Physics Optics Homework Assignment #1. Problem 1-2 : Problem 1-3 : Chapter 1: #2, 3,10,12,13,15,16,17

Size: px
Start display at page:

Download "Physics Optics Homework Assignment #1. Problem 1-2 : Problem 1-3 : Chapter 1: #2, 3,10,12,13,15,16,17"

Transcription

1 Physis Optis Homework Assignment #1 Chapter 1: #, 3,10,1,13,15,16,17 Problem 1 - : ü The threshold sensitivity of the human eye is about 100 photons per seond. The eye is most sensitive at a wavelength of around 550 nm. For this wavelength, determine the threshold in Watts of power. Solution : Eah photon has an energy of h.the threshold power l is the rate at whih the photons arrive times the energy per photon. l = 550. * 10-9 ; H* m *L energyperphoton = h * l ; Print@"Threshold power for the eye = ", energyperphoton * 100, " Watts"D Threshold power for the eye = µ Watts Problem 1-3 : ü What is the energy, in eletron volts, of light photons at the ends of the visible spetrum? Solution : 1 eletron volt is 1.60 x Joule. Use the formula h l, and onvert to eletron volts. wavelengths = 8770., 380.<; H* nm, Hfrom Figure 1-1 in textl *L ev = 1.60 * ; H* JoulesêeV *L energyperphoton = h * ; wavelengths * 10-9 Print@"Photon energies = ", energyperphoton ê ev, " eletron Volts"D Photon energies = , < eletron Volts

2 Homework_Ch_01.nb Problem 1-10 : ü Solar radiation is inident at the earth's surfae at an average of 1000 W/m on a surfae normal to the rays. For a mean wavelength of 550 nm, alulate the number of photons falling on 1 m of the surfae eah seond. solarirradiane = 1000.; H* Wattsëm *L l = 550. * 10-9 ; H* m *L energyperphoton = h * l ; numberofphotons = solarirradiane energyperphoton *.01 ;H* per square entimeter *L 1 Print@"Number of photons per square m = ", numberofphotonsd Number of photons per square m =.7687 µ Problem 1-1 : ü Calulate the band of frequenies of eletromagneti radiation apable of produing a visual sensation in the normal eye? Solution: Use n = /l to onvert 380 nm and 670 nm to frequenies. wavelengths = 8770., 380.<; H* nm, Hfrom Figure 1-1 in textl *L frequenies = ; H* Hz *L -9 wavelengths * 10 Print@"Frequeny range of visible light = ", frequenies, " Hz"D Frequeny range of visible light = µ 10 14, µ = Hz Problem 1-13 : ü What is the length of a half-wave dipole antenna designed to broadast FM radio waves at 100 MHz? Solution: A half-wave dipole antenna has a length of one-half of the wavelength for whih it is designed. Find the wavelength of a 100 MHz eletromagneti wave and divide by two. frequeny = 100 * 10 6 ; H* Hz *L wavelength = frequeny ; Print@"wavelength = ", wavelength, " m"d Print@"Antenna length of a half-wave dipole = ", wavelength ê. " m"d wavelength =.998 m Antenna length of a half-wave dipole = m

3 Homework_Ch_01.nb 3 Problem 1-15 : ü A soprano's voie is sent by radio waves to a listener in a ity 90 km away. ü a) How long does it take for the soprano's voie to reah the listener? frequeny = 100 * 10 6 ; H* Hz - doesn't matter for this problem *L emtime = ; Print@"Time for radio wave = ", emtime * , " miroseonds"d Time for radio wave = 300. miroseonds ü b) In the same time interval, how far from the soprano has the sound wave in the auditorium traveled? Take the speed of sound to be 340 m/s. v = 340.; H* mês *L sounddistane = v * emtime; Print@"Distane travelled by sound wave = ", sounddistane, " m"d Distane travelled by sound wave = m Problem 1-16 : ü A small, monohromati light soure, radiating at 500 nm, is rated at 500 W. Solutions: a) Radiant Intensity = b) Radiant Exitane = ) Irradiane = Solid Angle Soure Area Area at Sreen d) Radiant Flux = (Irradiane) (Surfae Area of Hole) ü a) Radiant Intensity: If the soure radiates uniformly in all diretions, determine its radiant intensity. l = 5.00 * 10-9 ; H* not needed for this problem, exept to show it is visible light *L radiant = 500.; H* Watts *L radiantintensity = radiant ê H4 pl; H* Watts per sr *L Print@"Radiant Intensity = ", radiantintensity, " Wattsêsr"D Radiant Intensity = Wattsêsr ü b) Radiant Exitane: If the surfae area of the soure is 5 m, determine the radiant exitane. emittersurfaearea = 5.0 * 10-4 ; H* square meters *L radiantexitane = radiant ê emittersurfaearea; PrintA"Radiant Exitane = ", radiantexitane, " Wattsêm "E Radiant Exitane = 1. µ 10 6 Wattsêm

4 4 Homework_Ch_01.nb ü ) Irradiane: What is the irradiane on a sreen situated m from the soure, with its surfae normal to the radiant flux? r =.; H* meters *L Irradiane = radiant ë I4 p r M; PrintA"Irradiane = ", Irradiane, " Wattsêm "E Irradiane = Wattsêm ü d) Radiant Flux: If the reeiving sreen ontains a hole with a diameter of 5 m, how muh radiant flux gets through? holearea = p.05 radiantflux = Irradiane * holearea; Print@"Radiant Flux through the hole = ", radiantflux, " Watts"D Radiant Flux through the hole = Watts Problem 1-17 : ü A 1.5 mw helium-neon laser delivers a spot of light 5 mm in diameter aross a room 15 m wide. The beam radiates from a small irular area of diamter 0.5 mm at the output mirror of the laser. Assume that the beam irradiane is onstant aross the diverging beam. Solutions: a) Beam Divergene Angle = Effetive radius = b) Solid Angle = ) Irradiane = d) Radiane = Change in Beam Diameter Distane to Wall Ar Length = Radius Final Beam Diameter = radius if light had ome from a point, spreading to a 5 mm diameter spot. Beam Divergene Angle Final Beam Area Effetive Radiuss Reeived Beam Area HSolid AngleL*HBeam AreaL ü a) Beam Divergene: What is the beam divergene angle of this laser? In[36]:= divergeneangle =.0045 ê 15; H* radians *L Print@"Divergene angle = ", divergeneangle * 1000, " milliradians"d Print@"Divergene angle = ", divergeneangle * 180 ê p, " "D Divergene angle = 0.3 milliradians Divergene angle = ü b) Solid Angle: Into what solid angle is the laser sending its beam? In[0]:= spotarea = p.005 ; H* square meters *L solidangle = spotarea 15 ; H* AëR, in steradians *L Print@"Solid Angle of Beam = ", solidangle, " steradians"d Solid Angle of Beam = µ 10-8 steradians

5 Homework_Ch_01.nb 5 ü ) Irradiane: What is the irradiane at the spot on the wall 15 m from the laser? In[3]:= radiant = 1.5 * 10-3 ; H* Watts *L Irradiane = radiant ê spotarea; PrintA"Irradiane = ", Irradiane, " Wattsêm "E Irradiane = Wattsêm ü d) Radiane: What is the radiane of the laser? In[38]:= exitarea = p.0005 ; H* square meters *L radiantintensity = radiant ê solidangle; radiane = radiantintensity ê exitarea; Print@"Radiant Intensity = ", radiantintensity, " Wattsêsr"D PrintA"Radiane = ", radiane, " Wattsêsr-m "E Radiant Intensity = Wattsêsr Radiane = µ Wattsêsr-m

Figure 4.11: Double conversion FM receiver

Figure 4.11: Double conversion FM receiver 74 4.8 FM Reeivers FM reeivers, like their AM ounterparts, are superheterodyne reeivers. Figure 4.11 shows a simplified blok diagram for a double onversion superheterodyne FM reeiver Figure 4.11: Double

More information

Assignment-III and Its Solution

Assignment-III and Its Solution Assignment-III and Its Solution 1. For a 4.0 GHz downlink link, if satellite TWTA power output is 10 dbw, on axis antenna gain is 34 db and Feeder loss is 1 db then the satellite EIRP on earth at 3 db

More information

RF Link Budget Calculator Manual

RF Link Budget Calculator Manual RF Link Budget Calulator Manual Author Ivo van Ling for www.vanling.net Software Release RF Link Distane Calulator, Version 1.00, Dated 4 January 2010 Manual Version 1.00 Date 19-01-2010 Page: 1(8) Contents

More information

PHYS 241 FINAL EXAM December 11, 2006

PHYS 241 FINAL EXAM December 11, 2006 1. (5 points) Light of wavelength λ is normally incident on a diffraction grating, G. On the screen S, the central line is at P and the first order line is at Q, as shown. The distance between adjacent

More information

REET Energy Conversion. 1 Electric Power System. Electric Power Systems

REET Energy Conversion. 1 Electric Power System. Electric Power Systems REET 2020 Energy Conversion 1 Eletri Power System Eletri Power Systems An Eletri Power System is a omplex network of eletrial omponents used to reliably generate, transmit and distribute eletri energy

More information

Homework: Please number questions as numbered on assignment, and turn in solution pages in order.

Homework: Please number questions as numbered on assignment, and turn in solution pages in order. ECE 5325/6325: Wireless Communiation Systems Leture Notes, Spring 2010 Leture 6 Today: (1) Refletion (2) Two-ray model (3) Cellular Large Sale Path Loss Models Reading for today s leture: 4.5, 4.6, 4.10.

More information

Introduction. Laser Diodes. Chapter 12 Laser Communications

Introduction. Laser Diodes. Chapter 12 Laser Communications Chapter 1 Laser Communications A key technology to enabling small spacecraft missions is a lightweight means of communication. Laser based communications provides many benefits that make it attractive

More information

r v = Q enclosed r r E d r l = $ d% B dt r B d r i through dt Where does the word "laser" come from?

r v = Q enclosed r r E d r l = $ d% B dt r B d r i through dt Where does the word laser come from? Where does the word "laser" ome from? A: The name of the physiist who invented it. B: The name of the dog of the physiist who invented it C: "Light Amplifiation by Stimulated mission of Radiation" D: It's

More information

ELEC 350 Communications Theory and Systems: I. Analog Signal Transmission and Reception. ELEC 350 Fall

ELEC 350 Communications Theory and Systems: I. Analog Signal Transmission and Reception. ELEC 350 Fall ELEC 350 Communiations Theory and Systems: I Analog Signal Transmission and Reeption ELEC 350 Fall 2007 1 ELEC 350 Fall 2007 2 Analog Modulation A large number o signals are analog speeh musi video These

More information

Co-Siting Criteria for Wind Turbine Generators and Transmitter Antennas

Co-Siting Criteria for Wind Turbine Generators and Transmitter Antennas CONFTELE '99 ISBN 972-98115-0-4 Pro. CONFTELE 1999 - II Conf. de Teleomuniações, Sesimbra, Portugal, 466-470, Abr 1999 1 Co-Siting Criteria for Wind Turbine Generators and Transmitter Antennas Carlos Salema,

More information

Chapter 22. Electromagnetic Waves

Chapter 22. Electromagnetic Waves Ch-22-1 Chapter 22 Electromagnetic Waves Questions 1. The electric field in an EM wave traveling north oscillates in an east-west plane. Describe the direction of the magnetic field vector in this wave.

More information

07-Lighting Concepts. EE570 Energy Utilization & Conservation Professor Henry Louie

07-Lighting Concepts. EE570 Energy Utilization & Conservation Professor Henry Louie 07-Lighting Concepts EE570 Energy Utilization & Conservation Professor Henry Louie 1 Overview Light Luminosity Function Lumens Candela Illuminance Luminance Design Motivation Lighting comprises approximately

More information

Energy in Electromagnetic Waves

Energy in Electromagnetic Waves OpenStax-CNX module: m42446 1 Energy in Electromagnetic Waves * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Explain how the energy

More information

Horn Antenna Generating Electromagnetic Field with Orbital Angular Momentum

Horn Antenna Generating Electromagnetic Field with Orbital Angular Momentum Progress In Eletromagnetis Researh M, Vol. 60, 57 65, 2017 Horn Antenna Generating Eletromagneti Field with Orbital Angular Momentum Min Huang *, Xianzheng Zong, and Zaiping Nie Abstrat A novel method

More information

Preview of Period 2: Electromagnetic Waves Radiant Energy I

Preview of Period 2: Electromagnetic Waves Radiant Energy I Preview of Period 2: Electromagnetic Waves Radiant Energy I 2.1 Energy Transmitted by Waves How can waves transmit energy? 2.2 Refraction of Radiant Energy What happens when a light beam travels through

More information

Transmission Lines: Coaxial Cables and Waveguides

Transmission Lines: Coaxial Cables and Waveguides Transmission Lines: Coaxial Cables and Waveguides Jason ClIItis 1 April 8, 00 1. Introdution This pap er investigates the wave veloities in oaxial ables and retangular waveguides. Coaxial ables and waveguides

More information

PLANE MIRRORS. The simplest mirror is a plane mirror a flat, reflective surface, often consisting of a metal film covered in glass. 4/2/2018.

PLANE MIRRORS. The simplest mirror is a plane mirror a flat, reflective surface, often consisting of a metal film covered in glass. 4/2/2018. 4/2/208 UNIT 6 Geometri and physial optis AP PHYSICS 2 PLANE MIRRORS CHAPTER 22 Mirrors and lenses Plane mirrors The simplest mirror is a plane mirror a lat, reletive surae, oten onsisting o a metal ilm

More information

Complete optical isolation created by indirect interband photonic transitions

Complete optical isolation created by indirect interband photonic transitions Corretion notie Complete optial isolation reated by indiret interband photoni transitions Zongfu Yu and Shanhui Fan Nature Photonis 4, 9 94 (009). In the version of this Supplementary Information originally

More information

EE (082) Chapter IV: Angle Modulation Lecture 21 Dr. Wajih Abu-Al-Saud

EE (082) Chapter IV: Angle Modulation Lecture 21 Dr. Wajih Abu-Al-Saud EE 70- (08) Chapter IV: Angle Modulation Leture Dr. Wajih Abu-Al-Saud Effet of Non Linearity on AM and FM signals Sometimes, the modulated signal after transmission gets distorted due to non linearities

More information

A Fundamental Limit on Antenna Gain for Electrically Small Antennas

A Fundamental Limit on Antenna Gain for Electrically Small Antennas I 8 Sarnoff Symposium A Fundamental Limit on Antenna ain for letrially Small Antennas Andrew J. Compston, James D. Fluhler, and ans. Shantz Abstrat A fundamental limit on an antenna s gain is derived and

More information

Application of TEM horn antenna in radiating NEMP simulator

Application of TEM horn antenna in radiating NEMP simulator Journal of Physis: Conferene Series Appliation of TEM horn antenna in radiating NEMP simulator To ite this artile: Yun Wang et al 013 J. Phys.: Conf. Ser. 418 010 View the artile online for updates and

More information

AN OPTICAL LINK FOR CATV. R. T. Daly and M. G. Cohen ABSTRACT

AN OPTICAL LINK FOR CATV. R. T. Daly and M. G. Cohen ABSTRACT 401 AN OPTICAL LINK FOR CATV by R. T. Daly and M. G. Cohen ABSTRACT This paper studies the technical feasibility of using a free space cascade of optical (laser) links for CATV service. By employing available

More information

08-2 EE 4770 Lecture Transparency. Formatted 16:41, 12 February 1998 from lsli Steradian. Example

08-2 EE 4770 Lecture Transparency. Formatted 16:41, 12 February 1998 from lsli Steradian. Example 08-1 08-1 Light Definition: wave or particle of electromagnetic energy. Consider photon character of electromagnetic energy. Photon energy, E = ch λ, where c =.9979458 10 9 m s, h =6.660755 10 34 Js, and

More information

Fiber Optic Communications

Fiber Optic Communications Fiber Optic Communications ( Chapter 2: Optics Review ) presented by Prof. Kwang-Chun Ho 1 Section 2.4: Numerical Aperture Consider an optical receiver: where the diameter of photodetector surface area

More information

Helicon Resonator based Strong Magnetic Field Sensor

Helicon Resonator based Strong Magnetic Field Sensor 1.48/v148-11-9- MEASUREMENT SCIENCE REVIEW, Volume 11, No., 11 Helion Resonator based Strong Magneti Field Sensor. aurinavičius Department of Eletrial Engineering Vilnius Gediminas Tehnial University,

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

EKT358 Communication Systems

EKT358 Communication Systems EKT358 Communiation Systems Chapter 2 Amplitude Modulation Topis Covered in Chapter 2 2-1: AM Conepts 2-2: Modulation Index and Perentage of Modulation 2-3: Sidebands and the Frequeny Domain 2-4: Single-Sideband

More information

ECE 3600 Direct Current (DC) Motors A Stolp 12/5/15

ECE 3600 Direct Current (DC) Motors A Stolp 12/5/15 rmature he rotating part (rotor) Field (Exitation) ECE 3600 Diret Current (DC) Motors Stolp 1/5/15 Provided by the stationary part of the motor (Stator) Permanent Magnet Winding Separately exited Parallel

More information

LECTURE 20 ELECTROMAGNETIC WAVES. Instructor: Kazumi Tolich

LECTURE 20 ELECTROMAGNETIC WAVES. Instructor: Kazumi Tolich LECTURE 20 ELECTROMAGNETIC WAVES Instructor: Kazumi Tolich Lecture 20 2 25.6 The photon model of electromagnetic waves 25.7 The electromagnetic spectrum Radio waves and microwaves Infrared, visible light,

More information

DPSS 266nm Deep UV Laser Module

DPSS 266nm Deep UV Laser Module DPSS 266nm Deep UV Laser Module Specifications: SDL-266-XXXT (nm) 266nm Ave Output Power 1-5mW 10~200mW Peak power (W) ~10 ~450 Average power (mw) Average power (mw) = Single pulse energy (μj) * Rep. rate

More information

Frequency, Time Period, and Wavelength

Frequency, Time Period, and Wavelength Frequency, Time Period, and Wavelength Frequency of an AC signal is a simple matter of how many cycles the signal goes through in a second. (Cycles Per Second, or Hertz). An AC signal will start from zero

More information

Chapter 4 The RF Link

Chapter 4 The RF Link Chapter 4 The RF Link The fundamental elements of the communications satellite Radio Frequency (RF) or free space link are introduced. Basic transmission parameters, such as Antenna gain, Beamwidth, Free-space

More information

THE CANDELA - UNIT OF LUMINOUS INTENSITY

THE CANDELA - UNIT OF LUMINOUS INTENSITY THE CANDELA - UNIT OF LUMINOUS INTENSITY Light is that part of the spectrum of electromagnetic radiation that the human eye can see. It lies between about 400 and 700 nanometers. All the units for measuring

More information

Electromagnetic (Light) Waves Electromagnetic Waves

Electromagnetic (Light) Waves Electromagnetic Waves Physics R Date: Review Questions 1. An ocean wave traveling at 3 m/s has a wavelength of 1.6 meters. a. What is the frequency of the wave? b. What is the period of the wave? Electromagnetic (Light) Waves

More information

RVRUSA - DATA DE REFERENCIA PARA INGENIEROS

RVRUSA - DATA DE REFERENCIA PARA INGENIEROS Useful formulae Electrical formulae Electrical power in KW: DC power [KW]: YROW DPSHUH YROW DPSHUH AC power (single phase) [KW]: AC power (three-phase) [KW]: where: cos( j ) YROW DPSHUH 73. cos( j) Volt:

More information

Effect of orientation and size of silicon single crystal to Electro-Ultrasonic Spectroscopy

Effect of orientation and size of silicon single crystal to Electro-Ultrasonic Spectroscopy Effet of orientation and size of silion single rystal to Eletro-Ultrasoni Spetrosopy Mingu KANG 1, Byeong-Eog JUN 1, Young H. KIM 1 1 Korea Siene Aademy of KAIST, Korea Phone: +8 51 606 19, Fax: +8 51

More information

,, Last First Initial UNIVERSITY OF CALIFORNIA AT BERKELEY DEPARTMENT OF PHYSICS PHYSICS 7C FALL SEMESTER 2008 LEROY T. KERTH

,, Last First Initial UNIVERSITY OF CALIFORNIA AT BERKELEY DEPARTMENT OF PHYSICS PHYSICS 7C FALL SEMESTER 2008 LEROY T. KERTH 1 Solutions Name (please print),, Last First Initial Student Number UNIVERSITY OF CALIFORNIA AT BERKELEY DEPARTMENT OF PHYSICS PHYSICS 7C FALL SEMESTER 2008 LEROY T. KERTH First Midterm Examination October

More information

Lighting Terminologies Introduction

Lighting Terminologies Introduction Lighting Terminologies Introduction A basic understanding of lighting fundamentals is essential for specifiers and decision makers who make decisions about lighting design, installation and upgrades. Radiometry

More information

Physics review Practice problems

Physics review Practice problems Physics review Practice problems 1. A double slit interference pattern is observed on a screen 2.0 m behind 2 slits spaced 0.5 mm apart. From the center of one particular fringe to 9 th bright fringe is

More information

EE140 Introduction to Communication Systems Lecture 7

EE140 Introduction to Communication Systems Lecture 7 3/4/08 EE40 Introdution to Communiation Systems Leture 7 Instrutor: Prof. Xiliang Luo ShanghaiTeh University, Spring 08 Arhiteture of a (Digital) Communiation System Transmitter Soure A/D onverter Soure

More information

Detecting Moving Targets in SAR Via Keystoning and Phase Interferometry

Detecting Moving Targets in SAR Via Keystoning and Phase Interferometry 5 The MITRE Corporation. All rights reserved. Approved for Publi Release; Distribution Unlimited. Deteting Moving Targets in SAR Via Keystoning and Phase Interferometry Dr. P. K. Sanyal, Dr. D. M. Zasada,

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

WiFi Lab Division C Team #

WiFi Lab Division C Team # Team Name: Team Number: Student Names: & Directions: You will be given up to 30 minutes to complete the following written test on topics related to Radio Antennas, as described in the official rules. Please

More information

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1 TSBB09 Image Sensors 2018-HT2 Image Formation Part 1 Basic physics Electromagnetic radiation consists of electromagnetic waves With energy That propagate through space The waves consist of transversal

More information

Movement Detection Using a Modified FMCW Waveform and GNU Radio

Movement Detection Using a Modified FMCW Waveform and GNU Radio Movement Detetion Using a Modified FMCW Waveform and GNU Radio Ali Bazzi, Majd Ghareeb, Mohammad Raad and Samih Abdul-Nabi Shool of Engineering, Computer and Communiation Department Lebanese International

More information

Physics 2306 Fall 1999 Final December 15, 1999

Physics 2306 Fall 1999 Final December 15, 1999 Physics 2306 Fall 1999 Final December 15, 1999 Name: Student Number #: 1. Write your name and student number on this page. 2. There are 20 problems worth 5 points each. Partial credit may be given if work

More information

RADIOMETRIC TRACKING. Space Navigation

RADIOMETRIC TRACKING. Space Navigation RADIOMETRIC TRACKING Space Navigation Space Navigation Elements SC orbit determination Knowledge and prediction of SC position & velocity SC flight path control Firing the attitude control thrusters to

More information

Simulation of Fraunhofer Diffraction for Plane Waves using Different Apertures

Simulation of Fraunhofer Diffraction for Plane Waves using Different Apertures ISSN: 0067-904 GIF: 0.851 Simulation of Fraunhofer Diffration for Plane Waves using Different Apertures Uday. E. Jallod * Department of Astronomy and Spae, College of Siene, University of Baghdad, Baghdad,Iraq.

More information

Diode Collimator Assembly Datasheet

Diode Collimator Assembly Datasheet Diode Collimator Assembly Datasheet Diode Collimator Assembly Global Laser s DCA (Diode Collimator Assembly) provides a low cost high quality OEM solution to manufactures looking for a compact assembly

More information

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature: Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: PID: Signature: CLOSED BOOK. TWO 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

MULTI-FREQUENCY EDDY CURRENT TESTING OF FERROMAGNETIC WELDS

MULTI-FREQUENCY EDDY CURRENT TESTING OF FERROMAGNETIC WELDS U-FQUCY DDY CU SG OF FOGC WDS ODUCO C. W. Gilstad,. F. Dersh and. Deale David aylor esearh Center etals and Welding Division nnapolis D, 2142-567 Single frequeny phase analysis eddy urrent tehniques have

More information

Electron Beam Diagnosis Using K-edge Absorp8on of Laser-Compton Photons

Electron Beam Diagnosis Using K-edge Absorp8on of Laser-Compton Photons LLNL-PRES-740689 Electron Beam Diagnosis Using K-edge Absorp8on of Laser-Compton Photons Y. Hwang 1, D. J. Gibson 2, R. A. Marsh 2, T. Tajima 1, C. P. J. Barty 1 1 University of California, Irvine 2 Lawrence

More information

80 Physics Essentials Workbook Stage 2 Physics

80 Physics Essentials Workbook Stage 2 Physics 80 Physics Essentials Workbook Stage 2 Physics the thickness of the tissue: Obviously, the thicker the tissue through which the X-rays have to pass the more they will be absorbed from the beam passing

More information

Chapter 3 Solution to Problems

Chapter 3 Solution to Problems Chapter 3 Solution to Problems 1. The telemetry system of a geostationary communications satellite samples 100 sensors on the spacecraft in sequence. Each sample is transmitted to earth as an eight-bit

More information

Physics 1C. Lecture 24A. Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves. Average Quiz score = 6.8 out of 10.

Physics 1C. Lecture 24A. Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves. Average Quiz score = 6.8 out of 10. Physics 1C Lecture 24A Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves Average Quiz score = 6.8 out of 10 This is a B- Diffraction of X-rays by Crystals! X-rays are electromagnetic radiation

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Count-loss mechanism of self-quenching streamer (SQS) tubes

Count-loss mechanism of self-quenching streamer (SQS) tubes Nulear Instruments and Methods in Physis Researh A 342 (1994) 538-543 North-Holland NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Setion A Count-loss mehanism of self-quenhing streamer (SQS) tubes

More information

LTE. Tester of laser range finders. Integrator Target slider. Transmitter channel. Receiver channel. Target slider Attenuator 2

LTE. Tester of laser range finders. Integrator Target slider. Transmitter channel. Receiver channel. Target slider Attenuator 2 a) b) External Attenuators Transmitter LRF Receiver Transmitter channel Receiver channel Integrator Target slider Target slider Attenuator 2 Attenuator 1 Detector Light source Pulse gene rator Fiber attenuator

More information

Purdue University PHYS221 EXAM II Solutions are marked with a *) 10/31/02

Purdue University PHYS221 EXAM II Solutions are marked with a *) 10/31/02 Purdue University PHYS221 EXAM II Solutions are marked with a *) 10/31/02 (All questions are worth 5 points unless otherwise stated. There is no penalty for guessing. Attempt all questions to maximize

More information

Laser Beam Analysis Using Image Processing

Laser Beam Analysis Using Image Processing Journal of Computer Science 2 (): 09-3, 2006 ISSN 549-3636 Science Publications, 2006 Laser Beam Analysis Using Image Processing Yas A. Alsultanny Computer Science Department, Amman Arab University for

More information

SINGLE FREQUENCY NETWORKS IN DIGITAL RADIO Anders Mattsson and John Kean Harris Corp and NPR Labs Mason OH Washington DC

SINGLE FREQUENCY NETWORKS IN DIGITAL RADIO Anders Mattsson and John Kean Harris Corp and NPR Labs Mason OH Washington DC SINGLE FREQUENCY NETWORKS IN DIGITAL RADIO Anders Mattsson and John Kean Harris Corp and NPR Labs Mason OH Washington DC ABSTRACT Not too surprisingly, a Digital Radio Single Frequeny Network (SFN) shares

More information

Notes on Experiment #11. You should be able to finish this experiment very quickly.

Notes on Experiment #11. You should be able to finish this experiment very quickly. Notes on Experiment #11 You should be able to finish this experiment very quikly. This week we will do experiment 11 almost A I. Your data will be the graphial images on the display of the sope. o, BRING

More information

Introduction to wireless systems

Introduction to wireless systems Introduction to wireless systems Wireless Systems a.a. 2014/2015 Un. of Rome La Sapienza Chiara Petrioli Department of Computer Science University of Rome Sapienza Italy Background- Wireless Systems What

More information

RADIOMETRIC TRACKING. Space Navigation

RADIOMETRIC TRACKING. Space Navigation RADIOMETRIC TRACKING Space Navigation October 24, 2016 D. Kanipe Space Navigation Elements SC orbit determination Knowledge and prediction of SC position & velocity SC flight path control Firing the attitude

More information

Optics Laboratory Spring Semester 2017 University of Portland

Optics Laboratory Spring Semester 2017 University of Portland Optics Laboratory Spring Semester 2017 University of Portland Laser Safety Warning: The HeNe laser can cause permanent damage to your vision. Never look directly into the laser tube or at a reflection

More information

Antennas and Propagation

Antennas and Propagation Mobile Networks Module D-1 Antennas and Propagation 1. Introduction 2. Propagation modes 3. Line-of-sight transmission 4. Fading Slides adapted from Stallings, Wireless Communications & Networks, Second

More information

Wireless Power Transmission of Solar Energy from Space to Earth Using Microwaves

Wireless Power Transmission of Solar Energy from Space to Earth Using Microwaves Wireless Power Transmission of Solar Energy from Space to Earth Using Microwaves Raghu Amgothu Contract Lecturer in ECE Dept., Government polytechnic Warangal Abstract- In the previous stages, we are studying

More information

Review. Tuesday, 10/10/2006 Physics 158 Peter Beyersdorf. Document info

Review. Tuesday, 10/10/2006 Physics 158 Peter Beyersdorf. Document info Review Tuesday, 10/10/2006 Physics 158 Peter Beyersdorf Document info sn. 1 Class Outline Class Status Report Midterm Review Practice with ray diagrams sn. 2 Class Status Report You ve demonstrated the

More information

Laser Telemetric System (Metrology)

Laser Telemetric System (Metrology) Laser Telemetric System (Metrology) Laser telemetric system is a non-contact gauge that measures with a collimated laser beam (Refer Fig. 10.26). It measure at the rate of 150 scans per second. It basically

More information

Period 3 Solutions: Electromagnetic Waves Radiant Energy II

Period 3 Solutions: Electromagnetic Waves Radiant Energy II Period 3 Solutions: Electromagnetic Waves Radiant Energy II 3.1 Applications of the Quantum Model of Radiant Energy 1) Photon Absorption and Emission 12/29/04 The diagrams below illustrate an atomic nucleus

More information

Exam 3--PHYS 102--S10

Exam 3--PHYS 102--S10 ame: Exam 3--PHYS 02--S0 Multiple Choice Identify the choice that best completes the statement or answers the question.. At an intersection of hospital hallways, a convex mirror is mounted high on a wall

More information

DSP First Lab 05: FM Synthesis for Musical Instruments - Bells and Clarinets

DSP First Lab 05: FM Synthesis for Musical Instruments - Bells and Clarinets DSP First Lab 05: FM Synthesis for Musial Instruments - Bells and Clarinets Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up setions of this lab assignment and go over all exerises

More information

Tuesday, Nov. 9 Chapter 12: Wave Optics

Tuesday, Nov. 9 Chapter 12: Wave Optics Tuesday, Nov. 9 Chapter 12: Wave Optics We are here Geometric optics compared to wave optics Phase Interference Coherence Huygens principle & diffraction Slits and gratings Diffraction patterns & spectra

More information

Instruction manual and data sheet ipca h

Instruction manual and data sheet ipca h 1/15 instruction manual ipca-21-05-1000-800-h Instruction manual and data sheet ipca-21-05-1000-800-h Broad area interdigital photoconductive THz antenna with microlens array and hyperhemispherical silicon

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Radiometry vs. Photometry. Radiometric and photometric units

Radiometry vs. Photometry. Radiometric and photometric units Radiometry vs. Photometry Radiometry -- the measurement and specification of the power (energy) of a source of electromagnetic radiation.! total energy or numbers of quanta Photometry -- the measurement

More information

PROBING OF THE ARTIFICIAL HOLE IN THE IONOSPHERE WITH THE HF SKYWAVE RADAR

PROBING OF THE ARTIFICIAL HOLE IN THE IONOSPHERE WITH THE HF SKYWAVE RADAR PROBING OF THE ARTIFICIAL HOLE IN THE IONOSPHERE WITH THE HF SKYWAVE RADAR JIAO Pei-nan MA Tie-han XU Guo-liang LI Zong-qiang Zhang Xin-sheng XU Fei (China Researh Institute of Radiowave Propagation, Xinxiang,

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

GLOSSARY OF TERMS. Terminology Used for Ultraviolet (UV) Curing Process Design and Measurement

GLOSSARY OF TERMS. Terminology Used for Ultraviolet (UV) Curing Process Design and Measurement GLOSSARY OF TERMS Terminology Used for Ultraviolet (UV) Curing Process Design and Measurement This glossary of terms has been assembled in order to provide users, formulators, suppliers and researchers

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 10: Photodetectors Original: Professor McLeod SUMMARY: In this lab, you will characterize the fundamental low-frequency characteristics of photodiodes and the circuits

More information

Characterization of the dielectric properties of various fiberglass/epoxy composite layups

Characterization of the dielectric properties of various fiberglass/epoxy composite layups Charaterization of the dieletri properties of various fiberglass/epoxy omposite layups Marotte, Laurissa (University of Kansas); Arnold, Emily Center for Remote Sensing of Ie Sheets, University of Kansas

More information

ANALOG COMMUNICATION (8)

ANALOG COMMUNICATION (8) /5/3 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING ANALOG COMMUNICATION (8) Fall 3 Original slides by Yrd. Doç. Dr. Burak Kellei Modified by Yrd. Doç. Dr. Didem Kivan Tureli OUTLINE Random Variables

More information

Some solutions to the 1st set of problems. Question 1 Question 2 (solved and discussed in class) Question 3 (solved and discussed in class)

Some solutions to the 1st set of problems. Question 1 Question 2 (solved and discussed in class) Question 3 (solved and discussed in class) Some solutions to the 1st set of problems Question 1 Question 2 (solved and discussed in class) Question 3 (solved and discussed in class) Question 4.1 Question 4.2 Microgeneration Question 1 Considering

More information

SECTION 1 QUESTIONS NKB.CO.IN

SECTION 1 QUESTIONS NKB.CO.IN OPTICS SECTION 1 QUESTIONS 1. A diverging beam of light falls on a plane mirror. The image formed by the mirror is a) real, erect b) virtual, inverted c) virtual, erect d) real, inverted. In a pond water

More information

E) all of the above E) 1.9 T

E) all of the above E) 1.9 T 1. The figure shows a uniform magnetic field that is normal to the plane of a conducting loop, which has a resistance R. Which one of the following changes will cause an induced current to flow through

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

Session2 Antennas and Propagation

Session2 Antennas and Propagation Wireless Communication Presented by Dr. Mahmoud Daneshvar Session2 Antennas and Propagation 1. Introduction Types of Anttenas Free space Propagation 2. Propagation modes 3. Transmission Problems 4. Fading

More information

Reliability measure for sound source localization

Reliability measure for sound source localization Reliability measure for sound soure loalization Hyejeong Jeon 1a), Seungil im 1, Lag-Yong im 1, Hee-Youn Lee 1, and Hyunsoo Yoon 2 1 Information Tehnology Laboratory, LG Eletronis Institute of Tehnology,

More information

1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1)

1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) Exam 3 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) 2) Electromagnetic

More information

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE NON-AMPLIFIED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified Photodetector. This user s guide will help answer any questions you may have regarding the safe use and optimal operation

More information

5. Quantifying the Laser Radiation Hazard. 5.1 Introduction

5. Quantifying the Laser Radiation Hazard. 5.1 Introduction 5. Quantifying the Laser Radiation Hazard 5.1 Introduction In many laser display situations there is the potential for exposure to laser radiation. Although there is a great deal of guidance on how to

More information

Chapter 3 Amplitude Modulation. Wireless Information Transmission System Lab. Institute of Communications Engineering National Sun Yat-sen University

Chapter 3 Amplitude Modulation. Wireless Information Transmission System Lab. Institute of Communications Engineering National Sun Yat-sen University Chapter 3 Amplitude Modulation Wireless Information Transmission System Lab. Institute of Communiations Engineering National Sun Yat-sen University Outline 3.1 Introdution 3.2 Amplitude Modulation 3.3

More information

Generating 4-Level and Multitone FSK Using a Quadrature Modulator

Generating 4-Level and Multitone FSK Using a Quadrature Modulator Generating 4-Level and Multitone FSK Using a Quadrature Modulator Page 1 of 9 Generating 4-Level and Multitone FSK Using a Quadrature Modulator by In a reent olumn (lik on the Arhives botton at the top

More information

UNIT Derive the fundamental equation for free space propagation?

UNIT Derive the fundamental equation for free space propagation? UNIT 8 1. Derive the fundamental equation for free space propagation? Fundamental Equation for Free Space Propagation Consider the transmitter power (P t ) radiated uniformly in all the directions (isotropic),

More information

16 - INTERSTELLAR COMUNICATION

16 - INTERSTELLAR COMUNICATION NSCI 314 LIFE IN THE COSMOS 16 - INTERSTELLAR COMUNICATION Dr. Karen Kolehmainen Department of Physics, CSUSB http://physics.csusb.edu/~karen/ HOW TO SEARCH FOR LIFE IN OTHER SOLAR SYSTEMS: TRAVEL OR COMMUNICATION?

More information

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13 Chapter 17: Wave Optics Key Terms Wave model Ray model Diffraction Refraction Fringe spacing Diffraction grating Thin-film interference What is Light? Light is the chameleon of the physical world. Under

More information

Table of Content. Fiber-Coupled LED s Light-Guide-Coupled LED s LED Collimator Sources Low-cost LED Spot Lights...

Table of Content. Fiber-Coupled LED s Light-Guide-Coupled LED s LED Collimator Sources Low-cost LED Spot Lights... LIGHT SOURCES Table of Content Fiber-Coupled s... 40 -Guide-Coupled s... 41 Collimator... 42 Low-cost Spot s... 43 Precision Spot s... 45 Spectrum Synthesizing ( Cubic S )... 46 Spectrometers 39 sources

More information

6 Radio and RF. 6.1 Introduction. Wavelength (m) Frequency (Hz) Unit 6: RF and Antennas 1. Radio waves. X-rays. Microwaves. Light

6 Radio and RF. 6.1 Introduction. Wavelength (m) Frequency (Hz) Unit 6: RF and Antennas 1. Radio waves. X-rays. Microwaves. Light 6 Radio and RF Ref: http://www.asecuritysite.com/wireless/wireless06 6.1 Introduction The electromagnetic (EM) spectrum contains a wide range of electromagnetic waves, from radio waves up to X-rays (as

More information

RADIATION BUDGET INSTRUMENT (RBI): FINAL DESIGN AND INITIAL EDU TEST RESULTS

RADIATION BUDGET INSTRUMENT (RBI): FINAL DESIGN AND INITIAL EDU TEST RESULTS Place image here (10 x 3.5 ) RADIATION BUDGET INSTRUMENT (RBI): FINAL DESIGN AND INITIAL EDU TEST RESULTS RONALD GLUMB, JAY OVERBECK, CHRISTOPHER LIETZKE, JOHN FORSYTHE, ALAN BELL, AND JASON MILLER NON-EXPORT

More information