed by the condensing lens should be located on the projection lens. Why? What is the preferred size of this image of the source? Explain. Q-44. The condensing lens converges light from the source on to the slide. Does that mean the image of the source is formed on the slide? If not, why not? Q-45. Consider a small portion of the image on the screen, say the lowermost portion. Does this portion get illumination only from the lowermost part of the source? Or only from the uppermost part of the source? Or from all points of the source? Explain. Q-46. The lens shown in Fig is made of two different materials. A point object is placed on the principal axis of this lens. How many images will be obtained? 3

4 Q-47. A convex lens (refractive index μ l ) is immersed in a medium (refractive index μ m ). How would it behave if (i) μ l > μ m (ii) μ l < μ m? Q-48. Why the rising Sun appears bigger? Q-49. Q-50. Define focus and principal focus of a lens. Velocity of light in a liquid in a liquid is m s -1 and in air, it is m s -1. If a ray of light passes from this liquid into air, calculate the value of critical angle. Q-51. Watching the sunset on a beach, one can see the Sun for several minutes after it has actually set. Explain. Q-52. For the same angle of incidence, the angles of refraction in media P, Q and R are 35 0, 25 0, 15 0 respectively. In which medium will the velocity of light be minimum? Q-53. A convex lens is held in water. What would be the change in the focal length? Q-54. A convex lens forms the image of the sun at a distance of 10 cm. Where will be the image when (i) another lens of same power but double the aperture is used? (ii) another lens of same aperture but double the power is used? Q-55. On a hot summer day in a desert, one sees the reflected image of distant parts of the sky. (This is sometimes mistaken by the observer to be the reflection of the sky in some distant lake of water. This illusion is called a mirage.) Explain. Q-56. Where should an object be planed from a convex lens to form an image of the same size? Can it happen in the case of a concave lens? Q-57. Two concave lenses, each of focal length 30 cm, are placed in contact. What is the focal length of the compound lens? 4

5 Q-58. Why does a diamond sparkle with great brilliance? Q-59. Violet light is incident on a thin convex lens. If this light is replaced by red light, explain with reason, how the power of the lens would change. Q-60. A substance has critical angle of 45 0 for yellow light. What is its refractive index? Q-61. What is optical fibre? Q-62. The image of a candle is formed by a convex lens on a screen. The lower half of the lens is painted black to make it completely opaque. Draw ray diagram to show the image formation. How will this image be different from the one obtained when the lens is not painted black? Q-63. A right-angle prism is placed before an object in the two positions shown in Fig The prism is made of crown glass with critical angle equal to Trace the paths of two rays P and Q normal to the hypotenuse in (a), and parallel to the hypotenuse in (b). Q-64. Monochromatic light is refracted from air into glass of refractive index n. Find the ratio of wavelengths of the incident and refracted light. Q-65. Write two conditions necessary for total internal reflection to take place. SHORT ANSWER QUESTIONS Q-66. Explain why (a) A diamond glitters in a brightly lit room but not in a dark room. (b) A crack in window-pane appears silvery. (c) The bubbles of air rising up in a water tank appear silvery when viewed from top. 5

6 Q-67. One end of a cylindrical glass rod (μ = 1.5) of radius 1.0 cm is rounded in the shape of a hemisphere. The rod is immersed in water μ = 4 3 and an object is placed in the water along the axis of the rod at a distance of 8.0 cm from the rounded edge. Determine the location of the image of the object. Q-68. A ray of light suffers lateral displacement when refracted by a parallel-sided glass slab. Determine the condition for this lateral displacement to be maximum. What will be the maximum possible value of the lateral displacement? Q-69. Refer to Figs (a), (b) and (c). Give relationship between μ 1 and μ 2 in each case. Q-70. Light falls from glass (μ = 1.5) to air. Find the angle of incidence for which the angle of deviation in Q-71. A concave lens made of a material of refractive index μ g is immersed in a medium whose refractive index μ l is (i) greater than (ii) equal to (iii) less than μ g. When a parallel beam of light is incident on the lens, trace the path of the emergent rays in each of the above cases. Q-72. Three rays of light red (R), green (G) and blue (B) are incident on the face AB of a right-angled prism ABC. The refractive indices of the material of the prism for red, green and blue wavelengths are 1.39, 1.44 and 1.47 respectively. Trace the path of the rays through the prism. How will the situation change if these rays were incident normally on one of the faces of an equilateral prism? 6

7 Q-73. A double convex lens made of glass of refractive index 1.5 has both radii of curvature 20 cm each. Find the focal length of the lens. If an object is placed at a distance of 15 cm from this lens, find the position of the image formed. Q-74. The following data was recorded for values of object distance and the corresponding values of image distance in the experiment on study of real image formation by a convex lens of power +5D. One of these observations is incorrect. Identify this observation and give reason for your choice : S.No Object distance (cm) Image distance (cm) Q-75. (i) Using the relation for refraction at a single spherical refracting surface, derive the lens maker s formula. (ii) In Fig 17.97, the direct image formed by the lens (f=10 cm) of an object placed at O and that formed after reflection from the spherical mirror are formed at the same point O. What is the radius of curvature of the mirror? Q-76. A right-angled isosceles glass prism is made from glass of refractive index 1.5. Show that a ray of light incident normally on (i) one of the equal sides of this prism is deviated through 90 0 (ii) the hypotenuse of this prism is deviated through Q-77. A glass slab is placed over a page in which letters are printed in different colours. Will the image of all the letters lie in the same plane? CONCEPTUAL PROBLEMS 7

8 Q-78. In the previous problem, which letter would appear to be maximum raised and which letter would appear to be minimum raised? Q-79. A man, wanting to obtain the picture of a zebra, photographs a while donkey after fitting a glass with black streaks on the lens of the camera. Can the man succeed in his purpose? Q-80. What are the five general features of the image formed by a plane mirror? Q-81. Our eye is sensitive to yellow colour. But red light is used for danger signals. Why? Q-82. Within a glass slab, a double convex air bubble is formed. How would the air bubble behave? Q-83. Images formed by totally reflected light are brighter than the images formed by ordinary reflected light. Why? Q-84. Light of wavelength 5000 Ǻ falls on a plane reflecting surface. What are the wavelength and frequency of reflecting light. For what angle of incidence is the reflected ray normal to the incident ray? Q-85. What is the twinkling effect of starlight due to? Q-86. Q-87. Can light travelling from air to glass suffer total internal reflection? Justify your answer. The image of an object formed by a lens on the screen is not in sharp focus. Suggest a method to get a clear focusing of the image on the screen without disturbing the positions of the object, the lens or the screen. Q-88. A beam of light of wavelength 400 nm is incident normally on a right angled prism as shown. It is observed that the light just grazes along the surface AC after falling on it. Given that the refractive index of the material of the prism varies with the wavelength λ as per the relation μ A = b/ λ 2. Calculate the value of b and the refractive index of the prism material for a wavelength λ = 5000 Ǻ. Q-89. A spherical surface of radius of curvature R, separates a rarer and a denser medium as shown in Fig Complete the path of the incident ray of light, showing the formation of a real image. Hence derive 8

9 the relation connecting object distance u, image distance v, radius of curvature R and the refractive indices n 1 and n 2 of the two media. LONG ANSWER QUESTIONS Q-90. A lens forms a real image of an object. The distance from the object to the lens is u cm and the distance of the image from the lens is v cm. The given graph shows variation of v with u. (i) What is the nature of the lens? (ii) Using the graph, find the focal length of this lens. Q-91. Show by a diagram the image formation of a point object by a thin double convex lens having radii of curvature R 1 and R 2. Hence derive the formula 1 f = (n - 1) 1 R 1 1 R 2, where f is the focal length and n is refractive index of material of the lens. Q-92. Obtain an expression for the effective focal length of a combination of two thin lenses placed in contact coaxially with each other. Q-93. Show by drawing diagrams how a totally reflecting glass prism can be used to deviate a ray of light through (i) 90 0 (ii) and invert it. 9

10 Q-94. By stating the sign conventions used and assumptions made, derive the expression : - μ 1 + μ 2 = μ 2 μ 1, u v R when the refraction takes place from rarer to denser medium at concave spherical refracting surface. Symbols used here have their usual meanings. Q-95. State new Cartesian sign conventions. Derive the expression : - μ 1 + μ 2 = μ 2 μ 1, when refraction occurs u v R from rarer to denser medium at convex spherical refracting surface (μ 1 < μ 2 ). Q-96. An equiconvex lens with radii of curvature of magnitude r each, is put over a liquid layer poured on top of a plane mirror. A small needle, with its tip on the principal axis of the lens, is moved along the axis until its inverted real image coincides with the needle itself. The distance of the needle from the lens is measured to be a. On removing the liquid layer and repeating the experiment, the distance is found to be b. Given that two values of distances measured represents the focal length values in the two cases, obtain a formula for the refractive index of the liquid. 10

Section A Conceptual and application type questions. 1 Which is more observable diffraction of light or sound? Justify. (1)

Section A Conceptual and application type questions. 1 Which is more observable diffraction of light or sound? Justify. (1) INDIAN SCHOOL MUSCAT Department of Physics Class : XII Physics Worksheet - 6 (2017-2018) Chapter 9 and 10 : Ray Optics and wave Optics Section A Conceptual and application type questions 1 Which is more

More information

always positive for virtual image

always positive for virtual image Point to be remembered: sign convention for Spherical mirror Object height, h = always positive Always +ve for virtual image Image height h = Always ve for real image. Object distance from pole (u) = always

More information

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis Assignment X Light Reflection of Light: Reflection and refraction of light. 1. What is light and define the duality of light? 2. Write five characteristics of light. 3. Explain the following terms (a)

More information

Practice Problems (Geometrical Optics)

Practice Problems (Geometrical Optics) 1 Practice Problems (Geometrical Optics) 1. A convex glass lens (refractive index = 3/2) has a focal length of 8 cm when placed in air. What is the focal length of the lens when it is immersed in water

More information

Chapter 9 - Ray Optics and Optical Instruments. The image distance can be obtained using the mirror formula:

Chapter 9 - Ray Optics and Optical Instruments. The image distance can be obtained using the mirror formula: Question 9.1: A small candle, 2.5 cm in size is placed at 27 cm in front of a concave mirror of radius of curvature 36 cm. At what distance from the mirror should a screen be placed in order to obtain

More information

BHARATIYA VIDYA BHAVAN S V M PUBLIC SCHOOL, VADODARA QUESTION BANK

BHARATIYA VIDYA BHAVAN S V M PUBLIC SCHOOL, VADODARA QUESTION BANK BHARATIYA VIDYA BHAVAN S V M PUBLIC SCHOOL, VADODARA QUESTION BANK Ch Light : Reflection and Refraction One mark questions Q1 Q3 What happens when a ray of light falls normally on the surface of a plane

More information

SUBJECT: PHYSICS. Use and Succeed.

SUBJECT: PHYSICS. Use and Succeed. SUBJECT: PHYSICS I hope this collection of questions will help to test your preparation level and useful to recall the concepts in different areas of all the chapters. Use and Succeed. Navaneethakrishnan.V

More information

Marketed and Distributed by FaaDoOEngineers.com

Marketed and Distributed by FaaDoOEngineers.com REFRACTION OF LIGHT GUPTA CLASSES For any help contact: 995368795, 968789880 Nishant Gupta, D-, Prashant vihar, Rohini, Delhi-85 Contact: 995368795, 968789880 Reraction o light:. The ratio o the sine o

More information

LIGHT-REFLECTION AND REFRACTION

LIGHT-REFLECTION AND REFRACTION LIGHT-REFLECTION AND REFRACTION Class: 10 (Boys) Sub: PHYSICS NOTES-Refraction Refraction: The bending of light when it goes from one medium to another obliquely is called refraction of light. Refraction

More information

04. REFRACTION OF LIGHT AT CURVED SURFACES

04. REFRACTION OF LIGHT AT CURVED SURFACES CLASS-10 PHYSICAL SCIENCE 04. REFRACTION OF LIGHT AT CURVED SURFACES Questions and Answers *Reflections on Concepts* 1. Write the lens maker s formula and explain the terms in it. A. Lens maker s formula

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Reg Optics Review 1) How far are you from your image when you stand 0.75 m in front of a vertical plane mirror? 1) 2) A object is 12 cm in front of a concave mirror, and the image is 3.0 cm in front

More information

HOLIDAY HOME WORK PHYSICS CLASS-12B AUTUMN BREAK 2018

HOLIDAY HOME WORK PHYSICS CLASS-12B AUTUMN BREAK 2018 HOLIDAY HOME WK PHYSICS CLASS-12B AUTUMN BREAK 2018 NOTE: 1. THESE QUESTIONS ARE FROM PREVIOUS YEAR BOARD PAPERS FROM 2009-2018 CHAPTERS EMI,AC,OPTICS(BUT TRY TO SOLVE ONLY NON-REPEATED QUESTION) QUESTION

More information

Downloaded from

Downloaded from QUESTION BANK SCIENCE STD-X PHYSICS REFLECTION & REFRACTION OF LIGHT (REVISION QUESTIONS) VERY SHORT ANSWER TYPE (1 MARK) 1. Out of red and blue lights, for which is the refractive index of glass greater?

More information

2. The radius of curvature of a spherical mirror is 20 cm. What is its focal length?

2. The radius of curvature of a spherical mirror is 20 cm. What is its focal length? 1. Define the principle focus of a concave mirror? The principle focus of a concave mirror is a point on its principle axis to which all the light rays which are parallel and close to the axis, converge

More information

LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION LIGHT REFLECTION AND REFRACTION 1. List four properties of the image formed by a plane mirror. Properties of image formed by a plane mirror: 1. It is always virtual and erect. 2. Its size is equal to that

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

Light - Reflection and Refraction

Light - Reflection and Refraction Light - Reflection and Refraction Question 1: Define the principal focus of a concave mirror. Answer: Light rays that are parallel to the principal axis of a concave mirror converge at a specific point

More information

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge). Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

More information

Question 1: Define the principal focus of a concave mirror. Light rays that are parallel to the principal axis of a concave mirror converge at a specific point on its principal axis after reflecting from

More information

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS Equipment and accessories: an optical bench with a scale, an incandescent lamp, matte, a set of

More information

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS 209 GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS Reflection of light: - The bouncing of light back into the same medium from a surface is called reflection

More information

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects.

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. Light i) Light is a form of energy which helps us to see objects. ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. iii) Light

More information

EDULABZ INTERNATIONAL. Light ASSIGNMENT

EDULABZ INTERNATIONAL. Light ASSIGNMENT Light ASSIGNMENT 1. Fill in the blank spaces by choosing the correct words from the list given below : List : compound microscope, yellow, telescope, alter, vitreous humour, time, photographic camera,

More information

LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION LIGHT REFLECTION AND REFRACTION REFLECTION OF LIGHT A highly polished surface, such as a mirror, reflects most of the light falling on it. Laws of Reflection: (i) The angle of incidence is equal to the

More information

GRADE 11-LESSON 2 PHENOMENA RELATED TO OPTICS

GRADE 11-LESSON 2 PHENOMENA RELATED TO OPTICS REFLECTION OF LIGHT GRADE 11-LESSON 2 PHENOMENA RELATED TO OPTICS 1.i. What is reflection of light?.. ii. What are the laws of reflection? a...... b.... iii. Consider the diagram at the right. Which one

More information

The Indian Academy Nehrugram DEHRADUN Question Bank Subject - Physics Class - X

The Indian Academy Nehrugram DEHRADUN Question Bank Subject - Physics Class - X The Indian Academy Nehrugram DEHRADUN Question Bank - 2013-14 Subject - Physics Class - X Section A A- One mark questions:- Q1. Chair, Table are the example of which object? Q2. In which medium does the

More information

Name. Light Chapter Summary Cont d. Refraction

Name. Light Chapter Summary Cont d. Refraction Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

More information

General Physics II. Ray Optics

General Physics II. Ray Optics General Physics II Ray Optics 1 Dispersion White light is a combination of all the wavelengths of the visible part of the electromagnetic spectrum. Red light has the longest wavelengths and violet light

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

More information

SECTION 1 QUESTIONS NKB.CO.IN

SECTION 1 QUESTIONS NKB.CO.IN OPTICS SECTION 1 QUESTIONS 1. A diverging beam of light falls on a plane mirror. The image formed by the mirror is a) real, erect b) virtual, inverted c) virtual, erect d) real, inverted. In a pond water

More information

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS X REFLECTION AND REFRACTION OF LIGHT QUESTION BANK

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS X REFLECTION AND REFRACTION OF LIGHT QUESTION BANK INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS X REFLECTION AND REFRACTION OF LIGHT QUESTION BANK 1. Q. A small candle 2.5cm in size is placed at 27 cm in front of concave mirror of radius

More information

REFLECTION THROUGH LENS

REFLECTION THROUGH LENS REFLECTION THROUGH LENS A lens is a piece of transparent optical material with one or two curved surfaces to refract light rays. It may converge or diverge light rays to form an image. Lenses are mostly

More information

Light: Reflection and Refraction Light Reflection of Light by Plane Mirror Reflection of Light by Spherical Mirror Formation of Image by Mirror Sign Convention & Mirror Formula Refraction of light Through

More information

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS Option C Imaging C Introduction to imaging Learning objectives In this section we discuss the formation of images by lenses and mirrors. We will learn how to construct images graphically as well as algebraically.

More information

Supplementary Notes to. IIT JEE Physics. Topic-wise Complete Solutions

Supplementary Notes to. IIT JEE Physics. Topic-wise Complete Solutions Supplementary Notes to IIT JEE Physics Topic-wise Complete Solutions Geometrical Optics: Focal Length of a Concave Mirror and a Convex Lens using U-V Method Jitender Singh Shraddhesh Chaturvedi PsiPhiETC

More information

Class-X Assignment (Chapter-10) Light-Reflection & Refraction

Class-X Assignment (Chapter-10) Light-Reflection & Refraction Class-X Assignment (Chapter-10) Light-Reflection & Refraction Q 1. How does light enable us to see an object? Q 2. What is a concave mirror? Q 3. What is the relationship between focal length and radius

More information

Geometric Optics. PSI AP Physics 2. Multiple-Choice

Geometric Optics. PSI AP Physics 2. Multiple-Choice Geometric Optics PSI AP Physics 2 Name Multiple-Choice 1. When an object is placed in front of a plane mirror the image is: (A) Upright, magnified and real (B) Upright, the same size and virtual (C) Inverted,

More information

Refraction by Spherical Lenses by

Refraction by Spherical Lenses by Page1 Refraction by Spherical Lenses by www.examfear.com To begin with this topic, let s first know, what is a lens? A lens is a transparent material bound by two surfaces, of which one or both the surfaces

More information

Chapter 10: Light Reflection and Refraction Q1. What do you mean by principal focus? Ans:

Chapter 10: Light Reflection and Refraction Q1. What do you mean by principal focus? Ans: Chapter 10: Light Reflection and Refraction Q1. What do you mean by principal focus? Ans: All incident light rays which are passing parallel to the principal axis of the concave mirror meet at a specific

More information

JPN Pahang Physics Module Form 4 Chapter 5 Light. In each of the following sentences, fill in the bracket the appropriate word or words given below.

JPN Pahang Physics Module Form 4 Chapter 5 Light. In each of the following sentences, fill in the bracket the appropriate word or words given below. JPN Pahang Physics Module orm 4 HAPTER 5: LIGHT In each of the following sentences, fill in the bracket the appropriate word or words given below. solid, liquid, gas, vacuum, electromagnetic wave, energy

More information

PRINCIPLE PROCEDURE ACTIVITY. AIM To observe diffraction of light due to a thin slit.

PRINCIPLE PROCEDURE ACTIVITY. AIM To observe diffraction of light due to a thin slit. ACTIVITY 12 AIM To observe diffraction of light due to a thin slit. APPARATUS AND MATERIAL REQUIRED Two razor blades, one adhesive tape/cello-tape, source of light (electric bulb/ laser pencil), a piece

More information

Converging and Diverging Surfaces. Lenses. Converging Surface

Converging and Diverging Surfaces. Lenses. Converging Surface Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

More information

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing. Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

More information

Light Reflection and Refraction

Light Reflection and Refraction CHAPTER 10 Light Reflection and Refraction We see a variety of objects in the world around us. However, we are unable to see anything in a dark room. On lighting up the room, things become visible. What

More information

Physics 132: Lecture Fundamentals of Physics

Physics 132: Lecture Fundamentals of Physics Physics 132: Lecture Fundamentals of Physics II Agenda for Today Mirrors Concave Convex e Mirror equation Physics 201: Lecture 1, Pg 1 Curved mirrors A Spherical Mirror: section of a sphere. R light ray

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

DEEPAK SIR LIGHT

DEEPAK SIR LIGHT LIGHT Before the beginning of the nineteenth century, light was considered to be a stream of particles (called corpuscles). Newton used this corpuscular theory to explain reflection and refraction of light.

More information

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 27 Geometric Optics Spring 205 Semester Matthew Jones Sign Conventions > + = Convex surface: is positive for objects on the incident-light side is positive for

More information

DELHI PUBLIC SCHOOL JALANDHAR. (a) Assignment will be discussed and solved in the Class. ( In Physics Notebook)

DELHI PUBLIC SCHOOL JALANDHAR. (a) Assignment will be discussed and solved in the Class. ( In Physics Notebook) DELHI PUBLIC SCHOOL JALANDHAR DELHI REVISION ASSIGNMENT NO. 3 Instructions: SUBJECT: PHYSICS CLASS:10 Previous Year Questions (Miscellaneous ) (a) Assignment will be discussed and solved in the Class.

More information

Physics II. Chapter 23. Spring 2018

Physics II. Chapter 23. Spring 2018 Physics II Chapter 23 Spring 2018 IMPORTANT: Except for multiple-choice questions, you will receive no credit if you show only an answer, even if the answer is correct. Always show in the space on your

More information

WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers!

WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers! WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers! Willebrord Snell (1591-1626) Snell developed methods for measuring the Earth. He proposed the method of triangulation

More information

Division C Optics KEY Captains Exchange

Division C Optics KEY Captains Exchange Division C Optics KEY 2017-2018 Captains Exchange 1.) If a laser beam is reflected off a mirror lying on a table and bounces off a nearby wall at a 30 degree angle, what was the angle of incidence of the

More information

Person s Optics Test KEY SSSS

Person s Optics Test KEY SSSS Person s Optics Test KEY SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

More information

LLT Education Services

LLT Education Services Rahul Arora 1. Which of the following can make a parallel beam of light when light from a point source is incident on it? (a) Concave mirror as well as convex lens (b) Convex mirror as well as concave

More information

OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B. School/#: Names: OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

More information

7 = <» _1_. The Language of Physics. Summary of Important Equations. J_ Pi. \j?i rj

7 = <» _1_. The Language of Physics. Summary of Important Equations. J_ Pi. \j?i rj The Language of Physics Refraction The bending of light as it travels from one medium into another. It occurs because of the difference in the speed of light in the different mediums. Whenever a ray of

More information

Light sources can be natural or artificial (man-made)

Light sources can be natural or artificial (man-made) Light The Sun is our major source of light Light sources can be natural or artificial (man-made) People and insects do not see the same type of light - people see visible light - insects see ultraviolet

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 70 20 80 90 90 80 BASIC OPTICS RAY TABLE 10 0 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B

More information

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification.

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification. Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification. 1.! Questions about objects and images. Can a virtual

More information

Mirrors, Lenses &Imaging Systems

Mirrors, Lenses &Imaging Systems Mirrors, Lenses &Imaging Systems We describe the path of light as straight-line rays And light rays from a very distant point arrive parallel 145 Phys 24.1 Mirrors Standing away from a plane mirror shows

More information

LECTURE 17 MIRRORS AND THIN LENS EQUATION

LECTURE 17 MIRRORS AND THIN LENS EQUATION LECTURE 17 MIRRORS AND THIN LENS EQUATION 18.6 Image formation with spherical mirrors Concave mirrors Convex mirrors 18.7 The thin-lens equation Sign conventions for lenses and mirrors Spherical mirrors

More information

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light Physics R: Form TR8.17A TEST 8 REVIEW Name Date Period Test Review # 8 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

Chapter 26. The Refraction of Light: Lenses and Optical Instruments

Chapter 26. The Refraction of Light: Lenses and Optical Instruments Chapter 26 The Refraction of Light: Lenses and Optical Instruments 26.1 The Index of Refraction Light travels through a vacuum at a speed c=3. 00 10 8 m/ s Light travels through materials at a speed less

More information

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36 Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

More information

Test Review # 9. Physics R: Form TR9.15A. Primary colors of light

Test Review # 9. Physics R: Form TR9.15A. Primary colors of light Physics R: Form TR9.15A TEST 9 REVIEW Name Date Period Test Review # 9 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

Physics 11. Unit 8 Geometric Optics Part 2

Physics 11. Unit 8 Geometric Optics Part 2 Physics 11 Unit 8 Geometric Optics Part 2 (c) Refraction (i) Introduction: Snell s law Like water waves, when light is traveling from one medium to another, not only does its wavelength, and in turn the

More information

Focal Length of Lenses

Focal Length of Lenses Focal Length of Lenses OBJECTIVES Investigate the properties of converging and diverging lenses. Determine the focal length of converging lenses both by a real image of a distant object and by finite object

More information

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7)

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7) Lenses- Worksheet 1. Look at the lenses in front of you and try to distinguish the different types of lenses? Describe each type and record its characteristics. 2. Using the lenses in front of you, look

More information

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts L 32 Light and Optics [2] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky and red sunsets Mirrors

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

CHAPTER 3LENSES. 1.1 Basics. Convex Lens. Concave Lens. 1 Introduction to convex and concave lenses. Shape: Shape: Symbol: Symbol:

CHAPTER 3LENSES. 1.1 Basics. Convex Lens. Concave Lens. 1 Introduction to convex and concave lenses. Shape: Shape: Symbol: Symbol: CHAPTER 3LENSES 1 Introduction to convex and concave lenses 1.1 Basics Convex Lens Shape: Concave Lens Shape: Symbol: Symbol: Effect to parallel rays: Effect to parallel rays: Explanation: Explanation:

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the

More information

INDEX OF REFRACTION index of refraction n = c/v material index of refraction n

INDEX OF REFRACTION index of refraction n = c/v material index of refraction n INDEX OF REFRACTION The index of refraction (n) of a material is the ratio of the speed of light in vacuuo (c) to the speed of light in the material (v). n = c/v Indices of refraction for any materials

More information

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction Geometric Optics Ray Model assume light travels in straight line uses rays to understand and predict reflection & refraction General Physics 2 Geometric Optics 1 Reflection Law of reflection the angle

More information

HUYGENS PRINCIPLE AND INTERFERENCE

HUYGENS PRINCIPLE AND INTERFERENCE HUYGENS PRINCIPLE AND INTERFERENCE VERY SHORT ANSWER QUESTIONS Q-1. Can we perform Double slit experiment with ultraviolet light? Q-2. If no particular colour of light or wavelength is specified, then

More information

Reflection and Refraction of Light

Reflection and Refraction of Light Reflection and Refraction of Light Physics 102 28 March 2002 Lecture 6 28 Mar 2002 Physics 102 Lecture 6 1 Light waves and light rays Last time we showed: Time varying B fields E fields B fields to create

More information

Chapter 34. Images. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 34. Images. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 34 Images Copyright 34-1 Images and Plane Mirrors Learning Objectives 34.01 Distinguish virtual images from real images. 34.02 Explain the common roadway mirage. 34.03 Sketch a ray diagram for

More information

Chapter 23. Light: Geometric Optics

Chapter 23. Light: Geometric Optics Ch-23-1 Chapter 23 Light: Geometric Optics Questions 1. Archimedes is said to have burned the whole Roman fleet in the harbor of Syracuse, Italy, by focusing the rays of the Sun with a huge spherical mirror.

More information

CHAPTER 18 REFRACTION & LENSES

CHAPTER 18 REFRACTION & LENSES Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 18 REFRACTION & LENSES Day Plans for the day Assignments for the day 1 18.1 Refraction of Light o Snell

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 lgebra ased Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

E X P E R I M E N T 12

E X P E R I M E N T 12 E X P E R I M E N T 12 Mirrors and Lenses Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics II, Exp 12: Mirrors and Lenses

More information

Ch 24. Geometric Optics

Ch 24. Geometric Optics text concept Ch 24. Geometric Optics Fig. 24 3 A point source of light P and its image P, in a plane mirror. Angle of incidence =angle of reflection. text. Fig. 24 4 The blue dashed line through object

More information

The Law of Reflection

The Law of Reflection PHY132H1F Introduction to Physics II Class 5 Outline: Reflection and Refraction Fibre-Optics Colour and Dispersion Thin Lens Equation Image Formation Quick reading quiz.. virtual image is. the cause of

More information

The Nature of Light. Light and Energy

The Nature of Light. Light and Energy The Nature of Light Light and Energy - dependent on energy from the sun, directly and indirectly - solar energy intimately associated with existence of life -light absorption: dissipate as heat emitted

More information

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope SNC2D Lenses A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope Reading stones used by monks, nuns, and scholars ~1000 C.E. Lenses THERE ARE

More information

INTERNATIONAL INDIAN SCHOOL RIYADH

INTERNATIONAL INDIAN SCHOOL RIYADH SUBJECT: PHYSICS WORKSHEET 2018-19 CLASS: X 1. Define the principal focus of concave mirror. 2. We wish to obtain an erect image of an object using concave mirror of focal length 15 cm. What should be

More information

Chapter 34 Geometric Optics

Chapter 34 Geometric Optics Chapter 34 Geometric Optics Lecture by Dr. Hebin Li Goals of Chapter 34 To see how plane and curved mirrors form images To learn how lenses form images To understand how a simple image system works Reflection

More information

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Mirrors and Lenses Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Notation for Mirrors and Lenses The object distance is the distance from the object

More information

Phys214 Fall 2004 Midterm Form A

Phys214 Fall 2004 Midterm Form A 1. A clear sheet of polaroid is placed on top of a similar sheet so that their polarizing axes make an angle of 30 with each other. The ratio of the intensity of emerging light to incident unpolarized

More information

6. OPTICS RAY OPTICS GIST. Reflection by convex and concave mirrors. a. Mirror formula, where u is the object distance, v is the image distance and f is v u f the focal length. v f v f b. Magnification

More information

Light and Applications of Optics

Light and Applications of Optics UNIT 4 Light and Applications of Optics Topic 4.1: What is light and how is it produced? Topic 4.6: What are lenses and what are some of their applications? Topic 4.2 : How does light interact with objects

More information

More problems for Chapter 12 of Introduction to Wave Phenomena (Hirose- Lonngren) θ =.

More problems for Chapter 12 of Introduction to Wave Phenomena (Hirose- Lonngren) θ =. More problems for Chapter 1 of Introduction to Wave Phenomena (Hirose- Lonngren). In the 18-th century, Bradley observed apparent change in angular location of distant stars by " when the earth is moving

More information

H-'li+i Lensmaker's Equation. Summary / =

H-'li+i Lensmaker's Equation. Summary / = Lensmaker's equation *! 23-10 Lensmaker's Equation A useful equation, known as the lensmaker's equation, relates the focal length of a lens to the radii of curvature Rx and R2 of its two surfaces and its

More information

25 cm. 60 cm. 50 cm. 40 cm.

25 cm. 60 cm. 50 cm. 40 cm. Geometrical Optics 7. The image formed by a plane mirror is: (a) Real. (b) Virtual. (c) Erect and of equal size. (d) Laterally inverted. (e) B, c, and d. (f) A, b and c. 8. A real image is that: (a) Which

More information

2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses

2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Lenses Types of lenses Converging lens bi-convex has two convex surfaces Diverging lens bi-concave has two concave surfaces Thin

More information

OPTICS. 2.Light passes from air into liquid and is deviated 19 0 when the angle of incidence is What is the refractive index of liquid.

OPTICS. 2.Light passes from air into liquid and is deviated 19 0 when the angle of incidence is What is the refractive index of liquid. 56 OPTICS 1. Light from sodium lamp passes through a tank of glycerin (µ = 1.47 ) 20 m long in a time t 1. If it takes a time t 2 to traverse the same tank when filled with carbon disulfide (µ = 1.63 )

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER III PAPER III OPTICS UNIT I: 1. MATRIX METHODS IN PARAXIAL OPTICS 2. ABERATIONS UNIT II

More information