Survey Name: Gippsland Southern Flank Infill 2D Marine Seismic Survey Location: Gippsland Basin, Victoria, Offshore Australia

Size: px
Start display at page:

Download "Survey Name: Gippsland Southern Flank Infill 2D Marine Seismic Survey Location: Gippsland Basin, Victoria, Offshore Australia"

Transcription

1 Geoscience Australia Survey Name: Gippsland Southern Flank Infill 2D Marine Seismic Survey Location: Gippsland Basin, Victoria, Offshore Australia GA Reference: GA0352 DUG Reference: gpsfnkpr_009 Marine Seismic Data PSTM and PSDM Processing Report Date: 16 June June 2016 DUGRef:

2

3 CONTENTS 1. INTRODUCTION SURVEY DATUM SURVEY LOCATION PROCESSING OBJECTIVES KEY PERSONNEL DATA ACQUISITION PARAMETERS PROCESSING INFORMATION FINAL PROCESSING SEQUENCE PROCESSING Introduction Data Reformat and Navigation Merge Spherical Divergence Low Cut Filter Seismic Interference and Swell Noise Attenuation Linear Noise Attenuation Surface Related Multiple Elimination (SRME) Shallow Water Multiple Prediction (SWaMP) Pre-Migration Radon Demultiple DUG Broad Deghosting Debubble Zero Phasing Pre-migration Noise Attenuation Inverse Q Filtering (Phase Only) Remove Spherical Divergence Five Iterations of Tomographic Velocity Analysis Kirchhoff Pre-stack Depth Migration Time Tomography Post Migration Radon Demultiple Post Migration Residual Noise Attenuation Inverse Q Filtering (Amplitude Only) NMO, Mute and Stack Angle Stack POST-STACK PROCESSING Spectral Enhancement Time Varying Bandpass Filtering Scaling Polarity and Phase Shot Point to CDP Relationship Output to SEGY CONCLUSIONS Page 3

4 12.1 Final Line List (2D Processing) Deliverables (2D Processing) EBCDIC Header (example) Gather Stack Velocity Gun Signature Zero Phasing Coefficients REFERENCES...78 Page 4

5 1. INTRODUCTION INTRODUCTION The Gippsland Southern Flank Infill 2D marine seismic survey is located in Gippsland Basin, Victoria, offshore Australia. This 2D marine seismic survey was acquired by Gardline CGG JV between 1 April and 27 April The survey covers approximately kilometres. DownUnder GeoSolutions received 37 sail lines. The datasets were processed from SEGD field tapes by DownUnder GeoSolutions in their Brisbane office from September 2015 to May SURVEY DATUM Geodetic datum: WGS 84 Projection: 002Universal Transverse Mercator Zone: UTM ZONE 55 S (147 E) Central meridian: E Origin false easting: Origin false northing: Scale factor: Page 5

6 3. SURVEY LOCATION SURVEY LOCATION Figure 1: Location map of the Gippsland 2D Seismic Infill survey. Figure 2: Map view of the Gippsland 2D Seismic Infill survey with test lines highlighted in blue. Page 6

7 4. PROCESSING OBJECTIVES PROCESSING OBJECTIVES Geoscience Australia objectives as outlined for this project were to undertake the Broadband PreSTM processing of the 908 km (full fold) Gippsland Southern Margin Infill 2D. To provide the optimum processing flow based on the acquisition parameters and consideration of the following; water depth, multiple attenuation (including interbed multiples). To achieve these goals, both SRME and shallow water demultiple were recommended. For broad banding the data, DUG Broad shot and receiver deghosting will be provided which will result in improved resolution and stratigraphic analysis of the dataset. Optional PreSDM processing was under taken to remove the effects of channelling and slump features in the shallow section to allow improved imaging of the deeper basin and basin margin fault systems. 5. KEY PERSONNEL The main personnel involved with the project were: Client Company Personnel: Merrie-Ellen Gunning Senior Geophysicist John Cant Geophysical Consultant Bruce Hawkes Geophysical Consultant DownUnder GeoSolutions: Simon Stewart Geoscience Manager Pei-Fei Chau Geophysicist Page 7

8 6. DATA ACQUISITION PARAMETERS DATA ACQUISITION PARAMETERS Country of survey: Offshore Australia Area of survey: Gippsland Basin Survey vessel: M.V. Duke Data type: 2D Marine Volume: line kilometres Acquisition record length: 5.5 seconds Acquisition sample interval: 2 ms Acquisition filter applied: Low cut: 3Hz Low cut slope: 12 db/ oct High cut: 412 Hz High cut slope: 276 db/ oct Number of sources: 1 Source depth: 6 +/- 1 m Shot interval: m Streamer length: 5100 m No. of streamers: 1 Streamer depth: 8 +/- 1 m Channel interval: 12.5 m No. channels: 408 Nominal inline near offset: 20 m Recording system: Sercel SEAL 408 Tape format: SEG-D 3592 Page 8

9 Figure 3: DATA ACQUISITION PARAMETERS Towing configuration diagram. Page 9

10 7. PROCESSING INFORMATION PROCESSING INFORMATION The dataset was processed with CDP spacing 6.25 metres throughout the processing sequence. Page 10

11 8. FINAL PROCESSING SEQUENCE FINAL PROCESSING SEQUENCE Data reformat and navigation merge Spherical divergence Low cut filter Seismic interference and swell noise attenuation Linear noise attenuation Surface Related Multiple Elimination (SRME) Shallow Water Multiple Prediction (SWaMP) Pre-migration Radon demultiple DUG Broad deghosting Debubble Zero phasing Pre-migration noise attenuation Inverse Q filtering (phase only) Remove spherical divergence Five iterations of tomographic velocity analysis Kirchhoff pre-stack depth migration Time tomography Post migration Radon demultiple Post migration residual noise attenuation Inverse Q filtering (amplitude only) NMO, mute and stack Angle stack Spectral enhancement Time varying bandpass filter Scaling Polarity and phase Shot point to CDP relationship Output to SEGY Page 11

12 9. PROCESSING 9.1 Introduction PROCESSING The dataset was processed from SEGD field tapes by DownUnder GeoSolutions in their Brisbane office from September 2015 to May Data Reformat and Navigation Merge Data were read from SEGD tapes, reformatted and the geometry information was used to update the seismic trace headers No trace edits were applied prior to dataloading. Details of the data loading are outlined in the Data load report. 9.3 Spherical Divergence Spherical divergence correction of T^2 was applied. 9.4 Low Cut Filter A low cut filter was applied to remove some low-frequency noise in the data. Parameter values: Low cut filter: Hz Seismic Interference and Swell Noise Attenuation Swell noise is generally caused by rough sea conditions, particularly when the streamers are towed at a shallow depth. Swell noise is removed in the time frequency domain. The median spectral amplitude within frequency sub-bands is calculated within temporal and spatial windows. If a sample value exceeds a user-defined threshold (measured relative to the median value) the sample is interpolated from the adjacent data in the sub-band. Swell noise attenuation was tested in various domains in an effort to determine if the noise was more randomly distributed in these domains. Swell noise removal in the CDP domain proved very efficient. An added advantage of applying the swell noise attenuation here, was that the events were flat after application of normal moveout correction, which improved the result of interpolating the noisy sub-bands. Swell noise attenuation via time-frequency denoise was applied in shot and common channel domain. Details of the swell noise attenuation are outlined in the Initial flow QC report. Page 12

13 PROCESSING TFDN 1 TFDN 2 Domain: Channel Shot Shot Frequency range: 0 16 Hz 0 16 Hz Hz Number of adjacent traces: Window length: 500 ms 500 ms 500 ms Threshold: Application start time: 0 ms; taper = 250 ms 0 ms; taper = 250 ms 0 ms; taper = 250 ms Trace order: Sequential Sequential Sequential 9.6 Linear Noise Attenuation Low frequency array forming (LFAF) firstly transforms data to the frequency domain via Fourier Transforms. Subsequently a range of spatial filters are applied before the data are backtransformed into the time domain. DUG LNR removes linear energy from records. It uses a windowed, time-domain, high-resolution tau-p transform to model the energy, which is then subtracted from the records. Some remnant noise removal after linear noise attenuation was further achieved by applying one pass of DUG TFDN in the shot domain. Details of the linear noise attenuation are outlined in the LNR, SRME and SWaMP test report. Page 13

14 PROCESSING Parameter values: Low Frequency Array Forming (LFAF) NMO wraparound Surface velocity: 1000 m/s Filter frequency: 3 10 Hz Receiver spacing: 10 m DUG LNR NMO and AGC wraparound Low cut filter: 3 7 Hz Start time: 150 ms; Ramp: 50 ms Min/Max dip to model: m/s to 1000 m/s Min/Max dip to remove: 1000 m/s to 3500 m/s Time-Frequency Denoise (TFDN) 9.7 Domain: Shot Start time: 500 ms Frequency range: Hz Number of adjacent traces: 151 Window length: 200 ms Threshold: 3 Surface Related Multiple Elimination (SRME) Surface related multiple elimination is based on the premise that the seismic dataset itself contains all the information required to predict surface multiples. The multiple model is computed via an auto-convolution method of the input data. The resulting multiple model is then adaptively subtracted from the input data. Surface related multiple elimination requires an adaptive subtraction of the multiples from the input data. In areas where the multiples are very strong and the primaries very weak, special care must be taken not to be too harsh with the subtraction process. Of course this means that some multiple may be left in the data as a trade-off. Details of the surface related multiple elimination (SRME) are outlined in the LNR, SRME and SWaMP test report. Page 14

15 PROCESSING Parameter values: SRME model building Contribution grid sampling: 12.5 m Half aperture at 0 m offset: 125 m Half aperture at 5000 m offset: 2500 m SRME adaptive subtraction 9.8 Domain: Channel Temporal window: 500 ms Spatial window: 51 traces Filter length: 42 ms Whitening factor: 0.1 Shallow Water Multiple Prediction (SWaMP) Shallow Water Multiple Prediction (SWaMP) is a model-driven prediction method to model multiples generated between the seafloor and the free surface. This process is very successful for shallow water. Multiples thus modelled are removed by a least-squares subtraction method. Details of the shallow water multiple prediction (SWaMP) are outlined in the LNR, SRME and SWaMP test report. Page 15

16 PROCESSING Parameter values: SRME model building Contribution grid sampling: 12.5 m Half aperture at 0 m offset: 125 m Half aperture at 5000 m offset: 2500 m SRME adaptive subtraction 9.9 Domain: Channel Temporal window: 500 ms Spatial window: 51 traces Filter length: 42 ms Whitening factor: 0.1 Pre-Migration Radon Demultiple Radon demultiple involves transforming normal moveout corrected common midpoint or image point gathers from X-T domain into the Tau-P domain. The seismic data is modelled with a series of parabolic or hyperbolic curves that are fit to the data using a least squares method. Primary and multiple energy transform to different locations in Tau-P space, which can be exploited to remove unwanted events. The primary energy is normally removed and the multiple energy transformed back to X-T domain and subtracted from the input gathers. Pre-migration Radon demultiple were applied to shot point interpolated datasets. Interpolation of extra shot points result in a finer trace spacing in the CMP domain. Multiples and dipping noise with large moveout from near to far traces are usually aliased in the CMP domain due to the sparse sampling. By interpolating shot positions one can de-alias this energy. This is important for any processes that are implemented in this domain, e.g. Radon demultiple and stacking. Two passes of time-frequency denoise was applied in CDP domain to remove remnant swell noise after application of parabolic Radon. Details of the pre-migration Radon demultiple are outlined in the following reports: Radon demultiple test report Parabolic Radon test report Page 16

17 PROCESSING Parameter values: Parabolic Radon Domain: CDP Shot interpolation: 6.25 m NMO and AGC wraparound Minimum / maximum moveout at 5000 m offset: ms / 4500 ms Start time: 700 ms; taper: 250 ms P traces: 501 Mute values (ms of moveout at 5000 m offset): o 0 ms : 700 ms o 1000 ms : 500 ms o 1500 ms : 400 ms o 5500 ms : 100 ms Time-frequency denoise (TFDN) TFDN 1 TFDN 2 Domain: CDP CDP Frequency range: Hz Hz Number of adjacent traces: Window length: 500 ms 300 ms Threshold: 3 3 Application start time: 200 ms; taper = 250 ms 1600 ms; taper = 250 ms Trace order: Sequential Sequential Linear Radon Domain: CDP NMO and AGC wraparound Minimum / maximum velocity to model: / 3000 ms-1 Start time: 200 ms; taper: 150 ms P traces: 801 Hand-picked polymute in Tau-P space Page 17

18 PROCESSING 9.10 DUG Broad Deghosting A well known issue in marine acquisition relates to reflections from the sea surface. Acoustic signals travelling upwards in the water layer will be reflected, with opposite polarity, from this interface. These are termed ghost reflections. Using a unique design window architecture based on transformations (patent pending) we minimise the variability in receiver depth, source depth, obliquity, sea state and SNR. An initial modelled signature is optimised to match the observed signature within each design window. It is critical that the exact location of the notches is known in order to calculate an inverse operator to correct the variable phase and amplitude distortion present throughout the dataset. DUG Broad deghosting is performed based on the nominal source and receiver depths. The input dataset is in minimum phase, first receiver deghosting was performed followed by source deghosting for the optimum results. Details of the DUG Broad deghosting are outlined in the DUG Broad deghosting, debubble and zero phasing test report. Parameter values: Receiver deghosting Optimise parameters with frequency dependence Prior sea state: 0.75 Source deghosting 9.11 Optimise parameters with frequency dependence Prior sea state: 0.55 Debubble Debubble was performed after DUG Broad deghosting was applied. Wavelet was extracted from the seafloor. Details of the debubble are outlined in the DUG Broad deghosting, debubble and zero phasing test report. Parameter values: Operator length: 600 ms Gap length: 80 ms White noise percentage: % Page 18

19 PROCESSING 9.12 Zero Phasing The objective of source signature conversion is to convert a modelled far-field source signature to a more suitable (fit for purpose) signature. This may include a minimum phase wavelet, which is a pre-requisite for spiking deconvolution and DUG Broad deghosting or alternatively a zero phase signature that is more desirable for interpretation and controlled phase processing. The far field signature can be measured or modelled. For this project, conversion to zero phase was performed after DUG Broad deghosting was applied. A wavelet is extracted from the seafloor. A filter is then designed to convert the extracted wavelet to it's zero phase equivalent without changing the amplitude spectrum of the signature. This filter is then applied to the seismic data. Output polarity of the wavelet was SEG reverse or an increase in acoustic impedance is represented by a negative number and displayed as a trough. Details of the zero phasing are outlined in the DUG Broad deghosting, debubble and zero phasing test report Pre-migration Noise Attenuation Residual random noise, deep horizontal noise and aliased high amplitude noise were addressed before phase only inverse Q filtering. Details of the pre-migration noise attenuation are outlined in the Pre-migration denoise test report. Parameter values: Linear Radon Domain: Shot NMO and AGC wraparound Minimum / maximum velocity: ms-1 / 1500 ms-1 Hand-picked polymute in Tau-P space Dip filter Number of traces in filter: 301 Filter length: 101 ms Adaptive subtraction Application start time: 200 ms below ft_08 horizon Time-frequency denoise (TFDN) Domain: CDP Start time: 1500 ms Frequency: Hz Traces: 81 Window length: 100 ms Threshold: 3 Page 19

20 PROCESSING 9.14 Inverse Q Filtering (Phase Only) As the seismic pulse travels through the earth, energy is converted into heat through inelastic movement of rock particles resulting in attenuation of higher frequencies and phase distortion due to velocity dispersion. Inverse Q filtering involves the application of a continuously time varying filter to the seismic data to remove the effects of inelastic attenuation and dispersion. It employs a wave propagation reversal procedure that compensates for energy absorption and corrects wavelet distortion due to velocity dispersion. The algorithm is based on phase-shift migration theory where the kernel of the phase term is modified to take account of dispersion. Details of the inverse Q filtering (phase only) are outlined in the Pre-migration Q filter test report. Parameter values: Constant Q: 136 Reference frequency: 250 Hz Mode: Phase only 9.15 Remove Spherical Divergence Spherical divergence correction of T^2 was removed prior to Kirchhoff pre-stack depth migration Five Iterations of Tomographic Velocity Analysis Isotropic velocity updates were performed in a layer down approach. In total, three isotropic tomographic updates to the velocity model were made. The anisotropic velocity model building process updates the isotropic tomography 3 model with anisotropic delta and epsilon models derived from the wells Bullseye-1, Devilfish-1, Kyarra-1A, Pike-1, and Tarra-1. One last iteration of anisotropic velocity update was performed to the full trace length. Velocity model building workflow a. Perform isotropic migration using first pass velocity field (velocity field before migration) integrated with depth varying water function. b. Pick residuals and perform isotropic reflection tomography. Residuals were picked on client supplied and DUG picked horizons and in between horizons using DUG Insight automated volume picker. c. Perform isotropic model building PreSDM. d. Three cycles of residual picking and isotropic model building migration were performed to produce acceptably flat gathers at short offset. e. Build delta field from the third isotropic tomography updated velocities and well check- shot velocities. f. Scale the third isotropic tomography updated velocities with the delta field. g. Perform anisotropic model building (PreSDM) with scaled velocity field, delta field and epsilon scalar field. Imaged gathers displayed minimal move out. Page 20

21 PROCESSING h. Perform full anisotropic PreSDM true relative amplitude Kirchhoff Migration. Velocity updates summary Velocity Update 1 Initial Tomography Model o The smoothed second pass velocity picked on the preliminary PreSTM datasets. o TS dips were provided by Geoscience Australia and were used to derived a single function water column velocity. o The water velocity was spliced back in above the water bottom horizon. o Details of the initial tomography model are outlined in the Initial velocity model report. Velocity Update 2 Isotropic Tomography Update 1 o Isotropic tomography 1 has been updated between the water bottom to a constant of 1000 m. o Residual move out (RMO) were picked on a 100 m grid. o The RMO picks were used to update the velocity model. o Details of the isotropic tomography update 1 are outlined in the Tomography 1 QC report. Velocity Update 3 Isotropic Tomography Update 2 o Isotropic tomography 2 has been updated between 200 ms above C05 Slump Top Event horizon and 1500 ms below C05 Slump Top Event horizon. o RMO were picked on a 100 m grid. o The RMO picks were used to update the velocity model. o Details of the isotropic tomography update 2 are outlined in the Tomography 2 QC report. Velocity Update 4 Isotropic Tomography Update 3 o A layer by layer tomography update approach was adopted to obtain a stable tomography model. o RMO were picked on a 100 m grid. o The RMO picks were used to update the velocity model. Velocity Update 5 Delta Derivation, Scaled Tomography 3 and Epsilon Scans o Delta function was derived by using the average delta values from the Bullseye-1, Devilfish-1, Kyarra-1A, Pike-1, and Tarra-1 wells. o The smoothed delta function was then extrapolated in a horizon consistent manner away from the well. o The delta field was then used to scale the isotropic tomography 3 model. o Epsilon scan migration tests were performed and an epsilon of 1.6 x delta field was chosen to better account for anisotropy in the far offsets. o Details of the delta function and epsilon scans are outlined in the following reports: Delta function test report Epsilon Scans test report Velocity Update 6 Anisotropic Tomography Update 4 Page 21

22 PROCESSING o A layer by layer tomography update approach was adopted to obtain a stable tomography model. o RMO were picked on a 100 m grid. o The RMO picks were used to update the velocity model. o Details of the anisotropic tomography update 4 are outlined in the Tomography 4B test report. Migration parameters: Migration approach: Kirchhoff Velocity grid: 200 m 2D image gather grid for tomography: 100 m 2D image gather grid for velocity picking: 100 m Aperture: 5000 m Depth step at surface: 2m 2D input data grid: 6.25 m 2D final data grid: 6.25 m Number of isotropic tomography iterations included: 3 Number of anisotropic tomography iterations included: Kirchhoff Pre-stack Depth Migration Kirchhoff pre-stack depth migration requires the computation of travel times at every image point in subspace. These travel times are calculated through the wavefront reconstruction method and the maximum energy travel times are utilised. Operator aliasing frequency limits are calculated along the lines of Abma et al. (1999) and anti-aliasing is implemented as aperturedependent low pass temporal filtering of the input data as proposed by Gray (1992). The amplitude maps for true amplitude migration are calculated using a method based on Dellinger et al. (2000). Aperture tests were performed before the final migration was run. A gun and cable static correction was applied to the data to correct it to mean sea level during migration. Details of the Kirchhoff pre-stack depth migration are outlined in the report Pre-stack depth migration test report. Parameter values: Offset bins: [38] m Aperture: 5000 m Depth step: 2m Input grid: 6.25 m Output grid: 6.25 m Iterations: 5 Page 22

23 PROCESSING 9.18 Time Tomography The time tomography process (based on the ideas presented in Koren and Ravve's 2006 Gephysics paper Constrained Dix Inversion ) updates a migrated velocity model using a set of parabolic RMO picks, and does so in a geophysically constrained way, to produce a smooth output velocity field. It is the preferred method for updating the velocity field after migration, as opposed to manual repicking of velocity, because it gives a more stable interval velocity field. Details of the time tomography are outlined in the Post migration processing test report. Parameter values: Velocity grid: 200 m x 200 m 2D image gathers grid for tomography: 50 m x 50 m 9.19 Post Migration Radon Demultiple Details of the post migration Radon demultiple are outlined in the Post migration processing test report. Parameter values: Parabolic Radon pass 1 Domain: CDP NMO and AGC wraparound Application start time: 300 ms below ft_02 horizon Modelling range at 5000 m offset: ms to 1500 ms P traces: 201 Time varying moveout cut: From 300 ms below ft_02 horizon: 300 ms 1500 ms: 150 ms 3000 ms: 120 ms 5000 ms: 100 ms Parabolic Radon pass 2 Domain: CDP NMO and AGC wraparound Application start time: 350 ms, taper: 100 ms Modelling range at 5000 m offset: -300 ms to 300 ms P traces: 301 Page 23

24 PROCESSING 9.20 Post Migration Residual Noise Attenuation Reverberation below the main unconformity can be modelled using Cadzow filtering. For this dataset the application has been performed in two passes. Pass 1 flattens on the FT_08 horizon provided by Geoscience Australia and models reverberations that parallel this interface. Pass 2 targets remnant linear noise energy on the far offsets which in common offset plane parallel the seabed. The generated models are first trimmed using a re-picked unconformity horizon before adaptive subtraction is used to match and remove from the common offset planes. Details of the post migration residual noise attenuation are outlined in the Post migration processing report 2 Update (Revised Cadzow Application) report. Page 24

25 PROCESSING Parameter values: Time-Frequency Denoise (TFDN) Domain: CDP NMO wraparound Application start time: ft_08 horizon Pass 1: o Frequency range: Hz o Number of traces: 101 o Window length: 100 ms o Threshold: 3 Pass 2: o Frequency range: 0 60 Hz o Number of traces: 51 o Window length: 100 ms o Threshold: 3 Cadzow filtering Cadzow filter pass 1: Domain: Common offset Application start time: 50 ms below ft_08_dugpick horizon with 100 ms taper Spatial half-window size: 301 traces TWT half-window size: 500 ms Filtering rank: 1 Adaptive subtraction Cadzow filter pass 2: Domain: Common offset Applied beyond 25 degrees to minimise leakage at full data range Application start time: 50 ms below ft_08_dugpick horizon with 100 ms taper Spatial half-window size: 301 traces TWT half-window size: 500 ms Filtering rank: 1 Adaptive subtraction Page 25

26 PROCESSING 9.21 Inverse Q Filtering (Amplitude Only) As the seismic pulse travels through the earth, energy is converted into heat through inelastic movement of rock particles resulting in attenuation of higher frequencies and phase distortion due to velocity dispersion. Inverse Q filtering involves the application of a continuously time varying filter to the seismic data to remove the effects of inelastic attenuation and dispersion. It employs a wave propagation reversal procedure that compensates for energy absorption and corrects wavelet distortion due to velocity dispersion. The algorithm is based on phase-shift migration theory where the kernel of the phase term is modified to take account of dispersion. Details of the inverse Q filtering (amplitude only) are outlined in the Post migration processing report 2 Update (Revised Cadzow Application) report. Parameter values: Mode: Amplitude only Constant Q: 136 Window length: 100 ms Gain stabilisation limit: 10 db 9.22 NMO, Mute and Stack An outer trace mute was applied to the data before stacking in order to suppress direct arrivals, refraction energy and NMO stretch. The mute was based on angle of incidence. The data were stacked using 1/n¹ normalisation, where n is the time dependent fold of coverage. Inner mute 5 degrees Outer mute 40 degrees 9.23 Angle Stack Incident angle as a function of time and input velocity (RMS) velocity is calculated for normal moveout corrected CDP gathers. The angles are computed using a curved-ray ray tracing algorithm. The input RMS velocity functions are smoothed before angle calculation. The T-X domain data is then muted along specified angles or converted to angle gathers. Angle stacks are created by stacking the angle muted T-X gathers or the angle gathers. Details of the angle stack are outlined in the Angle mute test report. Page 26

27 PROCESSING Parameter values: Near stack angle range: 5 15 degree Mid stack angle range: degree Far stack angle range: degree Ultra-far stack angle range: degree Velocity for angle calculation: Anisotropic Tomography 4B velocity model Page 27

28 POST-STACK PROCESSING POST-STACK PROCESSING Spectral Enhancement Spectral balancing was applied to post-stack data to recover residual ghost notches and boost low-frequencies in the stacked sections. Details of the spectral enhancement are outlined in the Post-stack processing test report. Parameter values: Frequency (Hz) : Weights (db) 0 : 5 10 : 4 20 : 3 30 : 2 40 : 2 50 : 2 55 : 2 60 : 2 85 : 2 95 : : : : : : : : : : 3 Page 28

29 POST-STACK PROCESSING 10.2 Time Varying Bandpass Filtering A time varying bandpass filter was designed to remove low-frequency noise in the data. Filter type: Ormsby Time Window (ms) Low Stop (Hz) Low Pass (Hz) High Pass (Hz) High Stop (Hz) Details of the time varying bandpass filter are outlined in the Post-stack processing test report Scaling A residual gain correction of 1 db/s improves the vertical amplitude balance of the data. Details of the scaling are outlined in the Post-stack processing test report Polarity and Phase Data after DUG Broad deghosting was converted to zero phase and pre-stack Q compensation phase only was applied. No further phase processing was done to the data. Parameter values: Polarity data : Increase in impedance is a negative number (trough) 10.5 Shot Point to CDP Relationship Shot point (SP) to CDP relationship was derived by using the following equation: First SP = CDP number 408, where every SP increment = 3 CDP increment 10.6 Output to SEGY Data were transformed into SEGY format for delivery to the client. Page 29

30 11. CONCLUSIONS CONCLUSIONS Geoscience Australia objectives as outlined for this project were to undertake the Broadband PreSTM processing of the 908 km (full fold) Gippsland Southern Margin Infill 2D. To provide the optimum processing flow based on the acquisition parameters and consideration of the following; water depth, multiple attenuation (including interbed multiples). Optional PreSDM processing was under taken to remove the effects of channelling and slump features in the shallow section to allow improved imaging of the deeper basin and basin margin fault systems. The processing flow designed for this dataset achieved the goals as outlined in the objectives. The combination of both SRME and SWaMP was effective at removing the majority of freesurface and water column period multiples. Radon demultiple was able to remove most of the remaining multiple energy. Below the main unconformity residual cross-cutting multiple energy was modelled using a cadzow filter and adaptively subtracted from the data. For deghosting of the data, DUG Broad was used for both receiver and source deghosting using the actual gun and cable depths recorded in the trace headers. A residual correction was applied post-stack to remove a remnant receiver notch. DUG Broad deghosting improved the resolution of the data in two ways; through broadening of the amplitude spectrum by removing the source and receiver notches and by reducing the interference where tuning through thin beds and pinch outs occur. Through a wavelet with less side lobe energy. Detailed modelling through depth tomography, highlighted the velocity variability within the channelling and slump features present in the shallow section. PreSDM using this velocity model was able to improve the imaging of the deeper basin and basin bounding fault systems over the PreSTM flow. Page 30

31 Final Line List (2D Processing) LIN E N AM E F i rst S P La st S P C DP ra nge Tota l l e ngth ( k m) GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P GA0352P Tota l proce sse d l i ne k m Page 31

32 12.2 Deliverables (2D Processing) Datasets media data Contents Date delivered Pre-Migration CDP Gathers USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 USB Disk (Windows format) SEGY Pre-Migration Stack _GA0352P1001_PreMigration_CDP_Gathers_TWT. _GA0352P1002_PreMigration_CDP_Gathers_TWT. _GA0352P1003_PreMigration_CDP_Gathers_TWT. _GA0352P1004_PreMigration_CDP_Gathers_TWT. _GA0352P1005_PreMigration_CDP_Gathers_TWT. _GA0352P1006_PreMigration_CDP_Gathers_TWT. _GA0352P1007_PreMigration_CDP_Gathers_TWT. _GA0352P1008_PreMigration_CDP_Gathers_TWT. _GA0352P1009_PreMigration_CDP_Gathers_TWT. _GA0352P1010_PreMigration_CDP_Gathers_TWT. _GA0352P1011_PreMigration_CDP_Gathers_TWT. _GA0352P1012_PreMigration_CDP_Gathers_TWT. _GA0352P1013_PreMigration_CDP_Gathers_TWT. _GA0352P1015_PreMigration_CDP_Gathers_TWT. _GA0352P1016_PreMigration_CDP_Gathers_TWT. _GA0352P1017_PreMigration_CDP_Gathers_TWT. _GA0352P1018_PreMigration_CDP_Gathers_TWT. _GA0352P1020_PreMigration_CDP_Gathers_TWT. _GA0352P1021_PreMigration_CDP_Gathers_TWT. _GA0352P1022_PreMigration_CDP_Gathers_TWT. _GA0352P1023_PreMigration_CDP_Gathers_TWT. _GA0352P1024_PreMigration_CDP_Gathers_TWT. _GA0352P1025_PreMigration_CDP_Gathers_TWT. _GA0352P1026_PreMigration_CDP_Gathers_TWT. _GA0352P1027_PreMigration_CDP_Gathers_TWT. _GA0352P1028_PreMigration_CDP_Gathers_TWT. _GA0352P1029_PreMigration_CDP_Gathers_TWT. _GA0352P1030_PreMigration_CDP_Gathers_TWT. _GA0352P1031_PreMigration_CDP_Gathers_TWT. _GA0352P1032_PreMigration_CDP_Gathers_TWT. _GA0352P1033_PreMigration_CDP_Gathers_TWT. _GA0352P1034_PreMigration_CDP_Gathers_TWT. _GA0352P1035_PreMigration_CDP_Gathers_TWT. _GA0352P1036_PreMigration_CDP_Gathers_TWT. _GA0352P2014_PreMigration_CDP_Gathers_TWT. _GA0352P2018_PreMigration_CDP_Gathers_TWT. _GA0352P2019_PreMigration_CDP_Gathers_TWT. Media ID: GE0019UW, GE0020UW 15/06/16 _GA0352P1001_PreMigration_Full_Stack_TWT. _GA0352P1002_PreMigration_Full_Stack_TWT. _GA0352P1003_PreMigration_Full_Stack_TWT. _GA0352P1004_PreMigration_Full_Stack_TWT. _GA0352P1005_PreMigration_Full_Stack_TWT. _GA0352P1006_PreMigration_Full_Stack_TWT. _GA0352P1007_PreMigration_Full_Stack_TWT. _GA0352P1008_PreMigration_Full_Stack_TWT. _GA0352P1009_PreMigration_Full_Stack_TWT. _GA0352P1010_PreMigration_Full_Stack_TWT. _GA0352P1011_PreMigration_Full_Stack_TWT. _GA0352P1012_PreMigration_Full_Stack_TWT. Page 32

33 Datasets media data Contents Date delivered _GA0352P1013_PreMigration_Full_Stack_TWT. _GA0352P1015_PreMigration_Full_Stack_TWT. _GA0352P1016_PreMigration_Full_Stack_TWT. _GA0352P1017_PreMigration_Full_Stack_TWT. _GA0352P1018_PreMigration_Full_Stack_TWT. _GA0352P1020_PreMigration_Full_Stack_TWT. _GA0352P1021_PreMigration_Full_Stack_TWT. _GA0352P1022_PreMigration_Full_Stack_TWT. _GA0352P1023_PreMigration_Full_Stack_TWT. _GA0352P1024_PreMigration_Full_Stack_TWT. _GA0352P1025_PreMigration_Full_Stack_TWT. _GA0352P1026_PreMigration_Full_Stack_TWT. _GA0352P1027_PreMigration_Full_Stack_TWT. _GA0352P1028_PreMigration_Full_Stack_TWT. _GA0352P1029_PreMigration_Full_Stack_TWT. _GA0352P1030_PreMigration_Full_Stack_TWT. _GA0352P1031_PreMigration_Full_Stack_TWT. _GA0352P1032_PreMigration_Full_Stack_TWT. _GA0352P1033_PreMigration_Full_Stack_TWT. _GA0352P1034_PreMigration_Full_Stack_TWT. _GA0352P1035_PreMigration_Full_Stack_TWT. _GA0352P1036_PreMigration_Full_Stack_TWT. _GA0352P2014_PreMigration_Full_Stack_TWT. _GA0352P2018_PreMigration_Full_Stack_TWT. _GA0352P2019_PreMigration_Full_Stack_TWT. Final PreSDM CDP Gathers USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 _GA0352P1001_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1002_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1003_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1004_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1005_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1006_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1007_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1008_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1009_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1010_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1011_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1012_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1013_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1015_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1016_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1017_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1018_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1020_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1021_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1022_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1023_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1024_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1025_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1026_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1027_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1028_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1029_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1030_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1031_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1032_Final_PreSDM_CDP_Gathers_TWT. Page 33

34 Datasets media data Contents Date delivered _GA0352P1033_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1034_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1035_Final_PreSDM_CDP_Gathers_TWT. _GA0352P1036_Final_PreSDM_CDP_Gathers_TWT. _GA0352P2014_Final_PreSDM_CDP_Gathers_TWT. _GA0352P2018_Final_PreSDM_CDP_Gathers_TWT. _GA0352P2019_Final_PreSDM_CDP_Gathers_TWT. Final PreSDM Full Stacks (Time & Depth) USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 Time: _GA0352P1001_Final_PreSDM_Full_Stack_TWT. _GA0352P1002_Final_PreSDM_Full_Stack_TWT. _GA0352P1003_Final_PreSDM_Full_Stack_TWT. _GA0352P1004_Final_PreSDM_Full_Stack_TWT. _GA0352P1005_Final_PreSDM_Full_Stack_TWT. _GA0352P1006_Final_PreSDM_Full_Stack_TWT. _GA0352P1007_Final_PreSDM_Full_Stack_TWT. _GA0352P1008_Final_PreSDM_Full_Stack_TWT. _GA0352P1009_Final_PreSDM_Full_Stack_TWT. _GA0352P1010_Final_PreSDM_Full_Stack_TWT. _GA0352P1011_Final_PreSDM_Full_Stack_TWT. _GA0352P1012_Final_PreSDM_Full_Stack_TWT. _GA0352P1013_Final_PreSDM_Full_Stack_TWT. _GA0352P1015_Final_PreSDM_Full_Stack_TWT. _GA0352P1016_Final_PreSDM_Full_Stack_TWT. _GA0352P1017_Final_PreSDM_Full_Stack_TWT. _GA0352P1018_Final_PreSDM_Full_Stack_TWT. _GA0352P1020_Final_PreSDM_Full_Stack_TWT. _GA0352P1021_Final_PreSDM_Full_Stack_TWT. _GA0352P1022_Final_PreSDM_Full_Stack_TWT. _GA0352P1023_Final_PreSDM_Full_Stack_TWT. _GA0352P1024_Final_PreSDM_Full_Stack_TWT. _GA0352P1025_Final_PreSDM_Full_Stack_TWT. _GA0352P1026_Final_PreSDM_Full_Stack_TWT. _GA0352P1027_Final_PreSDM_Full_Stack_TWT. _GA0352P1028_Final_PreSDM_Full_Stack_TWT. _GA0352P1029_Final_PreSDM_Full_Stack_TWT. _GA0352P1030_Final_PreSDM_Full_Stack_TWT. _GA0352P1031_Final_PreSDM_Full_Stack_TWT. _GA0352P1032_Final_PreSDM_Full_Stack_TWT. _GA0352P1033_Final_PreSDM_Full_Stack_TWT. _GA0352P1034_Final_PreSDM_Full_Stack_TWT. _GA0352P1035_Final_PreSDM_Full_Stack_TWT. _GA0352P1036_Final_PreSDM_Full_Stack_TWT. _GA0352P2014_Final_PreSDM_Full_Stack_TWT. _GA0352P2018_Final_PreSDM_Full_Stack_TWT. _GA0352P2019_Final_PreSDM_Full_Stack_TWT. Depth: _GA0352P1001_Final_PreSDM_Full_Stack_TVD. _GA0352P1002_Final_PreSDM_Full_Stack_TVD. _GA0352P1003_Final_PreSDM_Full_Stack_TVD. _GA0352P1004_Final_PreSDM_Full_Stack_TVD. _GA0352P1005_Final_PreSDM_Full_Stack_TVD. _GA0352P1006_Final_PreSDM_Full_Stack_TVD. _GA0352P1007_Final_PreSDM_Full_Stack_TVD. _GA0352P1008_Final_PreSDM_Full_Stack_TVD. Page 34

35 Datasets media data Contents Date delivered _GA0352P1009_Final_PreSDM_Full_Stack_TVD. _GA0352P1010_Final_PreSDM_Full_Stack_TVD. _GA0352P1011_Final_PreSDM_Full_Stack_TVD. _GA0352P1012_Final_PreSDM_Full_Stack_TVD. _GA0352P1013_Final_PreSDM_Full_Stack_TVD. _GA0352P1015_Final_PreSDM_Full_Stack_TVD. _GA0352P1016_Final_PreSDM_Full_Stack_TVD. _GA0352P1017_Final_PreSDM_Full_Stack_TVD. _GA0352P1018_Final_PreSDM_Full_Stack_TVD. _GA0352P1020_Final_PreSDM_Full_Stack_TVD. _GA0352P1021_Final_PreSDM_Full_Stack_TVD. _GA0352P1022_Final_PreSDM_Full_Stack_TVD. _GA0352P1023_Final_PreSDM_Full_Stack_TVD. _GA0352P1024_Final_PreSDM_Full_Stack_TVD. _GA0352P1025_Final_PreSDM_Full_Stack_TVD. _GA0352P1026_Final_PreSDM_Full_Stack_TVD. _GA0352P1027_Final_PreSDM_Full_Stack_TVD. _GA0352P1028_Final_PreSDM_Full_Stack_TVD. _GA0352P1029_Final_PreSDM_Full_Stack_TVD. _GA0352P1030_Final_PreSDM_Full_Stack_TVD. _GA0352P1031_Final_PreSDM_Full_Stack_TVD. _GA0352P1032_Final_PreSDM_Full_Stack_TVD. _GA0352P1033_Final_PreSDM_Full_Stack_TVD. _GA0352P1034_Final_PreSDM_Full_Stack_TVD. _GA0352P1035_Final_PreSDM_Full_Stack_TVD. _GA0352P1036_Final_PreSDM_Full_Stack_TVD. _GA0352P2014_Final_PreSDM_Full_Stack_TVD. _GA0352P2018_Final_PreSDM_Full_Stack_TVD. _GA0352P2019_Final_PreSDM_Full_Stack_TVD. Final PreSDM (Near) Angle Stacks (Time & Depth) USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 Time: _GA0352P1001_Final_PreSDM_Near_Stack_TWT. _GA0352P1002_Final_PreSDM_Near_Stack_TWT. _GA0352P1003_Final_PreSDM_Near_Stack_TWT. _GA0352P1004_Final_PreSDM_Near_Stack_TWT. _GA0352P1005_Final_PreSDM_Near_Stack_TWT. _GA0352P1006_Final_PreSDM_Near_Stack_TWT. _GA0352P1007_Final_PreSDM_Near_Stack_TWT. _GA0352P1008_Final_PreSDM_Near_Stack_TWT. _GA0352P1009_Final_PreSDM_Near_Stack_TWT. _GA0352P1010_Final_PreSDM_Near_Stack_TWT. _GA0352P1011_Final_PreSDM_Near_Stack_TWT. _GA0352P1012_Final_PreSDM_Near_Stack_TWT. _GA0352P1013_Final_PreSDM_Near_Stack_TWT. _GA0352P1015_Final_PreSDM_Near_Stack_TWT. _GA0352P1016_Final_PreSDM_Near_Stack_TWT. _GA0352P1017_Final_PreSDM_Near_Stack_TWT. _GA0352P1018_Final_PreSDM_Near_Stack_TWT. _GA0352P1020_Final_PreSDM_Near_Stack_TWT. _GA0352P1021_Final_PreSDM_Near_Stack_TWT. _GA0352P1022_Final_PreSDM_Near_Stack_TWT. _GA0352P1023_Final_PreSDM_Near_Stack_TWT. _GA0352P1024_Final_PreSDM_Near_Stack_TWT. _GA0352P1025_Final_PreSDM_Near_Stack_TWT. _GA0352P1026_Final_PreSDM_Near_Stack_TWT. _GA0352P1027_Final_PreSDM_Near_Stack_TWT. Page 35

36 Datasets media data Contents Date delivered _GA0352P1028_Final_PreSDM_Near_Stack_TWT. _GA0352P1029_Final_PreSDM_Near_Stack_TWT. _GA0352P1030_Final_PreSDM_Near_Stack_TWT. _GA0352P1031_Final_PreSDM_Near_Stack_TWT. _GA0352P1032_Final_PreSDM_Near_Stack_TWT. _GA0352P1033_Final_PreSDM_Near_Stack_TWT. _GA0352P1034_Final_PreSDM_Near_Stack_TWT. _GA0352P1035_Final_PreSDM_Near_Stack_TWT. _GA0352P1036_Final_PreSDM_Near_Stack_TWT. _GA0352P2014_Final_PreSDM_Near_Stack_TWT. _GA0352P2018_Final_PreSDM_Near_Stack_TWT. _GA0352P2019_Final_PreSDM_Near_Stack_TWT. Depth: _GA0352P1001_Final_PreSDM_Near_Stack_TVD. _GA0352P1002_Final_PreSDM_Near_Stack_TVD. _GA0352P1003_Final_PreSDM_Near_Stack_TVD. _GA0352P1004_Final_PreSDM_Near_Stack_TVD. _GA0352P1005_Final_PreSDM_Near_Stack_TVD. _GA0352P1006_Final_PreSDM_Near_Stack_TVD. _GA0352P1007_Final_PreSDM_Near_Stack_TVD. _GA0352P1008_Final_PreSDM_Near_Stack_TVD. _GA0352P1009_Final_PreSDM_Near_Stack_TVD. _GA0352P1010_Final_PreSDM_Near_Stack_TVD. _GA0352P1011_Final_PreSDM_Near_Stack_TVD. _GA0352P1012_Final_PreSDM_Near_Stack_TVD. _GA0352P1013_Final_PreSDM_Near_Stack_TVD. _GA0352P1015_Final_PreSDM_Near_Stack_TVD. _GA0352P1016_Final_PreSDM_Near_Stack_TVD. _GA0352P1017_Final_PreSDM_Near_Stack_TVD. _GA0352P1018_Final_PreSDM_Near_Stack_TVD. _GA0352P1020_Final_PreSDM_Near_Stack_TVD. _GA0352P1021_Final_PreSDM_Near_Stack_TVD. _GA0352P1022_Final_PreSDM_Near_Stack_TVD. _GA0352P1023_Final_PreSDM_Near_Stack_TVD. _GA0352P1024_Final_PreSDM_Near_Stack_TVD. _GA0352P1025_Final_PreSDM_Near_Stack_TVD. _GA0352P1026_Final_PreSDM_Near_Stack_TVD. _GA0352P1027_Final_PreSDM_Near_Stack_TVD. _GA0352P1028_Final_PreSDM_Near_Stack_TVD. _GA0352P1029_Final_PreSDM_Near_Stack_TVD. _GA0352P1030_Final_PreSDM_Near_Stack_TVD. _GA0352P1031_Final_PreSDM_Near_Stack_TVD. _GA0352P1032_Final_PreSDM_Near_Stack_TVD. _GA0352P1033_Final_PreSDM_Near_Stack_TVD. _GA0352P1034_Final_PreSDM_Near_Stack_TVD. _GA0352P1035_Final_PreSDM_Near_Stack_TVD. _GA0352P1036_Final_PreSDM_Near_Stack_TVD. _GA0352P2014_Final_PreSDM_Near_Stack_TVD. _GA0352P2018_Final_PreSDM_Near_Stack_TVD. _GA0352P2019_Final_PreSDM_Near_Stack_TVD. Final PreSDM (Mid) Angle Stacks (Time & Depth) USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 Time: _GA0352P1001_Final_PreSDM_Mid_Stack_TWT. _GA0352P1002_Final_PreSDM_Mid_Stack_TWT. _GA0352P1003_Final_PreSDM_Mid_Stack_TWT. Page 36

37 Datasets media data Contents Date delivered _GA0352P1004_Final_PreSDM_Mid_Stack_TWT. _GA0352P1005_Final_PreSDM_Mid_Stack_TWT. _GA0352P1006_Final_PreSDM_Mid_Stack_TWT. _GA0352P1007_Final_PreSDM_Mid_Stack_TWT. _GA0352P1008_Final_PreSDM_Mid_Stack_TWT. _GA0352P1009_Final_PreSDM_Mid_Stack_TWT. _GA0352P1010_Final_PreSDM_Mid_Stack_TWT. _GA0352P1011_Final_PreSDM_Mid_Stack_TWT. _GA0352P1012_Final_PreSDM_Mid_Stack_TWT. _GA0352P1013_Final_PreSDM_Mid_Stack_TWT. _GA0352P1015_Final_PreSDM_Mid_Stack_TWT. _GA0352P1016_Final_PreSDM_Mid_Stack_TWT. _GA0352P1017_Final_PreSDM_Mid_Stack_TWT. _GA0352P1018_Final_PreSDM_Mid_Stack_TWT. _GA0352P1020_Final_PreSDM_Mid_Stack_TWT. _GA0352P1021_Final_PreSDM_Mid_Stack_TWT. _GA0352P1022_Final_PreSDM_Mid_Stack_TWT. _GA0352P1023_Final_PreSDM_Mid_Stack_TWT. _GA0352P1024_Final_PreSDM_Mid_Stack_TWT. _GA0352P1025_Final_PreSDM_Mid_Stack_TWT. _GA0352P1026_Final_PreSDM_Mid_Stack_TWT. _GA0352P1027_Final_PreSDM_Mid_Stack_TWT. _GA0352P1028_Final_PreSDM_Mid_Stack_TWT. _GA0352P1029_Final_PreSDM_Mid_Stack_TWT. _GA0352P1030_Final_PreSDM_Mid_Stack_TWT. _GA0352P1031_Final_PreSDM_Mid_Stack_TWT. _GA0352P1032_Final_PreSDM_Mid_Stack_TWT. _GA0352P1033_Final_PreSDM_Mid_Stack_TWT. _GA0352P1034_Final_PreSDM_Mid_Stack_TWT. _GA0352P1035_Final_PreSDM_Mid_Stack_TWT. _GA0352P1036_Final_PreSDM_Mid_Stack_TWT. _GA0352P2014_Final_PreSDM_Mid_Stack_TWT. _GA0352P2018_Final_PreSDM_Mid_Stack_TWT. _GA0352P2019_Final_PreSDM_Mid_Stack_TWT. Depth: _GA0352P1001_Final_PreSDM_Mid_Stack_TVD. _GA0352P1002_Final_PreSDM_Mid_Stack_TVD. _GA0352P1003_Final_PreSDM_Mid_Stack_TVD. _GA0352P1004_Final_PreSDM_Mid_Stack_TVD. _GA0352P1005_Final_PreSDM_Mid_Stack_TVD. _GA0352P1006_Final_PreSDM_Mid_Stack_TVD. _GA0352P1007_Final_PreSDM_Mid_Stack_TVD. _GA0352P1008_Final_PreSDM_Mid_Stack_TVD. _GA0352P1009_Final_PreSDM_Mid_Stack_TVD. _GA0352P1010_Final_PreSDM_Mid_Stack_TVD. _GA0352P1011_Final_PreSDM_Mid_Stack_TVD. _GA0352P1012_Final_PreSDM_Mid_Stack_TVD. _GA0352P1013_Final_PreSDM_Mid_Stack_TVD. _GA0352P1015_Final_PreSDM_Mid_Stack_TVD. _GA0352P1016_Final_PreSDM_Mid_Stack_TVD. _GA0352P1017_Final_PreSDM_Mid_Stack_TVD. _GA0352P1018_Final_PreSDM_Mid_Stack_TVD. _GA0352P1020_Final_PreSDM_Mid_Stack_TVD. _GA0352P1021_Final_PreSDM_Mid_Stack_TVD. _GA0352P1022_Final_PreSDM_Mid_Stack_TVD. _GA0352P1023_Final_PreSDM_Mid_Stack_TVD. _GA0352P1024_Final_PreSDM_Mid_Stack_TVD. _GA0352P1025_Final_PreSDM_Mid_Stack_TVD. Page 37

38 Datasets media data Contents Date delivered _GA0352P1026_Final_PreSDM_Mid_Stack_TVD. _GA0352P1027_Final_PreSDM_Mid_Stack_TVD. _GA0352P1028_Final_PreSDM_Mid_Stack_TVD. _GA0352P1029_Final_PreSDM_Mid_Stack_TVD. _GA0352P1030_Final_PreSDM_Mid_Stack_TVD. _GA0352P1031_Final_PreSDM_Mid_Stack_TVD. _GA0352P1032_Final_PreSDM_Mid_Stack_TVD. _GA0352P1033_Final_PreSDM_Mid_Stack_TVD. _GA0352P1034_Final_PreSDM_Mid_Stack_TVD. _GA0352P1035_Final_PreSDM_Mid_Stack_TVD. _GA0352P1036_Final_PreSDM_Mid_Stack_TVD. _GA0352P2014_Final_PreSDM_Mid_Stack_TVD. _GA0352P2018_Final_PreSDM_Mid_Stack_TVD. _GA0352P2019_Final_PreSDM_Mid_Stack_TVD. Final PreSDM (Far) Angle Stacks (Time & Depth) USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 Time: _GA0352P1001_Final_PreSDM_Far_Stack_TWT. _GA0352P1002_Final_PreSDM_Far_Stack_TWT. _GA0352P1003_Final_PreSDM_Far_Stack_TWT. _GA0352P1004_Final_PreSDM_Far_Stack_TWT. _GA0352P1005_Final_PreSDM_Far_Stack_TWT. _GA0352P1006_Final_PreSDM_Far_Stack_TWT. _GA0352P1007_Final_PreSDM_Far_Stack_TWT. _GA0352P1008_Final_PreSDM_Far_Stack_TWT. _GA0352P1009_Final_PreSDM_Far_Stack_TWT. _GA0352P1010_Final_PreSDM_Far_Stack_TWT. _GA0352P1011_Final_PreSDM_Far_Stack_TWT. _GA0352P1012_Final_PreSDM_Far_Stack_TWT. _GA0352P1013_Final_PreSDM_Far_Stack_TWT. _GA0352P1015_Final_PreSDM_Far_Stack_TWT. _GA0352P1016_Final_PreSDM_Far_Stack_TWT. _GA0352P1017_Final_PreSDM_Far_Stack_TWT. _GA0352P1018_Final_PreSDM_Far_Stack_TWT. _GA0352P1020_Final_PreSDM_Far_Stack_TWT. _GA0352P1021_Final_PreSDM_Far_Stack_TWT. _GA0352P1022_Final_PreSDM_Far_Stack_TWT. _GA0352P1023_Final_PreSDM_Far_Stack_TWT. _GA0352P1024_Final_PreSDM_Far_Stack_TWT. _GA0352P1025_Final_PreSDM_Far_Stack_TWT. _GA0352P1026_Final_PreSDM_Far_Stack_TWT. _GA0352P1027_Final_PreSDM_Far_Stack_TWT. _GA0352P1028_Final_PreSDM_Far_Stack_TWT. _GA0352P1029_Final_PreSDM_Far_Stack_TWT. _GA0352P1030_Final_PreSDM_Far_Stack_TWT. _GA0352P1031_Final_PreSDM_Far_Stack_TWT. _GA0352P1032_Final_PreSDM_Far_Stack_TWT. _GA0352P1033_Final_PreSDM_Far_Stack_TWT. _GA0352P1034_Final_PreSDM_Far_Stack_TWT. _GA0352P1035_Final_PreSDM_Far_Stack_TWT. _GA0352P1036_Final_PreSDM_Far_Stack_TWT. _GA0352P2014_Final_PreSDM_Far_Stack_TWT. _GA0352P2018_Final_PreSDM_Far_Stack_TWT. _GA0352P2019_Final_PreSDM_Far_Stack_TWT. Depth: _GA0352P1001_Final_PreSDM_Far_Stack_TVD. Page 38

39 Datasets media data Contents Date delivered _GA0352P1002_Final_PreSDM_Far_Stack_TVD. _GA0352P1003_Final_PreSDM_Far_Stack_TVD. _GA0352P1004_Final_PreSDM_Far_Stack_TVD. _GA0352P1005_Final_PreSDM_Far_Stack_TVD. _GA0352P1006_Final_PreSDM_Far_Stack_TVD. _GA0352P1007_Final_PreSDM_Far_Stack_TVD. _GA0352P1008_Final_PreSDM_Far_Stack_TVD. _GA0352P1009_Final_PreSDM_Far_Stack_TVD. _GA0352P1010_Final_PreSDM_Far_Stack_TVD. _GA0352P1011_Final_PreSDM_Far_Stack_TVD. _GA0352P1012_Final_PreSDM_Far_Stack_TVD. _GA0352P1013_Final_PreSDM_Far_Stack_TVD. _GA0352P1015_Final_PreSDM_Far_Stack_TVD. _GA0352P1016_Final_PreSDM_Far_Stack_TVD. _GA0352P1017_Final_PreSDM_Far_Stack_TVD. _GA0352P1018_Final_PreSDM_Far_Stack_TVD. _GA0352P1020_Final_PreSDM_Far_Stack_TVD. _GA0352P1021_Final_PreSDM_Far_Stack_TVD. _GA0352P1022_Final_PreSDM_Far_Stack_TVD. _GA0352P1023_Final_PreSDM_Far_Stack_TVD. _GA0352P1024_Final_PreSDM_Far_Stack_TVD. _GA0352P1025_Final_PreSDM_Far_Stack_TVD. _GA0352P1026_Final_PreSDM_Far_Stack_TVD. _GA0352P1027_Final_PreSDM_Far_Stack_TVD. _GA0352P1028_Final_PreSDM_Far_Stack_TVD. _GA0352P1029_Final_PreSDM_Far_Stack_TVD. _GA0352P1030_Final_PreSDM_Far_Stack_TVD. _GA0352P1031_Final_PreSDM_Far_Stack_TVD. _GA0352P1032_Final_PreSDM_Far_Stack_TVD. _GA0352P1033_Final_PreSDM_Far_Stack_TVD. _GA0352P1034_Final_PreSDM_Far_Stack_TVD. _GA0352P1035_Final_PreSDM_Far_Stack_TVD. _GA0352P1036_Final_PreSDM_Far_Stack_TVD. _GA0352P2014_Final_PreSDM_Far_Stack_TVD. _GA0352P2018_Final_PreSDM_Far_Stack_TVD. _GA0352P2019_Final_PreSDM_Far_Stack_TVD. Final PreSDM (Ultrafar) Angle Stacks (Time & Depth) USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 Time: _GA0352P1001_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1002_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1003_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1004_Final_PreSDM_Ultrafar_Stack_TWT.sg y _GA0352P1005_Final_PreSDM_Ultrafar_Stack_TWT.sg y _GA0352P1006_Final_PreSDM_Ultrafar_Stack_TWT.sg y _GA0352P1007_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1008_Final_PreSDM_Ultrafar_Stack_TWT.sg y _GA0352P1009_Final_PreSDM_Ultrafar_Stack_TWT.sg y _GA0352P1010_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1011_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1012_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1013_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1015_Final_PreSDM_Ultrafar_Stack_TWT. Page 39

40 Datasets media data Contents Date delivered _GA0352P1016_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1017_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1018_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1020_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1021_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1022_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1023_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1024_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1025_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1026_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1027_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1028_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1029_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1030_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1031_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1032_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1033_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1034_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1035_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P1036_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P2014_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P2018_Final_PreSDM_Ultrafar_Stack_TWT. _GA0352P2019_Final_PreSDM_Ultrafar_Stack_TWT. Depth: _GA0352P1001_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1002_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1003_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1004_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1005_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1006_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1007_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1008_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1009_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1010_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1011_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1012_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1013_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1015_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1016_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1017_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1018_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1020_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1021_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1022_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1023_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1024_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1025_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1026_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1027_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1028_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1029_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1030_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1031_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1032_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1033_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1034_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1035_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P1036_Final_PreSDM_Ultrafar_Stack_TVD. Page 40

41 Datasets media data Contents Date delivered _GA0352P2014_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P2018_Final_PreSDM_Ultrafar_Stack_TVD. _GA0352P2019_Final_PreSDM_Ultrafar_Stack_TVD. Final Scaled PreSDM Full Stacks (Time & Depth) USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 Time: _GA0352P1001_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1002_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1003_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1004_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1005_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1006_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1007_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1008_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1009_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1010_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1011_Final_Scaled_PreSDM_Full_Stack_TWT.s gy _GA0352P1012_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1013_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1015_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1016_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1017_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1018_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1020_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1021_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1022_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1023_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1024_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1025_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1026_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1027_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1028_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1029_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1030_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1031_Final_Scaled_PreSDM_Full_Stack_TWT. Page 41

42 Datasets media data Contents Date delivered _GA0352P1032_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1033_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1034_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1035_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P1036_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P2014_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P2018_Final_Scaled_PreSDM_Full_Stack_TWT. _GA0352P2019_Final_Scaled_PreSDM_Full_Stack_TWT. Depth: _GA0352P1001_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1002_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1003_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1004_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1005_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1006_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1007_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1008_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1009_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1010_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1011_Final_Scaled_PreSDM_Full_Stack_TVD.s gy _GA0352P1012_Final_Scaled_PreSDM_Full_Stack_TVD.s gy _GA0352P1013_Final_Scaled_PreSDM_Full_Stack_TVD.s gy _GA0352P1015_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1016_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1017_Final_Scaled_PreSDM_Full_Stack_TVD.s gy _GA0352P1018_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1020_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1021_Final_Scaled_PreSDM_Full_Stack_TVD.s gy _GA0352P1022_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1023_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1024_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1025_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1026_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1027_Final_Scaled_PreSDM_Full_Stack_TVD. Page 42

43 Datasets media data Contents Date delivered _GA0352P1028_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1029_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1030_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1031_Final_Scaled_PreSDM_Full_Stack_TVD.s gy _GA0352P1032_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1033_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1034_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1035_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P1036_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P2014_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P2018_Final_Scaled_PreSDM_Full_Stack_TVD. _GA0352P2019_Final_Scaled_PreSDM_Full_Stack_TVD. Final PreSDM Velocities USB Disk (Windows format) SEGY & ASCII Media ID: GE0019UW, GE0020UW 15/06/16 SEGY: _GA0352P1001_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1002_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1003_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1004_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1005_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1006_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1007_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1008_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1009_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1010_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1011_Final_PreSDM_Interval_Velocities_TVD.s gy _GA0352P1012_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1013_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1015_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1016_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1017_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1018_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1020_Final_PreSDM_Interval_Velocities_TVD. Page 43

44 Datasets media data Contents Date delivered _GA0352P1021_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1022_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1023_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1024_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1025_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1026_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1027_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1028_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1029_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1030_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1031_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1032_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1033_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1034_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1035_Final_PreSDM_Interval_Velocities_TVD. _GA0352P1036_Final_PreSDM_Interval_Velocities_TVD. _GA0352P2014_Final_PreSDM_Interval_Velocities_TVD. _GA0352P2018_Final_PreSDM_Interval_Velocities_TVD. _GA0352P2019_Final_PreSDM_Interval_Velocities_TVD. ASCII: _GA0352P1001_Final_PreSDM_Interval_Velocities_TVD. velf _GA0352P1002_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1003_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1004_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1005_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1006_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1007_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1008_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1009_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1010_Final_PreSDM_Interval_Velocities_TVD. velf _GA0352P1011_Final_PreSDM_Interval_Velocities_TVD. velf _GA0352P1012_Final_PreSDM_Interval_Velocities_TVD. velf _GA0352P1013_Final_PreSDM_Interval_Velocities_TVD. velf _GA0352P1015_Final_PreSDM_Interval_Velocities_TVD. Page 44

45 Datasets media data Contents Date delivered velf _GA0352P1016_Final_PreSDM_Interval_Velocities_TVD. velf _GA0352P1017_Final_PreSDM_Interval_Velocities_TVD. velf _GA0352P1018_Final_PreSDM_Interval_Velocities_TVD. velf _GA0352P1020_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1021_Final_PreSDM_Interval_Velocities_TVD. velf _GA0352P1022_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1023_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1024_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1025_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1026_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1027_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1028_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1029_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1030_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1031_Final_PreSDM_Interval_Velocities_TVD. velf _GA0352P1032_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1033_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1034_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1035_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P1036_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P2014_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P2018_Final_PreSDM_Interval_Velocities_TVD.velf _GA0352P2019_Final_PreSDM_Interval_Velocities_TVD.velf Delta Field USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 _GA0352P1001_Final_PreSDM_Delta_Field_TVD. _GA0352P1002_Final_PreSDM_Delta_Field_TVD. _GA0352P1003_Final_PreSDM_Delta_Field_TVD. _GA0352P1004_Final_PreSDM_Delta_Field_TVD. _GA0352P1005_Final_PreSDM_Delta_Field_TVD. _GA0352P1006_Final_PreSDM_Delta_Field_TVD. _GA0352P1007_Final_PreSDM_Delta_Field_TVD. _GA0352P1008_Final_PreSDM_Delta_Field_TVD. _GA0352P1009_Final_PreSDM_Delta_Field_TVD. _GA0352P1010_Final_PreSDM_Delta_Field_TVD. _GA0352P1011_Final_PreSDM_Delta_Field_TVD. _GA0352P1012_Final_PreSDM_Delta_Field_TVD. _GA0352P1013_Final_PreSDM_Delta_Field_TVD. Page 45

46 Datasets media data Contents Date delivered _GA0352P1015_Final_PreSDM_Delta_Field_TVD. _GA0352P1016_Final_PreSDM_Delta_Field_TVD. _GA0352P1017_Final_PreSDM_Delta_Field_TVD. _GA0352P1018_Final_PreSDM_Delta_Field_TVD. _GA0352P1020_Final_PreSDM_Delta_Field_TVD. _GA0352P1021_Final_PreSDM_Delta_Field_TVD. _GA0352P1022_Final_PreSDM_Delta_Field_TVD. _GA0352P1023_Final_PreSDM_Delta_Field_TVD. _GA0352P1024_Final_PreSDM_Delta_Field_TVD. _GA0352P1025_Final_PreSDM_Delta_Field_TVD. _GA0352P1026_Final_PreSDM_Delta_Field_TVD. _GA0352P1027_Final_PreSDM_Delta_Field_TVD. _GA0352P1028_Final_PreSDM_Delta_Field_TVD. _GA0352P1029_Final_PreSDM_Delta_Field_TVD. _GA0352P1030_Final_PreSDM_Delta_Field_TVD. _GA0352P1031_Final_PreSDM_Delta_Field_TVD. _GA0352P1032_Final_PreSDM_Delta_Field_TVD. _GA0352P1033_Final_PreSDM_Delta_Field_TVD. _GA0352P1034_Final_PreSDM_Delta_Field_TVD. _GA0352P1035_Final_PreSDM_Delta_Field_TVD. _GA0352P1036_Final_PreSDM_Delta_Field_TVD. _GA0352P2014_Final_PreSDM_Delta_Field_TVD. _GA0352P2018_Final_PreSDM_Delta_Field_TVD. _GA0352P2019_Final_PreSDM_Delta_Field_TVD. Epsilon Field USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 _GA0352P1001_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1002_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1003_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1004_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1005_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1006_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1007_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1008_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1009_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1010_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1011_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1012_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1013_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1015_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1016_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1017_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1018_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1020_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1021_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1022_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1023_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1024_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1025_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1026_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1027_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1028_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1029_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1030_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1031_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1032_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1033_Final_PreSDM_Epsilon_Field_TVD. Page 46

47 Datasets media data Contents Date delivered _GA0352P1034_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1035_Final_PreSDM_Epsilon_Field_TVD. _GA0352P1036_Final_PreSDM_Epsilon_Field_TVD. _GA0352P2014_Final_PreSDM_Epsilon_Field_TVD. _GA0352P2018_Final_PreSDM_Epsilon_Field_TVD. _GA0352P2019_Final_PreSDM_Epsilon_Field_TVD. Final PreSDM Stacking Velocities USB Disk (Windows format) SEGY & ASCII Media ID: GE0019UW, GE0020UW 15/06/16 SEGY: _GA0352P1001_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1002_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1003_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1004_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1005_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1006_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1007_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1008_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1009_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1010_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1011_Final_PreSDM_Stacking_RMS_Velocities _TWT. _GA0352P1012_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1013_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1015_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1016_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1017_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1018_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1020_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1021_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1022_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1023_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1024_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1025_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1026_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1027_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1028_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1029_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1030_Final_PreSDM_Stacking_RMS_Velocitie Page 47

48 Datasets media data Contents Date delivered s_twt. _GA0352P1031_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1032_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1033_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1034_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1035_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P1036_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P2014_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P2018_Final_PreSDM_Stacking_RMS_Velocitie s_twt. _GA0352P2019_Final_PreSDM_Stacking_RMS_Velocitie s_twt. ASCII: _GA0352P1001_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1002_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1003_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1004_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1005_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1006_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1007_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1008_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1009_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1010_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1011_Final_PreSDM_Stacking_RMS_Velocities _TWT.velf _GA0352P1012_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1013_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1015_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1016_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1017_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1018_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1020_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1021_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1022_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1023_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1024_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1025_Final_PreSDM_Stacking_RMS_Velocitie Page 48

49 Datasets media data Contents Date delivered _GA0352P1026_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1027_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1028_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1029_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1030_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1031_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1032_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1033_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1034_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1035_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P1036_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P2014_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P2018_Final_PreSDM_Stacking_RMS_Velocitie _GA0352P2019_Final_PreSDM_Stacking_RMS_Velocitie Final PreSTM CDP Gathers USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 _GA0352P1001_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1002_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1003_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1004_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1005_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1006_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1007_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1008_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1009_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1010_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1011_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1012_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1013_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1015_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1016_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1017_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1018_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1020_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1021_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1022_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1023_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1024_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1025_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1026_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1027_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1028_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1029_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1030_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1031_Final_PreSTM_CDP_Gathers_TWT. Page 49

50 Datasets media data Contents Date delivered _GA0352P1032_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1033_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1034_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1035_Final_PreSTM_CDP_Gathers_TWT. _GA0352P1036_Final_PreSTM_CDP_Gathers_TWT. _GA0352P2014_Final_PreSTM_CDP_Gathers_TWT. _GA0352P2018_Final_PreSTM_CDP_Gathers_TWT. _GA0352P2019_Final_PreSTM_CDP_Gathers_TWT. Final PreSTM Full Stacks (Time & Depth) USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 Time: _GA0352P1001_Final_PreSTM_Full_Stack_TWT. _GA0352P1002_Final_PreSTM_Full_Stack_TWT. _GA0352P1003_Final_PreSTM_Full_Stack_TWT. _GA0352P1004_Final_PreSTM_Full_Stack_TWT. _GA0352P1005_Final_PreSTM_Full_Stack_TWT. _GA0352P1006_Final_PreSTM_Full_Stack_TWT. _GA0352P1007_Final_PreSTM_Full_Stack_TWT. _GA0352P1008_Final_PreSTM_Full_Stack_TWT. _GA0352P1009_Final_PreSTM_Full_Stack_TWT. _GA0352P1010_Final_PreSTM_Full_Stack_TWT. _GA0352P1011_Final_PreSTM_Full_Stack_TWT. _GA0352P1012_Final_PreSTM_Full_Stack_TWT. _GA0352P1013_Final_PreSTM_Full_Stack_TWT. _GA0352P1015_Final_PreSTM_Full_Stack_TWT. _GA0352P1016_Final_PreSTM_Full_Stack_TWT. _GA0352P1017_Final_PreSTM_Full_Stack_TWT. _GA0352P1018_Final_PreSTM_Full_Stack_TWT. _GA0352P1020_Final_PreSTM_Full_Stack_TWT. _GA0352P1021_Final_PreSTM_Full_Stack_TWT. _GA0352P1022_Final_PreSTM_Full_Stack_TWT. _GA0352P1023_Final_PreSTM_Full_Stack_TWT. _GA0352P1024_Final_PreSTM_Full_Stack_TWT. _GA0352P1025_Final_PreSTM_Full_Stack_TWT. _GA0352P1026_Final_PreSTM_Full_Stack_TWT. _GA0352P1027_Final_PreSTM_Full_Stack_TWT. _GA0352P1028_Final_PreSTM_Full_Stack_TWT. _GA0352P1029_Final_PreSTM_Full_Stack_TWT. _GA0352P1030_Final_PreSTM_Full_Stack_TWT. _GA0352P1031_Final_PreSTM_Full_Stack_TWT. _GA0352P1032_Final_PreSTM_Full_Stack_TWT. _GA0352P1033_Final_PreSTM_Full_Stack_TWT. _GA0352P1034_Final_PreSTM_Full_Stack_TWT. _GA0352P1035_Final_PreSTM_Full_Stack_TWT. _GA0352P1036_Final_PreSTM_Full_Stack_TWT. _GA0352P2014_Final_PreSTM_Full_Stack_TWT. _GA0352P2018_Final_PreSTM_Full_Stack_TWT. _GA0352P2019_Final_PreSTM_Full_Stack_TWT. Depth: _GA0352P1001_Final_PreSTM_Full_Stack_TVD. _GA0352P1002_Final_PreSTM_Full_Stack_TVD. _GA0352P1003_Final_PreSTM_Full_Stack_TVD. _GA0352P1004_Final_PreSTM_Full_Stack_TVD. _GA0352P1005_Final_PreSTM_Full_Stack_TVD. _GA0352P1006_Final_PreSTM_Full_Stack_TVD. _GA0352P1007_Final_PreSTM_Full_Stack_TVD. Page 50

51 Datasets media data Contents Date delivered _GA0352P1008_Final_PreSTM_Full_Stack_TVD. _GA0352P1009_Final_PreSTM_Full_Stack_TVD. _GA0352P1010_Final_PreSTM_Full_Stack_TVD. _GA0352P1011_Final_PreSTM_Full_Stack_TVD. _GA0352P1012_Final_PreSTM_Full_Stack_TVD. _GA0352P1013_Final_PreSTM_Full_Stack_TVD. _GA0352P1015_Final_PreSTM_Full_Stack_TVD. _GA0352P1016_Final_PreSTM_Full_Stack_TVD. _GA0352P1017_Final_PreSTM_Full_Stack_TVD. _GA0352P1018_Final_PreSTM_Full_Stack_TVD. _GA0352P1020_Final_PreSTM_Full_Stack_TVD. _GA0352P1021_Final_PreSTM_Full_Stack_TVD. _GA0352P1022_Final_PreSTM_Full_Stack_TVD. _GA0352P1023_Final_PreSTM_Full_Stack_TVD. _GA0352P1024_Final_PreSTM_Full_Stack_TVD. _GA0352P1025_Final_PreSTM_Full_Stack_TVD. _GA0352P1026_Final_PreSTM_Full_Stack_TVD. _GA0352P1027_Final_PreSTM_Full_Stack_TVD. _GA0352P1028_Final_PreSTM_Full_Stack_TVD. _GA0352P1029_Final_PreSTM_Full_Stack_TVD. _GA0352P1030_Final_PreSTM_Full_Stack_TVD. _GA0352P1031_Final_PreSTM_Full_Stack_TVD. _GA0352P1032_Final_PreSTM_Full_Stack_TVD. _GA0352P1033_Final_PreSTM_Full_Stack_TVD. _GA0352P1034_Final_PreSTM_Full_Stack_TVD. _GA0352P1035_Final_PreSTM_Full_Stack_TVD. _GA0352P1036_Final_PreSTM_Full_Stack_TVD. _GA0352P2014_Final_PreSTM_Full_Stack_TVD. _GA0352P2018_Final_PreSTM_Full_Stack_TVD. _GA0352P2019_Final_PreSTM_Full_Stack_TVD. Final PreSTM (Near) Angle Stacks (Time & Depth) USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 Time: _GA0352P1001_Final_PreSTM_Near_Stack_TWT. _GA0352P1002_Final_PreSTM_Near_Stack_TWT. _GA0352P1003_Final_PreSTM_Near_Stack_TWT. _GA0352P1004_Final_PreSTM_Near_Stack_TWT. _GA0352P1005_Final_PreSTM_Near_Stack_TWT. _GA0352P1006_Final_PreSTM_Near_Stack_TWT. _GA0352P1007_Final_PreSTM_Near_Stack_TWT. _GA0352P1008_Final_PreSTM_Near_Stack_TWT. _GA0352P1009_Final_PreSTM_Near_Stack_TWT. _GA0352P1010_Final_PreSTM_Near_Stack_TWT. _GA0352P1011_Final_PreSTM_Near_Stack_TWT. _GA0352P1012_Final_PreSTM_Near_Stack_TWT. _GA0352P1013_Final_PreSTM_Near_Stack_TWT. _GA0352P1015_Final_PreSTM_Near_Stack_TWT. _GA0352P1016_Final_PreSTM_Near_Stack_TWT. _GA0352P1017_Final_PreSTM_Near_Stack_TWT. _GA0352P1018_Final_PreSTM_Near_Stack_TWT. _GA0352P1020_Final_PreSTM_Near_Stack_TWT. _GA0352P1021_Final_PreSTM_Near_Stack_TWT. _GA0352P1022_Final_PreSTM_Near_Stack_TWT. _GA0352P1023_Final_PreSTM_Near_Stack_TWT. _GA0352P1024_Final_PreSTM_Near_Stack_TWT. _GA0352P1025_Final_PreSTM_Near_Stack_TWT. _GA0352P1026_Final_PreSTM_Near_Stack_TWT. Page 51

52 Datasets media data Contents Date delivered _GA0352P1027_Final_PreSTM_Near_Stack_TWT. _GA0352P1028_Final_PreSTM_Near_Stack_TWT. _GA0352P1029_Final_PreSTM_Near_Stack_TWT. _GA0352P1030_Final_PreSTM_Near_Stack_TWT. _GA0352P1031_Final_PreSTM_Near_Stack_TWT. _GA0352P1032_Final_PreSTM_Near_Stack_TWT. _GA0352P1033_Final_PreSTM_Near_Stack_TWT. _GA0352P1034_Final_PreSTM_Near_Stack_TWT. _GA0352P1035_Final_PreSTM_Near_Stack_TWT. _GA0352P1036_Final_PreSTM_Near_Stack_TWT. _GA0352P2014_Final_PreSTM_Near_Stack_TWT. _GA0352P2018_Final_PreSTM_Near_Stack_TWT. _GA0352P2019_Final_PreSTM_Near_Stack_TWT. Depth: _GA0352P1001_Final_PreSTM_Near_Stack_TVD. _GA0352P1002_Final_PreSTM_Near_Stack_TVD. _GA0352P1003_Final_PreSTM_Near_Stack_TVD. _GA0352P1004_Final_PreSTM_Near_Stack_TVD. _GA0352P1005_Final_PreSTM_Near_Stack_TVD. _GA0352P1006_Final_PreSTM_Near_Stack_TVD. _GA0352P1007_Final_PreSTM_Near_Stack_TVD. _GA0352P1008_Final_PreSTM_Near_Stack_TVD. _GA0352P1009_Final_PreSTM_Near_Stack_TVD. _GA0352P1010_Final_PreSTM_Near_Stack_TVD. _GA0352P1011_Final_PreSTM_Near_Stack_TVD. _GA0352P1012_Final_PreSTM_Near_Stack_TVD. _GA0352P1013_Final_PreSTM_Near_Stack_TVD. _GA0352P1015_Final_PreSTM_Near_Stack_TVD. _GA0352P1016_Final_PreSTM_Near_Stack_TVD. _GA0352P1017_Final_PreSTM_Near_Stack_TVD. _GA0352P1018_Final_PreSTM_Near_Stack_TVD. _GA0352P1020_Final_PreSTM_Near_Stack_TVD. _GA0352P1021_Final_PreSTM_Near_Stack_TVD. _GA0352P1022_Final_PreSTM_Near_Stack_TVD. _GA0352P1023_Final_PreSTM_Near_Stack_TVD. _GA0352P1024_Final_PreSTM_Near_Stack_TVD. _GA0352P1025_Final_PreSTM_Near_Stack_TVD. _GA0352P1026_Final_PreSTM_Near_Stack_TVD. _GA0352P1027_Final_PreSTM_Near_Stack_TVD. _GA0352P1028_Final_PreSTM_Near_Stack_TVD. _GA0352P1029_Final_PreSTM_Near_Stack_TVD. _GA0352P1030_Final_PreSTM_Near_Stack_TVD. _GA0352P1031_Final_PreSTM_Near_Stack_TVD. _GA0352P1032_Final_PreSTM_Near_Stack_TVD. _GA0352P1033_Final_PreSTM_Near_Stack_TVD. _GA0352P1034_Final_PreSTM_Near_Stack_TVD. _GA0352P1035_Final_PreSTM_Near_Stack_TVD. _GA0352P1036_Final_PreSTM_Near_Stack_TVD. _GA0352P2014_Final_PreSTM_Near_Stack_TVD. _GA0352P2018_Final_PreSTM_Near_Stack_TVD. _GA0352P2019_Final_PreSTM_Near_Stack_TVD. Final PreSTM (Mid) Angle Stacks (Time & Depth) USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 Time: _GA0352P1001_Final_PreSTM_Mid_Stack_TWT. _GA0352P1002_Final_PreSTM_Mid_Stack_TWT. Page 52

53 Datasets media data Contents Date delivered _GA0352P1003_Final_PreSTM_Mid_Stack_TWT. _GA0352P1004_Final_PreSTM_Mid_Stack_TWT. _GA0352P1005_Final_PreSTM_Mid_Stack_TWT. _GA0352P1006_Final_PreSTM_Mid_Stack_TWT. _GA0352P1007_Final_PreSTM_Mid_Stack_TWT. _GA0352P1008_Final_PreSTM_Mid_Stack_TWT. _GA0352P1009_Final_PreSTM_Mid_Stack_TWT. _GA0352P1010_Final_PreSTM_Mid_Stack_TWT. _GA0352P1011_Final_PreSTM_Mid_Stack_TWT. _GA0352P1012_Final_PreSTM_Mid_Stack_TWT. _GA0352P1013_Final_PreSTM_Mid_Stack_TWT. _GA0352P1015_Final_PreSTM_Mid_Stack_TWT. _GA0352P1016_Final_PreSTM_Mid_Stack_TWT. _GA0352P1017_Final_PreSTM_Mid_Stack_TWT. _GA0352P1018_Final_PreSTM_Mid_Stack_TWT. _GA0352P1020_Final_PreSTM_Mid_Stack_TWT. _GA0352P1021_Final_PreSTM_Mid_Stack_TWT. _GA0352P1022_Final_PreSTM_Mid_Stack_TWT. _GA0352P1023_Final_PreSTM_Mid_Stack_TWT. _GA0352P1024_Final_PreSTM_Mid_Stack_TWT. _GA0352P1025_Final_PreSTM_Mid_Stack_TWT. _GA0352P1026_Final_PreSTM_Mid_Stack_TWT. _GA0352P1027_Final_PreSTM_Mid_Stack_TWT. _GA0352P1028_Final_PreSTM_Mid_Stack_TWT. _GA0352P1029_Final_PreSTM_Mid_Stack_TWT. _GA0352P1030_Final_PreSTM_Mid_Stack_TWT. _GA0352P1031_Final_PreSTM_Mid_Stack_TWT. _GA0352P1032_Final_PreSTM_Mid_Stack_TWT. _GA0352P1033_Final_PreSTM_Mid_Stack_TWT. _GA0352P1034_Final_PreSTM_Mid_Stack_TWT. _GA0352P1035_Final_PreSTM_Mid_Stack_TWT. _GA0352P1036_Final_PreSTM_Mid_Stack_TWT. _GA0352P2014_Final_PreSTM_Mid_Stack_TWT. _GA0352P2018_Final_PreSTM_Mid_Stack_TWT. _GA0352P2019_Final_PreSTM_Mid_Stack_TWT. Depth: _GA0352P1001_Final_PreSTM_Mid_Stack_TVD. _GA0352P1002_Final_PreSTM_Mid_Stack_TVD. _GA0352P1003_Final_PreSTM_Mid_Stack_TVD. _GA0352P1004_Final_PreSTM_Mid_Stack_TVD. _GA0352P1005_Final_PreSTM_Mid_Stack_TVD. _GA0352P1006_Final_PreSTM_Mid_Stack_TVD. _GA0352P1007_Final_PreSTM_Mid_Stack_TVD. _GA0352P1008_Final_PreSTM_Mid_Stack_TVD. _GA0352P1009_Final_PreSTM_Mid_Stack_TVD. _GA0352P1010_Final_PreSTM_Mid_Stack_TVD. _GA0352P1011_Final_PreSTM_Mid_Stack_TVD. _GA0352P1012_Final_PreSTM_Mid_Stack_TVD. _GA0352P1013_Final_PreSTM_Mid_Stack_TVD. _GA0352P1015_Final_PreSTM_Mid_Stack_TVD. _GA0352P1016_Final_PreSTM_Mid_Stack_TVD. _GA0352P1017_Final_PreSTM_Mid_Stack_TVD. _GA0352P1018_Final_PreSTM_Mid_Stack_TVD. _GA0352P1020_Final_PreSTM_Mid_Stack_TVD. _GA0352P1021_Final_PreSTM_Mid_Stack_TVD. _GA0352P1022_Final_PreSTM_Mid_Stack_TVD. _GA0352P1023_Final_PreSTM_Mid_Stack_TVD. _GA0352P1024_Final_PreSTM_Mid_Stack_TVD. Page 53

54 Datasets media data Contents Date delivered _GA0352P1025_Final_PreSTM_Mid_Stack_TVD. _GA0352P1026_Final_PreSTM_Mid_Stack_TVD. _GA0352P1027_Final_PreSTM_Mid_Stack_TVD. _GA0352P1028_Final_PreSTM_Mid_Stack_TVD. _GA0352P1029_Final_PreSTM_Mid_Stack_TVD. _GA0352P1030_Final_PreSTM_Mid_Stack_TVD. _GA0352P1031_Final_PreSTM_Mid_Stack_TVD. _GA0352P1032_Final_PreSTM_Mid_Stack_TVD. _GA0352P1033_Final_PreSTM_Mid_Stack_TVD. _GA0352P1034_Final_PreSTM_Mid_Stack_TVD. _GA0352P1035_Final_PreSTM_Mid_Stack_TVD. _GA0352P1036_Final_PreSTM_Mid_Stack_TVD. _GA0352P2014_Final_PreSTM_Mid_Stack_TVD. _GA0352P2018_Final_PreSTM_Mid_Stack_TVD. _GA0352P2019_Final_PreSTM_Mid_Stack_TVD. Final PreSTM (Far) Angle Stacks (Time & Depth) USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 Time: _GA0352P1001_Final_PreSTM_Far_Stack_TWT. _GA0352P1002_Final_PreSTM_Far_Stack_TWT. _GA0352P1003_Final_PreSTM_Far_Stack_TWT. _GA0352P1004_Final_PreSTM_Far_Stack_TWT. _GA0352P1005_Final_PreSTM_Far_Stack_TWT. _GA0352P1006_Final_PreSTM_Far_Stack_TWT. _GA0352P1007_Final_PreSTM_Far_Stack_TWT. _GA0352P1008_Final_PreSTM_Far_Stack_TWT. _GA0352P1009_Final_PreSTM_Far_Stack_TWT. _GA0352P1010_Final_PreSTM_Far_Stack_TWT. _GA0352P1011_Final_PreSTM_Far_Stack_TWT. _GA0352P1012_Final_PreSTM_Far_Stack_TWT. _GA0352P1013_Final_PreSTM_Far_Stack_TWT. _GA0352P1015_Final_PreSTM_Far_Stack_TWT. _GA0352P1016_Final_PreSTM_Far_Stack_TWT. _GA0352P1017_Final_PreSTM_Far_Stack_TWT. _GA0352P1018_Final_PreSTM_Far_Stack_TWT. _GA0352P1020_Final_PreSTM_Far_Stack_TWT. _GA0352P1021_Final_PreSTM_Far_Stack_TWT. _GA0352P1022_Final_PreSTM_Far_Stack_TWT. _GA0352P1023_Final_PreSTM_Far_Stack_TWT. _GA0352P1024_Final_PreSTM_Far_Stack_TWT. _GA0352P1025_Final_PreSTM_Far_Stack_TWT. _GA0352P1026_Final_PreSTM_Far_Stack_TWT. _GA0352P1027_Final_PreSTM_Far_Stack_TWT. _GA0352P1028_Final_PreSTM_Far_Stack_TWT. _GA0352P1029_Final_PreSTM_Far_Stack_TWT. _GA0352P1030_Final_PreSTM_Far_Stack_TWT. _GA0352P1031_Final_PreSTM_Far_Stack_TWT. _GA0352P1032_Final_PreSTM_Far_Stack_TWT. _GA0352P1033_Final_PreSTM_Far_Stack_TWT. _GA0352P1034_Final_PreSTM_Far_Stack_TWT. _GA0352P1035_Final_PreSTM_Far_Stack_TWT. _GA0352P1036_Final_PreSTM_Far_Stack_TWT. _GA0352P2014_Final_PreSTM_Far_Stack_TWT. _GA0352P2018_Final_PreSTM_Far_Stack_TWT. _GA0352P2019_Final_PreSTM_Far_Stack_TWT. Depth: Page 54

55 Datasets media data Contents Date delivered _GA0352P1001_Final_PreSTM_Far_Stack_TVD. _GA0352P1002_Final_PreSTM_Far_Stack_TVD. _GA0352P1003_Final_PreSTM_Far_Stack_TVD. _GA0352P1004_Final_PreSTM_Far_Stack_TVD. _GA0352P1005_Final_PreSTM_Far_Stack_TVD. _GA0352P1006_Final_PreSTM_Far_Stack_TVD. _GA0352P1007_Final_PreSTM_Far_Stack_TVD. _GA0352P1008_Final_PreSTM_Far_Stack_TVD. _GA0352P1009_Final_PreSTM_Far_Stack_TVD. _GA0352P1010_Final_PreSTM_Far_Stack_TVD. _GA0352P1011_Final_PreSTM_Far_Stack_TVD. _GA0352P1012_Final_PreSTM_Far_Stack_TVD. _GA0352P1013_Final_PreSTM_Far_Stack_TVD. _GA0352P1015_Final_PreSTM_Far_Stack_TVD. _GA0352P1016_Final_PreSTM_Far_Stack_TVD. _GA0352P1017_Final_PreSTM_Far_Stack_TVD. _GA0352P1018_Final_PreSTM_Far_Stack_TVD. _GA0352P1020_Final_PreSTM_Far_Stack_TVD. _GA0352P1021_Final_PreSTM_Far_Stack_TVD. _GA0352P1022_Final_PreSTM_Far_Stack_TVD. _GA0352P1023_Final_PreSTM_Far_Stack_TVD. _GA0352P1024_Final_PreSTM_Far_Stack_TVD. _GA0352P1025_Final_PreSTM_Far_Stack_TVD. _GA0352P1026_Final_PreSTM_Far_Stack_TVD. _GA0352P1027_Final_PreSTM_Far_Stack_TVD. _GA0352P1028_Final_PreSTM_Far_Stack_TVD. _GA0352P1029_Final_PreSTM_Far_Stack_TVD. _GA0352P1030_Final_PreSTM_Far_Stack_TVD. _GA0352P1031_Final_PreSTM_Far_Stack_TVD. _GA0352P1032_Final_PreSTM_Far_Stack_TVD. _GA0352P1033_Final_PreSTM_Far_Stack_TVD. _GA0352P1034_Final_PreSTM_Far_Stack_TVD. _GA0352P1035_Final_PreSTM_Far_Stack_TVD. _GA0352P1036_Final_PreSTM_Far_Stack_TVD. _GA0352P2014_Final_PreSTM_Far_Stack_TVD. _GA0352P2018_Final_PreSTM_Far_Stack_TVD. _GA0352P2019_Final_PreSTM_Far_Stack_TVD. Final PreSTM (Ultrafar) Angle Stacks (Time & Depth) USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 Time: _GA0352P1001_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1002_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1003_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1004_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1005_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1006_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1007_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1008_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1009_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1010_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1011_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1012_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1013_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1015_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1016_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1017_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1018_Final_PreSTM_Ultrafar_Stack_TWT. Page 55

56 Datasets media data Contents Date delivered _GA0352P1020_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1021_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1022_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1023_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1024_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1025_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1026_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1027_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1028_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1029_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1030_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1031_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1032_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1033_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1034_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1035_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P1036_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P2014_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P2018_Final_PreSTM_Ultrafar_Stack_TWT. _GA0352P2019_Final_PreSTM_Ultrafar_Stack_TWT. Depth: _GA0352P1001_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1002_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1003_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1004_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1005_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1006_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1007_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1008_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1009_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1010_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1011_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1012_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1013_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1015_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1016_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1017_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1018_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1020_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1021_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1022_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1023_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1024_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1025_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1026_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1027_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1028_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1029_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1030_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1031_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1032_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1033_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1034_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1035_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P1036_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P2014_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P2018_Final_PreSTM_Ultrafar_Stack_TVD. _GA0352P2019_Final_PreSTM_Ultrafar_Stack_TVD. Page 56

57 Datasets media data Contents Date delivered Final Scaled PreSTM Full Stacks (Time & Depth) USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 Time: _GA0352P1001_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1002_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1003_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1004_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1005_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1006_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1007_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1008_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1009_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1010_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1011_Final_Scaled_PreSTM_Full_Stack_TWT.s gy _GA0352P1012_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1013_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1015_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1016_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1017_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1018_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1020_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1021_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1022_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1023_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1024_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1025_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1026_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1027_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1028_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1029_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1030_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1031_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1032_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1033_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1034_Final_Scaled_PreSTM_Full_Stack_TWT. Page 57

58 Datasets media data Contents Date delivered _GA0352P1035_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P1036_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P2014_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P2018_Final_Scaled_PreSTM_Full_Stack_TWT. _GA0352P2019_Final_Scaled_PreSTM_Full_Stack_TWT. Depth: _GA0352P1001_Final_Scaled_PreSTM_Full_Stack_TVD.s gy _GA0352P1002_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1003_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1004_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1005_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1006_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1007_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1008_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1009_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1010_Final_Scaled_PreSTM_Full_Stack_TVD.s gy _GA0352P1011_Final_Scaled_PreSTM_Full_Stack_TVD.s gy _GA0352P1012_Final_Scaled_PreSTM_Full_Stack_TVD.s gy _GA0352P1013_Final_Scaled_PreSTM_Full_Stack_TVD.s gy _GA0352P1015_Final_Scaled_PreSTM_Full_Stack_TVD.s gy _GA0352P1016_Final_Scaled_PreSTM_Full_Stack_TVD.s gy _GA0352P1017_Final_Scaled_PreSTM_Full_Stack_TVD.s gy _GA0352P1018_Final_Scaled_PreSTM_Full_Stack_TVD.s gy _GA0352P1020_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1021_Final_Scaled_PreSTM_Full_Stack_TVD.s gy _GA0352P1022_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1023_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1024_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1025_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1026_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1027_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1028_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1029_Final_Scaled_PreSTM_Full_Stack_TVD. Page 58

59 Datasets media data Contents Date delivered _GA0352P1030_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1031_Final_Scaled_PreSTM_Full_Stack_TVD.s gy _GA0352P1032_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1033_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1034_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1035_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P1036_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P2014_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P2018_Final_Scaled_PreSTM_Full_Stack_TVD. _GA0352P2019_Final_Scaled_PreSTM_Full_Stack_TVD. Final PreSTM Velocities USB Disk (Windows format) SEGY & ASCII Media ID: GE0019UW, GE0020UW 15/06/16 SEGY: _GA0352P1001_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1002_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1003_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1004_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1005_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1006_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1007_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1008_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1009_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1010_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1011_Final_PreSTM_RMS_Velocities_TWT. _GA0352P1012_Final_PreSTM_RMS_Velocities_TWT. _GA0352P1013_Final_PreSTM_RMS_Velocities_TWT. _GA0352P1015_Final_PreSTM_RMS_Velocities_TWT. _GA0352P1016_Final_PreSTM_RMS_Velocities_TWT. _GA0352P1017_Final_PreSTM_RMS_Velocities_TWT. _GA0352P1018_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1020_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1021_Final_PreSTM_RMS_Velocities_TWT. _GA0352P1022_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1023_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1024_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1025_Final_PreSTM_RMS_Velocities_TWT.sg y Page 59

60 Datasets media data Contents Date delivered _GA0352P1026_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1027_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1028_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1029_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1030_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1031_Final_PreSTM_RMS_Velocities_TWT. _GA0352P1032_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1033_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1034_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1035_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P1036_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P2014_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P2018_Final_PreSTM_RMS_Velocities_TWT.sg y _GA0352P2019_Final_PreSTM_RMS_Velocities_TWT.sg y ASCII: _GA0352P1001_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1002_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P1003_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P1004_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P1005_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P1006_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P1007_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P1008_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P1009_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P1010_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1011_Final_PreSTM_RMS_Velocitie _GA0352P1012_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1013_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1015_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1016_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1017_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1018_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1020_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P1021_Final_PreSTM_RMS_Velocities_TWT.vel f Page 60

61 Datasets media data Contents Date delivered _GA0352P1022_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1023_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1024_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P1025_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1026_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P1027_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1028_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P1029_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P1030_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P1031_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1032_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1033_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1034_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P1035_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P1036_Final_PreSTM_RMS_Velocities_TWT.vel f _GA0352P2014_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P2018_Final_PreSTM_RMS_Velocities_TWT.ve lf _GA0352P2019_Final_PreSTM_RMS_Velocities_TWT.ve lf ETA Field USB Disk (Windows format) SEGY Media ID: GE0019UW, GE0020UW 15/06/16 _GA0352P1001_Final_PreSTM_ETA_Field_TWT. _GA0352P1002_Final_PreSTM_ETA_Field_TWT. _GA0352P1003_Final_PreSTM_ETA_Field_TWT. _GA0352P1004_Final_PreSTM_ETA_Field_TWT. _GA0352P1005_Final_PreSTM_ETA_Field_TWT. _GA0352P1006_Final_PreSTM_ETA_Field_TWT. _GA0352P1007_Final_PreSTM_ETA_Field_TWT. _GA0352P1008_Final_PreSTM_ETA_Field_TWT. _GA0352P1009_Final_PreSTM_ETA_Field_TWT. _GA0352P1010_Final_PreSTM_ETA_Field_TWT. _GA0352P1011_Final_PreSTM_ETA_Field_TWT. _GA0352P1012_Final_PreSTM_ETA_Field_TWT. _GA0352P1013_Final_PreSTM_ETA_Field_TWT. _GA0352P1015_Final_PreSTM_ETA_Field_TWT. _GA0352P1016_Final_PreSTM_ETA_Field_TWT. _GA0352P1017_Final_PreSTM_ETA_Field_TWT. _GA0352P1018_Final_PreSTM_ETA_Field_TWT. _GA0352P1020_Final_PreSTM_ETA_Field_TWT. _GA0352P1021_Final_PreSTM_ETA_Field_TWT. _GA0352P1022_Final_PreSTM_ETA_Field_TWT. _GA0352P1023_Final_PreSTM_ETA_Field_TWT. _GA0352P1024_Final_PreSTM_ETA_Field_TWT. _GA0352P1025_Final_PreSTM_ETA_Field_TWT. Page 61

62 Datasets media data Contents Date delivered _GA0352P1026_Final_PreSTM_ETA_Field_TWT. _GA0352P1027_Final_PreSTM_ETA_Field_TWT. _GA0352P1028_Final_PreSTM_ETA_Field_TWT. _GA0352P1029_Final_PreSTM_ETA_Field_TWT. _GA0352P1030_Final_PreSTM_ETA_Field_TWT. _GA0352P1031_Final_PreSTM_ETA_Field_TWT. _GA0352P1032_Final_PreSTM_ETA_Field_TWT. _GA0352P1033_Final_PreSTM_ETA_Field_TWT. _GA0352P1034_Final_PreSTM_ETA_Field_TWT. _GA0352P1035_Final_PreSTM_ETA_Field_TWT. _GA0352P1036_Final_PreSTM_ETA_Field_TWT. _GA0352P2014_Final_PreSTM_ETA_Field_TWT. _GA0352P2018_Final_PreSTM_ETA_Field_TWT. _GA0352P2019_Final_PreSTM_ETA_Field_TWT. Final PreSTM Stacking Velocities USB Disk (Windows format) SEGY & ASCII Media ID: GE0019UW, GE0020UW 15/06/16 SEGY: _GA0352P1001_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1002_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1003_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1004_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1005_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1006_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1007_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1008_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1009_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1010_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1011_Final_PreSTM_Stacking_RMS_Velocities _TWT. _GA0352P1012_Final_PreSTM_Stacking_RMS_Velocities _TWT. _GA0352P1013_Final_PreSTM_Stacking_RMS_Velocities _TWT. _GA0352P1015_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1016_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1017_Final_PreSTM_Stacking_RMS_Velocities _TWT. _GA0352P1018_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1020_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1021_Final_PreSTM_Stacking_RMS_Velocities _TWT. _GA0352P1022_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1023_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1024_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1025_Final_PreSTM_Stacking_RMS_Velocitie Page 62

63 Datasets media data Contents Date delivered s_twt. _GA0352P1026_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1027_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1028_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1029_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1030_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1031_Final_PreSTM_Stacking_RMS_Velocities _TWT. _GA0352P1032_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1033_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1034_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1035_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P1036_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P2014_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P2018_Final_PreSTM_Stacking_RMS_Velocitie s_twt. _GA0352P2019_Final_PreSTM_Stacking_RMS_Velocitie s_twt. ASCII: _GA0352P1001_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1002_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1003_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1004_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1005_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1006_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1007_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1008_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1009_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1010_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1011_Final_PreSTM_Stacking_RMS_Velocities _TWT.velf _GA0352P1012_Final_PreSTM_Stacking_RMS_Velocities _TWT.velf _GA0352P1013_Final_PreSTM_Stacking_RMS_Velocities _TWT.velf _GA0352P1015_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1016_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1017_Final_PreSTM_Stacking_RMS_Velocities _TWT.velf _GA0352P1018_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1020_Final_PreSTM_Stacking_RMS_Velocitie Page 63

64 Datasets media data Contents Date delivered _GA0352P1021_Final_PreSTM_Stacking_RMS_Velocities _TWT.velf _GA0352P1022_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1023_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1024_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1025_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1026_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1027_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1028_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1029_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1030_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1031_Final_PreSTM_Stacking_RMS_Velocities _TWT.velf _GA0352P1032_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1033_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1034_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1035_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P1036_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P2014_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P2018_Final_PreSTM_Stacking_RMS_Velocitie _GA0352P2019_Final_PreSTM_Stacking_RMS_Velocitie Final Processed and Merged Navigation CCards and Scards USB Disk (Windows format) ASCII Final Processing Report USB Disk (Windows format) PDF Media ID: GE0019UW, GE0020UW 15/06/16 Gippsland_Basin_2D_Infill_1cable_WGS84_UTM55S_S-card_nav.p190 Gippsland_Basin_2D_Infill_1cable_WGS84_UTM55S_C-card_nav.p190 Media ID: GE0019UW, GE0020UW 15/06/16 _ProcessingReport_ pdf Page 64

65 12.3 EBCDIC Header (example) Gather Page 65

66 Stack Page 66

67 Velocity Page 67

68 12.4 Gun Signature Figure 4: Gun signature. Page 68

69 12.5 Zero Phasing Coefficients Sample rate: 2.0 ms Time range: ms Number of samples: E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-03 Page 69

70 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-03 Page 70

71 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-03 Page 71

72 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-02 Page 72

73 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-04 Page 73

74 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-04 Page 74

75 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-05 Page 75

76 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-05 Page 76

77 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-05 Page 77

78 13. REFERENCES REFERENCES Abma, R., Sun, J., and Bernitsas, N., 1999, Antialiasing methods in Kirchhoff migration: Geophysics, 64, no. 6, Gray, S. H., 1992, Frequency-selective design of the Kirchhoff migration operator: Geophysical Prospecting, 40, Dellinger, J. A., Gray, S. H., Murphy, G. E., and Etgen, J. T., 2000, Efficient 2.5-D true-amplitude migration: Geophysics, 65, Ilya Tsvankin and Leon Thomsen, 1994, Nonhyperbolic reflection moveout in anisotropic media: Geophysics, 59, no. 8, M. Turhan Taner and Fulton Koehler (1969), velocity spectra digital computer derivation applications of velocity functions : Geophysics, 34, no. 6, Page 78

79

80

Variable-depth streamer acquisition: broadband data for imaging and inversion

Variable-depth streamer acquisition: broadband data for imaging and inversion P-246 Variable-depth streamer acquisition: broadband data for imaging and inversion Robert Soubaras, Yves Lafet and Carl Notfors*, CGGVeritas Summary This paper revisits the problem of receiver deghosting,

More information

Processing the Blackfoot broad-band 3-C seismic data

Processing the Blackfoot broad-band 3-C seismic data Processing the Blackfoot broad-band 3-C seismic data Processing the Blackfoot broad-band 3-C seismic data Stan J. Gorek, Robert R. Stewart, and Mark P. Harrison ABSTRACT During early July, 1995, a large

More information

Broad-bandwidth data processing of shallow marine conventional streamer data: A case study from Tapti Daman Area, Western Offshore Basin India

Broad-bandwidth data processing of shallow marine conventional streamer data: A case study from Tapti Daman Area, Western Offshore Basin India : A case study from Tapti Daman Area, Western Offshore Basin India Subhankar Basu*, Premanshu Nandi, Debasish Chatterjee;ONGC Ltd., India subhankar_basu@ongc.co.in Keywords Broadband, De-ghosting, Notch

More information

Broadband processing of West of Shetland data

Broadband processing of West of Shetland data Broadband processing of West of Shetland data Rob Telling 1*, Nick Riddalls 1, Ahmad Azmi 1, Sergio Grion 1 and R. Gareth Williams 1 present broadband processing of 2D data in a configuration that enables

More information

Evaluation of a broadband marine source

Evaluation of a broadband marine source Evaluation of a broadband marine source Rob Telling 1*, Stuart Denny 1, Sergio Grion 1 and R. Gareth Williams 1 evaluate far-field signatures and compare processing results for a 2D test-line acquired

More information

Enhanced low frequency signal processing for sub-basalt imaging N. Woodburn*, A. Hardwick and T. Travis, TGS

Enhanced low frequency signal processing for sub-basalt imaging N. Woodburn*, A. Hardwick and T. Travis, TGS Enhanced low frequency signal processing for sub-basalt imaging N. Woodburn*, A. Hardwick and T. Travis, TGS Summary Sub-basalt imaging continues to provide a challenge along the northwest European Atlantic

More information

Uses of wide-azimuth and variable-depth streamers for sub-basalt seismic imaging

Uses of wide-azimuth and variable-depth streamers for sub-basalt seismic imaging Uses of wide-azimuth and variable-depth streamers for sub-basalt seismic imaging To evaluate the optimal technique for imaging beneath a complex basalt layer, Robert Dowle, 1* Fabrice Mandroux, 1 Robert

More information

Summary. Introduction

Summary. Introduction Multiple attenuation for variable-depth streamer data: from deep to shallow water Ronan Sablon*, Damien Russier, Oscar Zurita, Danny Hardouin, Bruno Gratacos, Robert Soubaras & Dechun Lin. CGGVeritas Summary

More information

Seismic interference noise attenuation based on sparse inversion Zhigang Zhang* and Ping Wang (CGG)

Seismic interference noise attenuation based on sparse inversion Zhigang Zhang* and Ping Wang (CGG) Seismic interference noise attenuation based on sparse inversion Zhigang Zhang* and Ping Wang (CGG) Summary In marine seismic acquisition, seismic interference (SI) remains a considerable problem when

More information

Survey results obtained in a complex geological environment with Midwater Stationary Cable Luc Haumonté*, Kietta; Weizhong Wang, Geotomo

Survey results obtained in a complex geological environment with Midwater Stationary Cable Luc Haumonté*, Kietta; Weizhong Wang, Geotomo Survey results obtained in a complex geological environment with Midwater Stationary Cable Luc Haumonté*, Kietta; Weizhong Wang, Geotomo Summary A survey with a novel acquisition technique was acquired

More information

Tu A D Broadband Towed-Streamer Assessment, West Africa Deep Water Case Study

Tu A D Broadband Towed-Streamer Assessment, West Africa Deep Water Case Study Tu A15 09 4D Broadband Towed-Streamer Assessment, West Africa Deep Water Case Study D. Lecerf* (PGS), D. Raistrick (PGS), B. Caselitz (PGS), M. Wingham (BP), J. Bradley (BP), B. Moseley (formaly BP) Summary

More information

Processing the Teal South 4C-4D seismic survey

Processing the Teal South 4C-4D seismic survey Processing the Teal South 4C-4D seismic survey Carlos Rodriguez-Suarez, Robert R. Stewart and Han-Xing Lu Processing the Teal South 4C-4D ABSTRACT Repeated 4C-3D seismic surveys have been acquired over

More information

25823 Mind the Gap Broadband Seismic Helps To Fill the Low Frequency Deficiency

25823 Mind the Gap Broadband Seismic Helps To Fill the Low Frequency Deficiency 25823 Mind the Gap Broadband Seismic Helps To Fill the Low Frequency Deficiency E. Zabihi Naeini* (Ikon Science), N. Huntbatch (Ikon Science), A. Kielius (Dolphin Geophysical), B. Hannam (Dolphin Geophysical)

More information

Understanding Seismic Amplitudes

Understanding Seismic Amplitudes Understanding Seismic Amplitudes The changing amplitude values that define the seismic trace are typically explained using the convolutional model. This model states that trace amplitudes have three controlling

More information

Why not narrowband? Philip Fontana* and Mikhail Makhorin, Polarcus; Thomas Cheriyan and Lee Saxton, GX Technology

Why not narrowband? Philip Fontana* and Mikhail Makhorin, Polarcus; Thomas Cheriyan and Lee Saxton, GX Technology Philip Fontana* and Mikhail Makhorin, Polarcus; Thomas Cheriyan and Lee Saxton, GX Technology Summary A 2D towed streamer acquisition experiment was conducted in deep water offshore Gabon to evaluate techniques

More information

Multi-survey matching of marine towed streamer data using a broadband workflow: a shallow water offshore Gabon case study. Summary

Multi-survey matching of marine towed streamer data using a broadband workflow: a shallow water offshore Gabon case study. Summary Multi-survey matching of marine towed streamer data using a broadband workflow: a shallow water offshore Gabon case study. Nathan Payne, Tony Martin and Jonathan Denly. ION Geophysical UK Reza Afrazmanech.

More information

INTRODUCTION TO ONSHORE SEISMIC ACQUISITION AND PROCESSING

INTRODUCTION TO ONSHORE SEISMIC ACQUISITION AND PROCESSING INTRODUCTION TO ONSHORE SEISMIC ACQUISITION AND PROCESSING SEPTEMBER 2017 1 SIMPLIFIED DIAGRAM OF SPLIT SPREAD REFLECTION SEISMIC DATA ACQUISITION RECORDING TRUCK ENERGY SOURCE SHOTPOINTS 1 2 3 4 5 6 7

More information

Summary. Volumetric Q tomography on offshore Brunei dataset

Summary. Volumetric Q tomography on offshore Brunei dataset Success of high-resolution volumetric Q-tomography in the automatic detection of gas anomalies on offshore Brunei data Fatiha Gamar, Diego Carotti *, Patrice Guillaume, Amor Gacha, Laurent Lopes (CGG)

More information

Design of an Optimal High Pass Filter in Frequency Wave Number (F-K) Space for Suppressing Dispersive Ground Roll Noise from Onshore Seismic Data

Design of an Optimal High Pass Filter in Frequency Wave Number (F-K) Space for Suppressing Dispersive Ground Roll Noise from Onshore Seismic Data Universal Journal of Physics and Application 11(5): 144-149, 2017 DOI: 10.13189/ujpa.2017.110502 http://www.hrpub.org Design of an Optimal High Pass Filter in Frequency Wave Number (F-K) Space for Suppressing

More information

Summary. Introduction

Summary. Introduction Multi survey matching of marine towed streamer data using a broadband workflow: a shallow water offshore Nathan Payne*, Tony Martin and Jonathan Denly. ION GX Technology UK; Reza Afrazmanech. Perenco UK.

More information

2012 SEG SEG Las Vegas 2012 Annual Meeting Page 1

2012 SEG SEG Las Vegas 2012 Annual Meeting Page 1 Full-wavefield, towed-marine seismic acquisition and applications David Halliday, Schlumberger Cambridge Research, Johan O. A. Robertsson, ETH Zürich, Ivan Vasconcelos, Schlumberger Cambridge Research,

More information

High-dimensional resolution enhancement in the continuous wavelet transform domain

High-dimensional resolution enhancement in the continuous wavelet transform domain High-dimensional resolution enhancement in the continuous wavelet transform domain Shaowu Wang, Juefu Wang and Tianfei Zhu CGG Summary We present a method to enhance the bandwidth of seismic data in the

More information

Downloaded 09/04/18 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/04/18 to Redistribution subject to SEG license or copyright; see Terms of Use at Processing of data with continuous source and receiver side wavefields - Real data examples Tilman Klüver* (PGS), Stian Hegna (PGS), and Jostein Lima (PGS) Summary In this paper, we describe the processing

More information

Th N Broadband Processing of Variable-depth Streamer Data

Th N Broadband Processing of Variable-depth Streamer Data Th N103 16 Broadband Processing of Variable-depth Streamer Data H. Masoomzadeh* (TGS), A. Hardwick (TGS) & S. Baldock (TGS) SUMMARY The frequency of ghost notches is naturally diversified by random variations,

More information

FOCUS ARTICLE. BroadSeis: Enhancing interpretation and inversion with broadband marine seismic

FOCUS ARTICLE. BroadSeis: Enhancing interpretation and inversion with broadband marine seismic FOCUS ARTICLE Coordinated by Malcolm Lansley / John Fernando / Carmen Swalwell Special Section: Seismic Acquisition BroadSeis: Enhancing interpretation and inversion with broadband marine seismic R. Soubaras,

More information

Seismic reflection method

Seismic reflection method Seismic reflection method Seismic reflection method is based on the reflections of seismic waves occurring at the contacts of subsurface structures. We apply some seismic source at different points of

More information

How to Check the Quality of your Seismic Data Conditioning in Hampson-Russell Software. HRS9 Houston, Texas 2011

How to Check the Quality of your Seismic Data Conditioning in Hampson-Russell Software. HRS9 Houston, Texas 2011 How to Check the Quality of your Seismic Data Conditioning in Hampson-Russell Software HRS9 Houston, Texas 2011 QC Data Conditioning This document guides you through the quality control check process used

More information

Th B3 05 Advances in Seismic Interference Noise Attenuation

Th B3 05 Advances in Seismic Interference Noise Attenuation Th B3 05 Advances in Seismic Interference Noise Attenuation T. Elboth* (CGG), H. Shen (CGG), J. Khan (CGG) Summary This paper presents recent advances in the area of seismic interference (SI) attenuation

More information

Tu SRS3 07 Ultra-low Frequency Phase Assessment for Broadband Data

Tu SRS3 07 Ultra-low Frequency Phase Assessment for Broadband Data Tu SRS3 07 Ultra-low Frequency Phase Assessment for Broadband Data F. Yang* (CGG), R. Sablon (CGG) & R. Soubaras (CGG) SUMMARY Reliable low frequency content and phase alignment are critical for broadband

More information

Seismic Reflection Method

Seismic Reflection Method 1 of 25 4/16/2009 11:41 AM Seismic Reflection Method Top: Monument unveiled in 1971 at Belle Isle (Oklahoma City) on 50th anniversary of first seismic reflection survey by J. C. Karcher. Middle: Two early

More information

Bandwidth Extension applied to 3D seismic data on Heather and Broom Fields, UK North Sea

Bandwidth Extension applied to 3D seismic data on Heather and Broom Fields, UK North Sea Bandwidth Extension applied to 3D seismic data on Heather and Broom Fields, UK North Sea Tim Trimble 1., Clare White 2., Heather Poore 2. 1. EnQuest Plc 2. Geotrace Technologies Ltd DEVEX Maximising Our

More information

Introduction. Figure 2: Source-Receiver location map (to the right) and geometry template (to the left).

Introduction. Figure 2: Source-Receiver location map (to the right) and geometry template (to the left). Advances in interbed multiples prediction and attenuation: Case study from onshore Kuwait Adel El-Emam* and Khaled Shams Al-Deen, Kuwait Oil Company; Alexander Zarkhidze and Andy Walz, WesternGeco Introduction

More information

Desinging of 3D Seismic Survey And Data Processing of Abu Amood Oil Field Southern of Iraq

Desinging of 3D Seismic Survey And Data Processing of Abu Amood Oil Field Southern of Iraq Desinging of 3D Seismic Survey And Data Processing of Abu Amood Oil Field Southern of Iraq Salman Z. Khorshid, Ahmed I. Khaleel Dept.Geology, College of Science, Univercity of Baghdad Abstract 3D seismic

More information

Interferometric Approach to Complete Refraction Statics Solution

Interferometric Approach to Complete Refraction Statics Solution Interferometric Approach to Complete Refraction Statics Solution Valentina Khatchatrian, WesternGeco, Calgary, Alberta, Canada VKhatchatrian@slb.com and Mike Galbraith, WesternGeco, Calgary, Alberta, Canada

More information

Seismic processing workflow for supressing coherent noise while retaining low-frequency signal

Seismic processing workflow for supressing coherent noise while retaining low-frequency signal Seismic processing for coherent noise suppression Seismic processing workflow for supressing coherent noise while retaining low-frequency signal Patricia E. Gavotti and Don C. Lawton ABSTRACT Two different

More information

Multiple Attenuation - A Case Study

Multiple Attenuation - A Case Study Multiple Attenuation - A Case Study M.Das, Maharaj Singh, M.Muruganandan* & Dr.D.V.R. Murti RCC, GPS, A&AA Basin, ONGC Jorhat Summary Multiple attenuation is a long standing problem in reflection seismic

More information

Tomostatic Waveform Tomography on Near-surface Refraction Data

Tomostatic Waveform Tomography on Near-surface Refraction Data Tomostatic Waveform Tomography on Near-surface Refraction Data Jianming Sheng, Alan Leeds, and Konstantin Osypov ChevronTexas WesternGeco February 18, 23 ABSTRACT The velocity variations and static shifts

More information

AVO compliant spectral balancing

AVO compliant spectral balancing Summary AVO compliant spectral balancing Nirupama Nagarajappa CGGVeritas, Calgary, Canada pam.nagarajappa@cggveritas.com Spectral balancing is often performed after surface consistent deconvolution to

More information

Latest field trial confirms potential of new seismic method based on continuous source and receiver wavefields

Latest field trial confirms potential of new seismic method based on continuous source and receiver wavefields SPECAL TOPC: MARNE SESMC Latest field trial confirms potential of new seismic method based on continuous source and receiver wavefields Stian Hegna1*, Tilman Klüver1, Jostein Lima1 and Endrias Asgedom1

More information

A Step Change in Seismic Imaging Using a Unique Ghost Free Source and Receiver System

A Step Change in Seismic Imaging Using a Unique Ghost Free Source and Receiver System A Step Change in Seismic Imaging Using a Unique Ghost Free Source and Receiver System Per Eivind Dhelie*, PGS, Lysaker, Norway per.eivind.dhelie@pgs.com and Robert Sorley, PGS, Canada Torben Hoy, PGS,

More information

Deblending workflow. Summary

Deblending workflow. Summary Guillaume Henin*, Didier Marin, Shivaji Maitra, Anne Rollet (CGG), Sandeep Kumar Chandola, Subodh Kumar, Nabil El Kady, Low Cheng Foo (PETRONAS Carigali Sdn. Bhd.) Summary In ocean-bottom cable (OBC) acquisitions,

More information

This presentation was prepared as part of Sensor Geophysical Ltd. s 2010 Technology Forum presented at the Telus Convention Center on April 15, 2010.

This presentation was prepared as part of Sensor Geophysical Ltd. s 2010 Technology Forum presented at the Telus Convention Center on April 15, 2010. This presentation was prepared as part of Sensor Geophysical Ltd. s 2010 Technology Forum presented at the Telus Convention Center on April 15, 2010. The information herein remains the property of Mustagh

More information

Estimation of a time-varying sea-surface profile for receiver-side de-ghosting Rob Telling* and Sergio Grion Shearwater Geoservices, UK

Estimation of a time-varying sea-surface profile for receiver-side de-ghosting Rob Telling* and Sergio Grion Shearwater Geoservices, UK for receiver-side de-ghosting Rob Telling* and Sergio Grion Shearwater Geoservices, UK Summary The presence of a rough sea-surface during acquisition of marine seismic data leads to time- and space-dependent

More information

Extending the useable bandwidth of seismic data with tensor-guided, frequency-dependent filtering

Extending the useable bandwidth of seismic data with tensor-guided, frequency-dependent filtering first break volume 34, January 2016 special topic Extending the useable bandwidth of seismic data with tensor-guided, frequency-dependent filtering Edward Jenner 1*, Lisa Sanford 2, Hans Ecke 1 and Bruce

More information

Ocean-bottom hydrophone and geophone coupling

Ocean-bottom hydrophone and geophone coupling Stanford Exploration Project, Report 115, May 22, 2004, pages 57 70 Ocean-bottom hydrophone and geophone coupling Daniel A. Rosales and Antoine Guitton 1 ABSTRACT We compare two methods for combining hydrophone

More information

A robust x-t domain deghosting method for various source/receiver configurations Yilmaz, O., and Baysal, E., Paradigm Geophysical

A robust x-t domain deghosting method for various source/receiver configurations Yilmaz, O., and Baysal, E., Paradigm Geophysical A robust x-t domain deghosting method for various source/receiver configurations Yilmaz, O., and Baysal, E., Paradigm Geophysical Summary Here we present a method of robust seismic data deghosting for

More information

Radial trace filtering revisited: current practice and enhancements

Radial trace filtering revisited: current practice and enhancements Radial trace filtering revisited: current practice and enhancements David C. Henley Radial traces revisited ABSTRACT Filtering seismic data in the radial trace (R-T) domain is an effective technique for

More information

3-D tomographic Q inversion for compensating frequency dependent attenuation and dispersion. Kefeng Xin* and Barry Hung, CGGVeritas

3-D tomographic Q inversion for compensating frequency dependent attenuation and dispersion. Kefeng Xin* and Barry Hung, CGGVeritas P-75 Summary 3-D tomographic Q inversion for compensating frequency dependent attenuation and dispersion Kefeng Xin* and Barry Hung, CGGVeritas Following our previous work on Amplitude Tomography that

More information

We D Diffraction Imaging in the North Sea, Case Study Over the Dutch Q16 Fields

We D Diffraction Imaging in the North Sea, Case Study Over the Dutch Q16 Fields We D201 03 Diffraction Imaging in the North Sea, Case Study Over the Dutch Q16 Fields R. Veenhof (Oranje-Nassau Energie B.V.), T.J. Moser* (Moser Geophysical Services), I. Sturzu (Z-Terra Inc.), D. Dowell

More information

Multi- channel Seismic (MCS) Processing

Multi- channel Seismic (MCS) Processing Multi- channel Seismic (MCS) Processing On R/V Thomas G. Thompson cruise TN272, we used Matlab to convert navigation files from latitude and longitude into X and Y coordinates in UTM (Universal Transverse

More information

Comparison/sensitivity analysis of various deghosting methods Abdul Hamid

Comparison/sensitivity analysis of various deghosting methods Abdul Hamid Master Thesis in Geosciences Comparison/sensitivity analysis of various deghosting methods By Abdul Hamid Comparison/sensitivity analysis of various deghosting methods By ABDUL HAMID MASTER THESIS IN

More information

Attenuation of high energy marine towed-streamer noise Nick Moldoveanu, WesternGeco

Attenuation of high energy marine towed-streamer noise Nick Moldoveanu, WesternGeco Nick Moldoveanu, WesternGeco Summary Marine seismic data have been traditionally contaminated by bulge waves propagating along the streamers that were generated by tugging and strumming from the vessel,

More information

A033 Combination of Multi-component Streamer Pressure and Vertical Particle Velocity - Theory and Application to Data

A033 Combination of Multi-component Streamer Pressure and Vertical Particle Velocity - Theory and Application to Data A33 Combination of Multi-component Streamer ressure and Vertical article Velocity - Theory and Application to Data.B.A. Caprioli* (Westerneco), A.K. Ödemir (Westerneco), A. Öbek (Schlumberger Cambridge

More information

Attacking localized high amplitude noise in seismic data A method for AVO compliant noise attenuation

Attacking localized high amplitude noise in seismic data A method for AVO compliant noise attenuation Attacking localized high amplitude noise in seismic data A method for AVO compliant noise attenuation Xinxiang Li and Rodney Couzens Sensor Geophysical Ltd. Summary The method of time-frequency adaptive

More information

WS01 B02 The Impact of Broadband Wavelets on Thin Bed Reservoir Characterisation

WS01 B02 The Impact of Broadband Wavelets on Thin Bed Reservoir Characterisation WS01 B02 The Impact of Broadband Wavelets on Thin Bed Reservoir Characterisation E. Zabihi Naeini* (Ikon Science), M. Sams (Ikon Science) & K. Waters (Ikon Science) SUMMARY Broadband re-processed seismic

More information

Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing

Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing Enders A. Robinson and Sven Treitcl Geophysical References Series No. 15 David V. Fitterman, managing editor Laurence R.

More information

Application of Surface Consistent Amplitude Corrections as a Manual Editing Tool

Application of Surface Consistent Amplitude Corrections as a Manual Editing Tool IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 4, Issue 6 Ver. II (Nov-Dec. 2016), PP 59-65 www.iosrjournals.org Application of Surface Consistent

More information

Interpretational applications of spectral decomposition in reservoir characterization

Interpretational applications of spectral decomposition in reservoir characterization Interpretational applications of spectral decomposition in reservoir characterization GREG PARTYKA, JAMES GRIDLEY, and JOHN LOPEZ, Amoco E&P Technology Group, Tulsa, Oklahoma, U.S. Figure 1. Thin-bed spectral

More information

Repeatability Measure for Broadband 4D Seismic

Repeatability Measure for Broadband 4D Seismic Repeatability Measure for Broadband 4D Seismic J. Burren (Petroleum Geo-Services) & D. Lecerf* (Petroleum Geo-Services) SUMMARY Future time-lapse broadband surveys should provide better reservoir monitoring

More information

Hunting reflections in Papua New Guinea: early processing results

Hunting reflections in Papua New Guinea: early processing results Hunting reflections in Papua New Guinea: early processing results David C. Henley and Han-Xing Lu PNG processing ABSTRACT Papua New Guinea is among the most notoriously difficult areas in the world in

More information

UKCS Cornerstone: a variable-depth streamer acquisition case study

UKCS Cornerstone: a variable-depth streamer acquisition case study first break volume 30, November 2012 special topic UKCS Cornerstone: a variable-depth streamer acquisition case study George Moise, 1 Geoff Body, 1 Vincent Durussel, 1 Fabrice Mandroux1 and Jo Firth 1*

More information

Amplitude balancing for AVO analysis

Amplitude balancing for AVO analysis Stanford Exploration Project, Report 80, May 15, 2001, pages 1 356 Amplitude balancing for AVO analysis Arnaud Berlioux and David Lumley 1 ABSTRACT Source and receiver amplitude variations can distort

More information

How to Attenuate Diffracted Noise: (DSCAN) A New Methodology

How to Attenuate Diffracted Noise: (DSCAN) A New Methodology How to Attenuate Diffracted Noise: (DSCAN) A New Methodology Ali Karagul* CGG Canada Service Ltd., Calgary, Alberta, Canada akaragul@cgg.com Todd Mojesky and XinXiang Li CGG Canada Service Ltd., Calgary,

More information

T17 Reliable Decon Operators for Noisy Land Data

T17 Reliable Decon Operators for Noisy Land Data T17 Reliable Decon Operators for Noisy Land Data N. Gulunay* (CGGVeritas), N. Benjamin (CGGVeritas) & A. Khalil (CGGVeritas) SUMMARY Interbed multiples for noisy land data that survives the stacking process

More information

FINAL REPORT EL# RS. C. A. Hurich & MUN Seismic Team Earth Sciences Dept. Memorial University Sept. 2009

FINAL REPORT EL# RS. C. A. Hurich & MUN Seismic Team Earth Sciences Dept. Memorial University Sept. 2009 FINAL REPORT EL# 09-101-01-RS MUNSIST Seismic Source Test - Five Mile Road C. A. Hurich & MUN Seismic Team Earth Sciences Dept. Memorial University Sept. 2009 1 EL# 09-101-01-RS Five-Mile Road Memorial

More information

Application of Coherent Noise Attenuation to 4-C Ocean Bottom Cable Seismic Data from the Niger Delta.

Application of Coherent Noise Attenuation to 4-C Ocean Bottom Cable Seismic Data from the Niger Delta. Australian Journal of Basic and Applied Sciences, 4(10): 4985-4994, 2010 ISSN 1991-8178 Application of Coherent Noise Attenuation to 4-C Ocean Bottom Cable Seismic Data from the Niger Delta. 1 D.O. Ogagarue,

More information

Anisotropic Frequency-Dependent Spreading of Seismic Waves from VSP Data Analysis

Anisotropic Frequency-Dependent Spreading of Seismic Waves from VSP Data Analysis Anisotropic Frequency-Dependent Spreading of Seismic Waves from VSP Data Analysis Amin Baharvand Ahmadi* and Igor Morozov, University of Saskatchewan, Saskatoon, Saskatchewan amin.baharvand@usask.ca Summary

More information

2D field data applications

2D field data applications Chapter 5 2D field data applications In chapter 4, using synthetic examples, I showed how the regularized joint datadomain and image-domain inversion methods developed in chapter 3 overcome different time-lapse

More information

Direct Imaging of Group Velocity Dispersion Curves in Shallow Water Christopher Liner*, University of Houston; Lee Bell and Richard Verm, Geokinetics

Direct Imaging of Group Velocity Dispersion Curves in Shallow Water Christopher Liner*, University of Houston; Lee Bell and Richard Verm, Geokinetics Direct Imaging of Group Velocity Dispersion Curves in Shallow Water Christopher Liner*, University of Houston; Lee Bell and Richard Verm, Geokinetics Summary Geometric dispersion is commonly observed in

More information

Technology of Adaptive Vibroseis for Wide Spectrum Prospecting

Technology of Adaptive Vibroseis for Wide Spectrum Prospecting Technology of Adaptive Vibroseis for Wide Spectrum Prospecting Xianzheng Zhao, Xishuang Wang, A.P. Zhukov, Ruifeng Zhang, Chuanzhang Tang Abstract: Seismic data from conventional vibroseis prospecting

More information

Improvement of signal to noise ratio by Group Array Stack of single sensor data

Improvement of signal to noise ratio by Group Array Stack of single sensor data P-113 Improvement of signal to noise ratio by Artatran Ojha *, K. Ramakrishna, G. Sarvesam Geophysical Services, ONGC, Chennai Summary Shot generated noise and the cultural noise is a major problem in

More information

Multiple attenuation via predictive deconvolution in the radial domain

Multiple attenuation via predictive deconvolution in the radial domain Predictive deconvolution in the radial domain Multiple attenuation via predictive deconvolution in the radial domain Marco A. Perez and David C. Henley ABSTRACT Predictive deconvolution has been predominantly

More information

AVO processing of walkaway VSP data at Ross Lake heavy oilfield, Saskatchewan

AVO processing of walkaway VSP data at Ross Lake heavy oilfield, Saskatchewan AVO processing of walkaway VSP data at Ross Lake heavy oilfield, Saskatchewan Zimin Zhang, Robert R. Stewart, and Don C. Lawton ABSTRACT The AVO processing and analysis of walkaway VSP data at Ross Lake

More information

G003 Data Preprocessing and Starting Model Preparation for 3D Inversion of Marine CSEM Surveys

G003 Data Preprocessing and Starting Model Preparation for 3D Inversion of Marine CSEM Surveys G003 Data Preprocessing and Starting Model Preparation for 3D Inversion of Marine CSEM Surveys J.J. Zach* (EMGS ASA), F. Roth (EMGS ASA) & H. Yuan (EMGS Americas) SUMMARY The marine controlled-source electromagnetic

More information

Low Frequency Bottom Reflectivity from Reflection

Low Frequency Bottom Reflectivity from Reflection Low Frequency Bottom Reflectivity from Reflection,Alexander Kritski 1 and Chris Jenkins 2 1 School of Geosciences, University of Sydney, NSW, 2 Ocean Sciences Institute, University of Sydney, NSW. Abstract

More information

A generic procedure for noise suppression in microseismic data

A generic procedure for noise suppression in microseismic data A generic procedure for noise suppression in microseismic data Yessika Blunda*, Pinnacle, Halliburton, Houston, Tx, US yessika.blunda@pinntech.com and Kit Chambers, Pinnacle, Halliburton, St Agnes, Cornwall,

More information

Random and coherent noise attenuation by empirical mode decomposition Maïza Bekara, PGS, and Mirko van der Baan, University of Leeds

Random and coherent noise attenuation by empirical mode decomposition Maïza Bekara, PGS, and Mirko van der Baan, University of Leeds Random and coherent noise attenuation by empirical mode decomposition Maïza Bekara, PGS, and Mirko van der Baan, University of Leeds SUMMARY This paper proposes a new filtering technique for random and

More information

Effect of Frequency and Migration Aperture on Seismic Diffraction Imaging

Effect of Frequency and Migration Aperture on Seismic Diffraction Imaging IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Effect of Frequency and Migration Aperture on Seismic Diffraction Imaging To cite this article: Y. Bashir et al 2016 IOP Conf. Ser.:

More information

SPNA 2.3. SEG/Houston 2005 Annual Meeting 2177

SPNA 2.3. SEG/Houston 2005 Annual Meeting 2177 SPNA 2.3 Source and receiver amplitude equalization using reciprocity Application to land seismic data Robbert van Vossen and Jeannot Trampert, Utrecht University, The Netherlands Andrew Curtis, Schlumberger

More information

Optimal Processing of Marine High-Resolution Seismic Reflection (Chirp) Data

Optimal Processing of Marine High-Resolution Seismic Reflection (Chirp) Data Marine Geophysical Researches 20: 13 20, 1998. 1998 Kluwer Academic Publishers. Printed in the Netherlands. 13 Optimal Processing of Marine High-Resolution Seismic Reflection (Chirp) Data R. Quinn 1,,J.M.Bull

More information

Deterministic marine deghosting: tutorial and recent advances

Deterministic marine deghosting: tutorial and recent advances Deterministic marine deghosting: tutorial and recent advances Mike J. Perz* and Hassan Masoomzadeh** *Arcis Seismic Solutions, A TGS Company; **TGS Summary (Arial 12pt bold or Calibri 12pt bold) Marine

More information

Adaptive f-xy Hankel matrix rank reduction filter to attenuate coherent noise Nirupama (Pam) Nagarajappa*, CGGVeritas

Adaptive f-xy Hankel matrix rank reduction filter to attenuate coherent noise Nirupama (Pam) Nagarajappa*, CGGVeritas Adaptive f-xy Hankel matrix rank reduction filter to attenuate coherent noise Nirupama (Pam) Nagarajappa*, CGGVeritas Summary The reliability of seismic attribute estimation depends on reliable signal.

More information

Guided Wave Travel Time Tomography for Bends

Guided Wave Travel Time Tomography for Bends 18 th World Conference on Non destructive Testing, 16-20 April 2012, Durban, South Africa Guided Wave Travel Time Tomography for Bends Arno VOLKER 1 and Tim van ZON 1 1 TNO, Stieltjes weg 1, 2600 AD, Delft,

More information

Noise Attenuation in Seismic Data Iterative Wavelet Packets vs Traditional Methods Lionel J. Woog, Igor Popovic, Anthony Vassiliou, GeoEnergy, Inc.

Noise Attenuation in Seismic Data Iterative Wavelet Packets vs Traditional Methods Lionel J. Woog, Igor Popovic, Anthony Vassiliou, GeoEnergy, Inc. Noise Attenuation in Seismic Data Iterative Wavelet Packets vs Traditional Methods Lionel J. Woog, Igor Popovic, Anthony Vassiliou, GeoEnergy, Inc. Summary In this document we expose the ideas and technologies

More information

ISSN Volume 28 Issue 6 June A New Spring for Geoscience. Special Topic

ISSN Volume 28 Issue 6 June A New Spring for Geoscience. Special Topic ISSN 0263-5046 Volume 28 Issue 6 June 2010 Special Topic Technical Articles Multi-azimuth processing and its applications to wide-azimuth OBC seismic data offshore Abu Dhabi Borehole image logs for turbidite

More information

Stanford Exploration Project, Report 103, April 27, 2000, pages

Stanford Exploration Project, Report 103, April 27, 2000, pages Stanford Exploration Project, Report 103, April 27, 2000, pages 205 231 204 Stanford Exploration Project, Report 103, April 27, 2000, pages 205 231 Ground roll and the Radial Trace Transform revisited

More information

Comparison of Q-estimation methods: an update

Comparison of Q-estimation methods: an update Q-estimation Comparison of Q-estimation methods: an update Peng Cheng and Gary F. Margrave ABSTRACT In this article, three methods of Q estimation are compared: a complex spectral ratio method, the centroid

More information

Investigating the low frequency content of seismic data with impedance Inversion

Investigating the low frequency content of seismic data with impedance Inversion Investigating the low frequency content of seismic data with impedance Inversion Heather J.E. Lloyd*, CREWES / University of Calgary, Calgary, Alberta hjelloyd@ucalgary.ca and Gary F. Margrave, CREWES

More information

Low wavenumber reflectors

Low wavenumber reflectors Low wavenumber reflectors Low wavenumber reflectors John C. Bancroft ABSTRACT A numerical modelling environment was created to accurately evaluate reflections from a D interface that has a smooth transition

More information

WS15-B02 4D Surface Wave Tomography Using Ambient Seismic Noise

WS15-B02 4D Surface Wave Tomography Using Ambient Seismic Noise WS1-B02 4D Surface Wave Tomography Using Ambient Seismic Noise F. Duret* (CGG) & E. Forgues (CGG) SUMMARY In 4D land seismic and especially for Permanent Reservoir Monitoring (PRM), changes of the near-surface

More information

Excuse Me Sir, Will That Be One Millisecond Or Two??

Excuse Me Sir, Will That Be One Millisecond Or Two?? Excuse Me Sir, Will That Be One Millisecond Or Two?? Norm Cooper - Mustagh Resources Ltd., Calgary, Canada Pete MacKenzie CGAS Exploration Inc., Columbus, Ohio We are still not sure what possessed Pete

More information

Th ELI1 07 How to Teach a Neural Network to Identify Seismic Interference

Th ELI1 07 How to Teach a Neural Network to Identify Seismic Interference Th ELI1 07 How to Teach a Neural Network to Identify Seismic Interference S. Rentsch* (Schlumberger), M.E. Holicki (formerly Schlumberger, now TU Delft), Y.I. Kamil (Schlumberger), J.O.A. Robertsson (ETH

More information

CDP noise attenuation using local linear models

CDP noise attenuation using local linear models CDP noise attenuation CDP noise attenuation using local linear models Todor I. Todorov and Gary F. Margrave ABSTRACT Seismic noise attenuation plays an important part in a seismic processing flow. Spatial

More information

Ground-roll attenuation based on SVD filtering Milton J. Porsani, CPGG, Michelngelo G. Silva, CPGG, Paulo E. M. Melo, CPGG and Bjorn Ursin, NTNU

Ground-roll attenuation based on SVD filtering Milton J. Porsani, CPGG, Michelngelo G. Silva, CPGG, Paulo E. M. Melo, CPGG and Bjorn Ursin, NTNU Ground-roll attenuation based on SVD filtering Milton J. Porsani, CPGG, Michelngelo G. Silva, CPGG, Paulo E. M. Melo, CPGG and Bjorn Ursin, NTNU SUMMARY We present a singular value decomposition (SVD)

More information

Application of complex-trace analysis to seismic data for random-noise suppression and temporal resolution improvement

Application of complex-trace analysis to seismic data for random-noise suppression and temporal resolution improvement GEOPHYSICS, VOL. 71, NO. 3 MAY-JUNE 2006 ; P. V79 V86, 9 FIGS. 10.1190/1.2196875 Application of complex-trace analysis to seismic data for random-noise suppression and temporal resolution improvement Hakan

More information

Geo-Source Marine Multi-Tip Sparker System

Geo-Source Marine Multi-Tip Sparker System Geo-Source 200-400 Marine Multi-Tip Sparker System Operational Features Powerful hi-resolution seismic source Primary pulse < 1ms, no ringing Proven operation in 1000 m water depth Penetration to 400 ms

More information

Variable depth streamer technology for enhanced seismic interpretation

Variable depth streamer technology for enhanced seismic interpretation Variable depth streamer technology for enhanced seismic interpretation Gregor Duval*, Steven Bowman, Roger Taylor, Yves Lafet, Adrian Smith and Henning Hoeber Content Introduction: why does the seismic

More information

THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY AND GEOPHYSICS GOPH 703

THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY AND GEOPHYSICS GOPH 703 THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY AND GEOPHYSICS GOPH 703 Arrays Submitted to: Dr. Edward Krebes Dr. Don Lawton Dr. Larry lines Presented by: Yajaira Herrera UCID: 989609

More information

ERTH3021 Note: Terminology of Seismic Records

ERTH3021 Note: Terminology of Seismic Records ERTH3021 Note: Terminology of Seismic Records This note is intended to assist in understanding of terminology used in practical exercises on 2D and 3D seismic acquisition geometries. A fundamental distinction

More information

SUMMARY INTRODUCTION GROUP VELOCITY

SUMMARY INTRODUCTION GROUP VELOCITY Surface-wave inversion for near-surface shear-wave velocity estimation at Coronation field Huub Douma (ION Geophysical/GXT Imaging solutions) and Matthew Haney (Boise State University) SUMMARY We study

More information