Electromagnetic (Light) Waves Electromagnetic Waves

Size: px
Start display at page:

Download "Electromagnetic (Light) Waves Electromagnetic Waves"

Transcription

1 Physics R Date: Review Questions 1. An ocean wave traveling at 3 m/s has a wavelength of 1.6 meters. a. What is the frequency of the wave? b. What is the period of the wave? Electromagnetic (Light) Waves Electromagnetic Waves Until the 20 th century, reality was everything humans could touch, smell, see, or hear. Since the initial publication of the charted electromagnetic spectrum, humans realized what they could touch, smell, see, and hear is less than one millionth of reality. Electromagnetic Spectrum Visible light, infrared light, x-rays, microwaves, gamma rays, etc. are all part of the electromagnetic spectrum. They all travel with the same in a vacuum. However, they have different (Hz) and (m). Find the spectrum in your reference table. Monochromatic 1

2 Electromagnetic waves all travel at the same speed in a vacuum Practice 2. What type of EM wave is the following? 500,000 hertz 5.0 x 10-9 meter 3.0 x hertz 4.5 x hertz 200 meters 3. What is the frequency of a 632 nanometer EM wave? What color is it? 4. What is the wavelength of a 5 x Hz EM wave? What type of wave is it? Electromagnetic waves are transverse waves. Radio waves travel from New York City to the antenna on your radio in Hicksville. How should you orient the antenna on your radio to get reception, horizontally or vertically? Why? 5. The antenna of a device is (approximately) the wavelength of the incoming signal. If you re purchasing a home phone and want one with a smaller antenna, which should you buy, a 900 Mhz or a 2.4 Ghz phone? Why? 6. How long should you make an antenna to pick up an AM radio signal of 800 khz? Doppler effect Light from a star in distance space is expected to have a frequency of 6.3 x Hz. Instead the star has a slightly lower frequency than what would have been expected. Is the star moving towards or away from Earth? Is this a red shift or blue shift? 2

3 Speed of an electromagnetic waves (light) in a medium When light enters a new medium, the speed changes and the wavelength changes but the frequency remains the same. For all wave phenomena, frequency always remains the same except for the Doppler Effect. 7. What is the speed of light in: a. Corn oil b. Diamond c. Water 8. Light travels at x 10 8 m/s through a material. What is the composition of the material? 9. Light with a frequency of 5.2 x Hz is traveling through water. a. How fast is it traveling? b. What is the wavelength of the light in water? 10. Light with a frequency of 3.84 x Hz is traveling through glycerol. a. How fast is it traveling? b. What is the wavelength of the light in glycerol? Energy of an electromagnetic wave (light) Higher frequency EM waves have higher energy E photon = (found in the Modern Physics part of the reference table) A photon is the smallest particle of light like an atom is the smallest particle of matter. 9. An electromagnetic wave has a frequency of 5.1 x Hz a. What color wave is this? b. What is the energy of the wave? c. What is the speed of this wave in a vacuum? 3

4 10. A photon is traveling with a frequency of 8.6 x Hz a. What type of EM wave is this? b. How much energy does this photon have? c. What is the wavelength of this wave? 11. An electromagnetic wave is traveling with frequency 3 x 10 7 Hz a. What type of EM wave is this? b. How much energy does it have? c. What is the speed of this wave in a vacuum? Phase (True for all waves, not just EM waves) 2 points are in phase if they are on the same part of a wave 2 points are 180 degrees out of phase at opposite parts In Phase Out of Phase Polarization A polarizing filter blocks out all waves except those with particles moving in a certain direction. This only works for transverse waves longitudinal waves can NOT be polarized. Reflection Law of reflection: 12. To the right (using a protractor and ruler) a. Draw the normal b. What is the angle of incidence? c. What is the angle of reflection? d. Draw the reflected ray. 4

5 13. To the right (using a protractor and ruler) An incident ray has an angle of 20 degrees a. Draw the incident ray (and normal) b. Draw the reflected ray Diffraction - Electromagnetic waves diffract just like mechanical waves Air Air There is no change in medium necessary for diffraction 14. A 7x10 14 Hz EM wave in air goes through a hole and diffracts a. What is the speed before it goes through the opening? b. What is the speed after? c. What is the wavelength before the opening? d. What is the wavelength after? e. Sketch four diffracted wave fronts after the opening Note: Larger wavelength and smaller opening -> More diffraction 15. Radio waves and light waves go past tall buildings. Which will diffract more? Why? Interference - Electromagnetic waves interfere just like mechanical waves If you put a paper to observe light along B-D-C, what would the pattern look like? Mechanical versus Electromagnetic Waves Mechanical waves vs Electromagnetic waves Can travel in a vacuum Transverse or longitudinal Energy is related to Requires a medium to travel Tastes good on a pizza 5

6 Refraction (transmission when light enters a new medium) When light (EM waves) enter a different medium, there is a change in which causes a change in or Recall: as light travels through a different medium, its speed changes according to the index of refraction n = Light changes direction (angle) according to Snell s Law 16. A ray of light (f=5.09 x 1014 Hz) is incident on the boundary between air and an unknown material X at an angle of incidence of 55, as shown. The absolute index of refraction of material X is a. Determine the speed of light in material X b. Calculate the angle of refraction of this light ray 17. A monochromatic light ray (f=5.09 x Hz) traveling in air is incident on the surface of a rectangular block of Lucite (n=1.50). a. Measure the angle of incidence for the light ray to the nearest degree b. Calculate the angle of refraction of the light ray when it enters the Lucite block. c. What is the angle of refraction of the light ray as it emerges from the Lucite block back into the air? 6

7 18. A ray of monochromatic light having a frequency of hertz is incident on an interface of air and corn oil at an angle of 35 as shown. The ray is transmitted through parallel layers of corn oil and glycerol and is then reflected from the surface of a plane mirror, located below and parallel to the glycerol layer. The ray then emerges from the corn oil back into the air at point P. a. Calculate the angle of refraction of the light ray as it enters the corn oil from air. b. Explain why the ray does not bend at the corn oil-glycerol interface. c. On the diagram, use a protractor and straightedge to construct the refracted ray representing the light emerging at point P into the air. Dispersion Why do all refraction problems specify the same frequency (f= hertz)? Why is the sky blue? Why is the sun yellow? Why are sunsets red? 7

8 19. A wave generator with a constant frequency produces parallel wave fronts in a tank of water of two different depths. The diagram below represents the wave fronts in the deep water. As the wave fronts travel from the deep water into the shallow water, the speed of the waves decreases. On the diagram at right use a straightedge to draw at least three lines to represent the wave fronts, with appropriate spacing, in the shallow water. 20. Orange light has a frequency of 5.0 x Hz in a vacuum. What is the wavelength of this light? 21. How much time does it take light from the moon to reach Earth? How much time would it take a radio wave to travel from the moon to Earth? 22. What is the energy in Joules of a photon with wavelength 532 nm? 23. A hydrogen atom emits a photon with an energy of 1.63 x J. What type of radiation would this photon be classified? (i.e. infrared, blue light, x-ray, etc.) 24. Radio waves diffract around buildings more than light waves do because compared to light waves, radio waves (move faster) (move slower) (have a higher frequency) (have a longer wavelength) 25. A ray of monochromatic light (f = 5.09 x hertz) in air is incident at an angle of 30 on a boundary with corn oil. What is the angle of refraction? 26. A monochromatic ray of light (f = 5.09 x hertz) traveling in air is incident upon medium A at an angle of 45. If the angle of refraction is 29, what is medium A? (water, fused quartz, Lucite, or flint glass) 27. A ray of light is travelling from water to diamond. If the incident angle is 45, what will the angle of refraction be? 8

9 Review Checklist Determine the part of the EM Spectrum that a particular wave belongs to. Explain the origin of electromagnetic waves and contrast this with the production of mechanical waves. Use equation to determine speed in a medium or index of refraction for a medium. 1. What type of electromagnetic radiation is a wave with a? wavelength of... Frequency of (a) 3.5 x 10 3 meters (e) 3.0 x 10 6 Hz (b) 4.5 x 10-8 meters (f) 2.2 x Hz (c) 2.0 x meters (g) 1.5 x Hz (d) 6.0 meters (h) 5.5 x Hz 2. Determine the speed of a ray of light with a frequency of 5.09 x hertz as it passes through water (index of refraction = 1.33). 3. Determine the absolute index of refraction for a medium in which microwaves travel at a speed of 1.8 x 10 8 meters per second. Explain the Law of Reflection; and identify ray diagrams in which reflection occurs. Explain Snell s Law and identify ray diagrams in which refraction occurs. Use Snell s Law to determine angle of incidence; angle of refraction; or index of refraction. 4. A ray of light moving from air into Lucite enters the Lucite at an angle of 35 relative to a line perpendicular to the Lucite surface. What angle will the light be bent at as it moves through the Lucite? 5. A ray of light is incident on a block of unknown glass at an angle of 45 degrees. The light refracts to an angle of 25.2 degrees. Determine the material of the unknown glass. Answers 1. a. radio/long radio b. x ray c. gamma ray d. radio/tv FM e. radio/am f. ultraviolet g. microwave h. visible/green x 10 8 m/s degrees 5. Flint glass 9

Wave Review Questions Updated

Wave Review Questions Updated Name: Date: 1. Which type of wave requires a material medium through which to travel? 5. Which characteristic is the same for every color of light in a vacuum? A. radio wave B. microwave C. light wave

More information

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light PSC1341 Chapter 4 Waves Chapter 4: Wave Motion A.. The Behavior of Light B. The E-M spectrum C. Equations D. Reflection, Refraction, Lenses and Diffraction E. Constructive Interference, Destructive Interference

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review hecklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2 1. A small vibrating object S moves across the surface of a ripple tank producing the wave fronts shown above. The wave fronts move with speed v. The object is traveling in what direction and with what

More information

1. Draw the Ray Diagram, name lens or mirror shown and determine the SALT for each picture

1. Draw the Ray Diagram, name lens or mirror shown and determine the SALT for each picture Honors Physics Chapter 22 and 23 Test Name: 1. Draw the Ray Diagram, name lens or mirror shown and determine the SALT for each picture 2. Type of Mirror above: i. SALT of image: S: A: L: T: b. Type of

More information

11. What happens if two complementary colors are projected together at the correct intensities onto a white screen?

11. What happens if two complementary colors are projected together at the correct intensities onto a white screen? PreAP Physics Review Chapter 14 & 15 09 Name: Date: Period: _ Use the diagram to answer questions 1 13. The diagram represents three overlapping circles of equally intense light of different pure colors.

More information

Physics Unit 5 Waves Light & Sound

Physics Unit 5 Waves Light & Sound Physics Unit 5 Waves Light & Sound Wave A rhythmic disturbance that transfers energy through matter and/or a vacuum Material a wave travels through is called the medium 2 types of waves: 1. Transverse

More information

Unit 1.5 Waves. The number waves per second. 1 Hz is 1waves per second. If there are 40 waves in 10 seconds then the frequency is 4 Hz.

Unit 1.5 Waves. The number waves per second. 1 Hz is 1waves per second. If there are 40 waves in 10 seconds then the frequency is 4 Hz. Unit 1.5 Waves Basic information Transverse: The oscillations of the particles are at right angles (90 ) to the direction of travel (propagation) of the wave. Examples: All electromagnetic waves (Light,

More information

Electromagnetic Waves Chapter Questions

Electromagnetic Waves Chapter Questions Electromagnetic Waves Chapter Questions 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person

More information

PHYSICS - Chapter 16. Light and Color and More

PHYSICS - Chapter 16. Light and Color and More PHYSICS - Chapter 16 Light and Color and More LIGHT-fundamentals 16.1 Light is the visible part of the electromagnetic spectrum. The electromagnetic spectrum runs from long Radio and TV waves to short

More information

Wave & Electromagnetic Spectrum Notes

Wave & Electromagnetic Spectrum Notes Wave & Electromagnetic Spectrum Notes December 17, 2011 I.) Properties of Waves A) Wave: A periodic disturbance in a solid, liquid or gas as energy is transmitted through a medium ( Waves carry energy

More information

Block 3: Physics of Waves. Chapter 12: Sound. Relate pitch and loudness to frequency and amplitude Describe how sound travels

Block 3: Physics of Waves. Chapter 12: Sound. Relate pitch and loudness to frequency and amplitude Describe how sound travels Chapter 12: Sound Describe production of sounds Measure the speed of sound Relate pitch and loudness to frequency and amplitude Describe how sound travels Sound is a longitudinal (compression) wave Sound

More information

Name. Light Chapter Summary Cont d. Refraction

Name. Light Chapter Summary Cont d. Refraction Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

More information

MODULE P6: THE WAVE MODEL OF RADIATION OVERVIEW

MODULE P6: THE WAVE MODEL OF RADIATION OVERVIEW OVERVIEW Wave behaviour explains a great many phenomena, both natural and artificial, for all waves have properties in common. The first topic introduces a basic vocabulary for describing waves. Reflections

More information

OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B. School/#: Names: OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

More information

Waves & Energy Transfer. Introduction to Waves. Waves are all about Periodic Motion. Physics 11. Chapter 11 ( 11-1, 11-7, 11-8)

Waves & Energy Transfer. Introduction to Waves. Waves are all about Periodic Motion. Physics 11. Chapter 11 ( 11-1, 11-7, 11-8) Waves & Energy Transfer Physics 11 Introduction to Waves Chapter 11 ( 11-1, 11-7, 11-8) Waves are all about Periodic Motion. Periodic motion is motion that repeats after a certain period of time. This

More information

The topics in this unit are:

The topics in this unit are: The topics in this unit are: 1 Types of waves 2 Describing waves 3 Wave equation 4 Reflection of waves 5 Refraction 6 Diffraction 7 Light waves (reflection) 8 Total internal reflection 9 - Optical fibres

More information

Chapter 16 Light Waves and Color

Chapter 16 Light Waves and Color Chapter 16 Light Waves and Color Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. What causes color? What causes reflection? What causes color?

More information

Name: Date Due: Waves. Physical Science Chapter 6

Name: Date Due: Waves. Physical Science Chapter 6 Date Due: Waves Physical Science Chapter 6 Waves 1. Define the following terms: a. periodic motion = b. cycle= c. period= d. mechanical wave= e. medium = f. transverse wave = g. longitudinal wave= h. surface

More information

Waves.notebook. April 15, 2019

Waves.notebook. April 15, 2019 Waves You will need a protractor! What is a wave? A wave is a vibratory disturbance that propagates through a medium(body of matter) or field. Every wave has, as its source, a particle vibrating or oscillating.

More information

WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers!

WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers! WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers! Willebrord Snell (1591-1626) Snell developed methods for measuring the Earth. He proposed the method of triangulation

More information

Wave Behavior and The electromagnetic Spectrum

Wave Behavior and The electromagnetic Spectrum Wave Behavior and The electromagnetic Spectrum What is Light? We call light Electromagnetic Radiation. Or EM for short It s composed of both an electrical wave and a magnetic wave. Wave or particle? Just

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation EMR Light: Interference and Optics I. Light as a Wave - wave basics review - electromagnetic radiation II. Diffraction and Interference - diffraction, Huygen s principle - superposition,

More information

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum).

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum). Waves S8P4. Obtain, evaluate, and communicate information to support the claim that electromagnetic (light) waves behave differently than mechanical (sound) waves. A. Ask questions to develop explanations

More information

Slide 1 / 99. Electromagnetic Waves

Slide 1 / 99. Electromagnetic Waves Slide 1 / 99 Electromagnetic Waves Slide 2 / 99 The Nature of Light: Wave or Particle The nature of light has been debated for thousands of years. In the 1600's, Newton argued that light was a stream of

More information

Announcements. EM Induction. Faraday s Law 4/24/15. Why is current induced? EM Induction: Current is Induced

Announcements. EM Induction. Faraday s Law 4/24/15. Why is current induced? EM Induction: Current is Induced Announcements Today: Induction & transformers Wednesday: Finish transformers, start light Reading: review Fig. 26.3 and Fig. 26.8 Recall: N/S poles (opposites attract) Moving electrical charges produce

More information

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve I am Watching YOU!! Human Retina Sharp Spot: Fovea Blind Spot: Optic Nerve Human Vision Optical Antennae: Rods & Cones Rods: Intensity Cones: Color Energy of Light 6 10 ev 10 ev 4 1 2eV 40eV KeV MeV Energy

More information

Optics and Images. Lenses and Mirrors. Matthew W. Milligan

Optics and Images. Lenses and Mirrors. Matthew W. Milligan Optics and Images Lenses and Mirrors Light: Interference and Optics I. Light as a Wave - wave basics review - electromagnetic radiation II. Diffraction and Interference - diffraction, Huygen s principle

More information

=, where f is focal length of a lens (positive for convex. Equations: Lens equation

=, where f is focal length of a lens (positive for convex. Equations: Lens equation Physics 1230 Light and Color : Exam #1 Your full name: Last First & middle General information: This exam will be worth 100 points. There are 10 multiple choice questions worth 5 points each (part 1 of

More information

Fig On Fig. 6.1 label one set of the lines in the first order spectrum R, G and V to indicate which is red, green and violet.

Fig On Fig. 6.1 label one set of the lines in the first order spectrum R, G and V to indicate which is red, green and violet. 1 This question is about the light from low energy compact fluorescent lamps which are replacing filament lamps in the home. (a) The light from a compact fluorescent lamp is analysed by passing it through

More information

Physical Science Test Form A Test 5: Waves. Matching. 1. diffraction

Physical Science Test Form A Test 5: Waves. Matching. 1. diffraction Physical Science Test Form A Test 5: Waves Matching. 1. diffraction 2. intensity 3. interference 4. mechanical wave 5. medium 6. pitch 7. reflection 8. refraction 9. translucent 10. transverse wave A.

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 13: LIGHT WAVES This lecture will help you understand: Electromagnetic Spectrum Transparent and Opaque Materials Color Why the Sky is Blue, Sunsets are Red, and

More information

Waves. Electromagnetic & Mechanical Waves

Waves. Electromagnetic & Mechanical Waves Waves Electromagnetic & Mechanical Waves Wave Definition: A disturbance that transfers energy from place to place. Molecules pass energy to neighboring molecules who pass energy to neighboring molecules

More information

Wallace Hall Academy Physics Department. Waves. Pupil Notes Name:

Wallace Hall Academy Physics Department. Waves. Pupil Notes Name: Wallace Hall Academy Physics Department Waves Pupil Notes Name: Learning intentions for this unit? Be able to state that waves transfer energy. Be able to describe the difference between longitudinal and

More information

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points WRITE ON SCANTRON WITH NUMBER 2 PENCIL DO NOT WRITE ON THIS TEST LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points Multiple Choice Identify the choice that best completes the statement or

More information

ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE

ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE ELECTROMAGNETIC WAVES Do not need matter to transfer energy. Made by vibrating electric charges. When an electric charge vibrates,

More information

Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History

Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History In Lecture 5 we discussed the two different ways of talking about

More information

BVHS Physics: Waves Unit - Targets

BVHS Physics: Waves Unit - Targets BVHS Physics: Waves Unit - Targets Part A: General Wave Properties: Students should be able to 1) describe waves as traveling disturbances which transport energy without the bulk motion of matter. In transverse

More information

4.6.1 Waves in air, fluids and solids Transverse and longitudinal waves Properties of waves

4.6.1 Waves in air, fluids and solids Transverse and longitudinal waves Properties of waves 4.6 Waves Wave behaviour is common in both natural and man-made systems. Waves carry energy from one place to another and can also carry information. Designing comfortable and safe structures such as bridges,

More information

The knowledge and understanding for this unit is given below:

The knowledge and understanding for this unit is given below: WAVES AND OPTICS The knowledge and understanding for this unit is given below: Waves 1. State that a wave transfers energy. 2. Describe a method of measuring the speed of sound in air, using the relationship

More information

SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions

SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions [Exam ID:1TL2E1 1 If the angle of incidence is 45, what is the angle of reflection? A 120 B 50 C 90 D 45 2 The wave

More information

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves and Optics Waves A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves Some waves do not need a medium

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves What is an Electromagnetic Wave? An EM Wave is a disturbance that transfers energy through a field. A field is a area around an object where the object can apply a force on another

More information

4.6 Waves Waves in air, fluids and solids Transverse and longitudinal waves

4.6 Waves Waves in air, fluids and solids Transverse and longitudinal waves 4.6 Waves Wave behaviour is common in both natural and man-made systems. Waves carry energy from one place to another and can also carry information. Designing comfortable and safe structures such as bridges,

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS 4.1 Describe the measurable properties of waves (velocity, frequency, wavelength, amplitude, period)

More information

High frequency sounds, beyond the range of human hearing, are called ultrasound.

High frequency sounds, beyond the range of human hearing, are called ultrasound. Mr Downie 2014 1 Sound Waves To produce a sound the particles in an object must vibrate. This means that sound can travel through solids, liquids and gases. Sound cannot travel through a vacuum as it contains

More information

CHAPTER 17 AND 18 CHARACTERISTICS OF EM WAVES LEARNING OBJECTIVES CHARACTERISTICS OF EM WAVES 11/10/2014

CHAPTER 17 AND 18 CHARACTERISTICS OF EM WAVES LEARNING OBJECTIVES CHARACTERISTICS OF EM WAVES 11/10/2014 STUDENT LEARNING GOALS PHYSICAL SCIENCE ELECTROMAGNETISM SC.912.P.10.18 CHAPTER 17 AND 18 Electromagnetic Spectrum, Light, and Sound Goal: Explore the theory of electromagnetism by comparting and contrasting

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions designed to see whether you understand the main concepts in the chapter. 1. Red laser light shines on a double slit, creating a pattern

More information

Light waves. VCE Physics.com. Light waves - 2

Light waves. VCE Physics.com. Light waves - 2 Light waves What is light? The electromagnetic spectrum Waves Wave equations Light as electromagnetic radiation Polarisation Colour Colour addition Colour subtraction Interference & structural colour Light

More information

Electromagnetic Spectrum

Electromagnetic Spectrum Electromagnetic Spectrum The electromagnetic radiation covers a vast spectrum of frequencies and wavelengths. This includes the very energetic gamma-rays radiation with a wavelength range from 0.005 1.4

More information

A progressive wave of frequency 150 Hz travels along a stretched string at a speed of 30 m s 1.

A progressive wave of frequency 150 Hz travels along a stretched string at a speed of 30 m s 1. 1. progressive wave of frequency 150 Hz travels along a stretched string at a speed of 30 m s 1. What is the phase difference between two points that are 50 mm apart on the string? zero 90 180 360 2 Which

More information

Electromagnetism and Light

Electromagnetism and Light Electromagnetism and Light Monday Properties of waves (sound and light) interference, diffraction [Hewitt 12] Tuesday Light waves, diffraction, refraction, Snell's Law. [Hewitt 13, 14] Wednesday Lenses,

More information

Draw and label this wave: - What do waves transfer? (They do this without transferring what?) What do all electromagnetic waves have in common?

Draw and label this wave: - What do waves transfer? (They do this without transferring what?) What do all electromagnetic waves have in common? What do waves transfer? Draw and label this wave: - (They do this without transferring what?) What do all electromagnetic waves have in common? Name the electromagnetic spectrum from shortest to longest

More information

Preview of Period 2: Electromagnetic Waves Radiant Energy I

Preview of Period 2: Electromagnetic Waves Radiant Energy I Preview of Period 2: Electromagnetic Waves Radiant Energy I 2.1 Energy Transmitted by Waves How can waves transmit energy? 2.2 Refraction of Radiant Energy What happens when a light beam travels through

More information

Physics for Kids. Science of Light. What is light made of?

Physics for Kids. Science of Light. What is light made of? Physics for Kids Science of Light What is light made of? This is not an easy question. Light has no mass and is not really considered matter. So does it even exist? Of course it does! We couldn't live

More information

Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound

Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound Type of wave Travel in Vacuum? Speed Speed vs. Medium Light Sound vs. Sound Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound

More information

Physics 1C. Lecture 24A. Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves. Average Quiz score = 6.8 out of 10.

Physics 1C. Lecture 24A. Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves. Average Quiz score = 6.8 out of 10. Physics 1C Lecture 24A Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves Average Quiz score = 6.8 out of 10 This is a B- Diffraction of X-rays by Crystals! X-rays are electromagnetic radiation

More information

Section 1: Sound. Sound and Light Section 1

Section 1: Sound. Sound and Light Section 1 Sound and Light Section 1 Section 1: Sound Preview Key Ideas Bellringer Properties of Sound Sound Intensity and Decibel Level Musical Instruments Hearing and the Ear The Ear Ultrasound and Sonar Sound

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

GraspIT Questions AQA GCSE Physics Waves

GraspIT Questions AQA GCSE Physics Waves A Waves in air, fluids and solids 1. The diagrams below show two types of wave produced on a slinky spring. A B a. Which one is a transverse wave? (1) Wave B b. What is the name of the other type of wave?

More information

Chapter 24. The Wave Nature of Light

Chapter 24. The Wave Nature of Light Ch-24-1 Chapter 24 The Wave Nature of Light Questions 1. Does Huygens principle apply to sound waves? To water waves? Explain how Huygens principle makes sense for water waves, where each point vibrates

More information

Light, Lasers, and Holograms Teleclass Webinar!

Light, Lasers, and Holograms Teleclass Webinar! Welcome to the Supercharged Science Light, Lasers, and Holograms Teleclass Webinar! You can fill out this worksheet as we go along to get the most out of time together, or you can use it as a review exercise

More information

Chapter 15: Radio-Wave Propagation

Chapter 15: Radio-Wave Propagation Chapter 15: Radio-Wave Propagation MULTIPLE CHOICE 1. Radio waves were first predicted mathematically by: a. Armstrong c. Maxwell b. Hertz d. Marconi 2. Radio waves were first demonstrated experimentally

More information

Crave the Wave, Feb 16, 2008

Crave the Wave, Feb 16, 2008 Crave the Wave ANSWER KEY Mentor Invitational Feb 16, 2008 Page 1 of 14 Crave the Wave, Feb 16, 2008 Mentor Invitational ANSWER KEY Scoring: Points will be awarded for the accuracy and quality of the responses.

More information

PHY1 Review for Exam 9. Equations. V = 2πr / T a c = V 2 /r. W = Fdcosθ PE = mgh KE = ½ mv 2 E = PE + KE

PHY1 Review for Exam 9. Equations. V = 2πr / T a c = V 2 /r. W = Fdcosθ PE = mgh KE = ½ mv 2 E = PE + KE Topics Simple Harmonic Motion Springs Pendulums Waves Transverse Longitudinal Pulse Continuous Interference Refraction Diffraction Equations V = 2πr / T a c = V 2 /r F = ma F F = µf N W = Fdcosθ PE = mgh

More information

Anastacia.kudinova s Light

Anastacia.kudinova s Light CK-12 FOUNDATION Anastacia.kudinova s Light Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) Dann Dann To access a customizable version of this book, as well as other

More information

28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ.

28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ. PhysicsndMathsTutor.com 28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ. 9702/1/M/J/02 X microwave transmitter S 1 S 2

More information

Broad Principles of Propagation 4C4

Broad Principles of Propagation 4C4 Broad Principles of Propagation ledoyle@tcd.ie 4C4 Starting at the start All wireless systems use spectrum, radiowaves, electromagnetic waves to function It is the fundamental and basic ingredient of

More information

P6 Quick Revision Questions

P6 Quick Revision Questions P6 Quick Revision Questions H = Higher tier only SS = Separate science only Question 1... of 50 Define wavelength Answer 1... of 50 The distance from a point on one wave to the equivalent point on the

More information

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

Chapter 21. Alternating Current Circuits and Electromagnetic Waves Chapter 21 Alternating Current Circuits and Electromagnetic Waves AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal

More information

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks ELECTROMAGNETIC WAVES AND LIGHT Physics 5 th Six Weeks What are Electromagnetic Waves Electromagnetic Waves Sound and water waves are examples of waves resulting from energy being transferred from particle

More information

SUBJECT: PHYSICS. Use and Succeed.

SUBJECT: PHYSICS. Use and Succeed. SUBJECT: PHYSICS I hope this collection of questions will help to test your preparation level and useful to recall the concepts in different areas of all the chapters. Use and Succeed. Navaneethakrishnan.V

More information

Physics: Waves, Sound/Light, Electromagnetic Waves, Magnetism, Mains Electricity and the National Grid

Physics: Waves, Sound/Light, Electromagnetic Waves, Magnetism, Mains Electricity and the National Grid 6.7 Describe the method to measure the speed of sound in air and the speed of ripples on the water surface 7.5 Link the properties of EM waves to their practical application (triple 7.6 Apply knowledge

More information

22-1 (SJP, Phys 2020, Fa '01)

22-1 (SJP, Phys 2020, Fa '01) 22-1 (SJP, Phys 2020, Fa '01) Ch. 22: Electromagnetic waves. We ve seen some of the ideas/discoveries of Ampere, Faraday, and others. So far, E & B seem different but somehow related. In what is perhaps

More information

Light sources can be natural or artificial (man-made)

Light sources can be natural or artificial (man-made) Light The Sun is our major source of light Light sources can be natural or artificial (man-made) People and insects do not see the same type of light - people see visible light - insects see ultraviolet

More information

LIGHT BOX & OPTICAL SET CAT NO. PH0615

LIGHT BOX & OPTICAL SET CAT NO. PH0615 LIGHT BOX & OPTICAL SET CAT NO. PH0615 Experiment Guide ACTIVITIES INCLUDED: Diffraction Angle of Reflection Using a Plane Mirror Refraction of Different Shaped Prisms Refraction (Snell's Law) Index of

More information

$100 $400 $400 $400 $500

$100 $400 $400 $400 $500 $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $300 $400 $400 $400 $400 $400 $500 $500 $500 $500 $500 MOVING IN WAVES PURE ENERGY! WHAT S THE FREQUENCY, KENNETH? USE IT OR LOSE IT

More information

Topic 4: Waves 4.2 Traveling waves

Topic 4: Waves 4.2 Traveling waves Crests and troughs Compare the waves traveling through the mediums of rope and spring. CREST TROUGH TRANSVERSE WAVE COMPRESSION RAREFACTION LONGITUDINAL WAVE Wave speed and frequency The speed at which

More information

Chapter 18 The Electromagnetic Spectrum

Chapter 18 The Electromagnetic Spectrum Pearson Prentice Hall Physical Science: Concepts in Action Chapter 18 The Electromagnetic Spectrum 18.1 Electromagnetic Waves Objectives: 1. Describe the characteristics of electromagnetic waves in a vacuum

More information

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors Light and Reflection Section 1 Preview Section 1 Characteristics of Light Section 2 Flat Mirrors Section 3 Curved Mirrors Section 4 Color and Polarization Light and Reflection Section 1 TEKS The student

More information

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence Demonstrate understanding of wave systems Subject Reference Physics 3.3 Title Demonstrate understanding of wave systems Level 3 Credits 4 Assessment External This achievement standard involves demonstrating

More information

Electromagnetic Waves & the Electromagnetic Spectrum

Electromagnetic Waves & the Electromagnetic Spectrum Electromagnetic Waves & the Electromagnetic Spectrum longest wavelength shortest wavelength The Electromagnetic Spectrum The name given to a group of energy waves that are mostly invisible and can travel

More information

Electromagnetic Waves

Electromagnetic Waves Slide 1 / 125 Slide 2 / 125 Electromagnetic Waves www.njctl.org Table of Contents Slide 3 / 125 Click on the topic to go to that section An Abridged "History" of Light Reflection, Refraction and ispersion

More information

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM LECTURE:2 ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM Electromagnetic waves: In an electromagnetic wave the electric and magnetic fields are mutually perpendicular. They are also both perpendicular

More information

Physics 102: Lecture 14 Electromagnetic Waves

Physics 102: Lecture 14 Electromagnetic Waves Physics 102: Lecture 14 Electromagnetic Waves Physics 102: Lecture 14, Slide 1 Review: Phasors & Resonance At resonance Z is minimum (=R) I max is maximum (=V gen,max /R) V gen is in phase with I X L =

More information

ELECTROMAGNETIC WAVES MARKS WEIGHTAGE 3 marks

ELECTROMAGNETIC WAVES MARKS WEIGHTAGE 3 marks ELECTROMAGNETIC WAVES MARKS WEIGHTAGE 3 marks QUICK REVISION (Important Concepts & Formulas) Electromagnetic radiation is the radiation in which associated electric and magnetic field oscillations are

More information

INTRODUCTION. 5. Electromagnetic Waves

INTRODUCTION. 5. Electromagnetic Waves INTRODUCTION An electric current produces a magnetic field, and a changing magnetic field produces an electric field Because of such a connection, we refer to the phenomena of electricity and magnetism

More information

Chapter 18: Fiber Optic and Laser Technology

Chapter 18: Fiber Optic and Laser Technology Chapter 18: Fiber Optic and Laser Technology Chapter 18 Objectives At the conclusion of this chapter, the reader will be able to: Describe the construction of fiber optic cable. Describe the propagation

More information

6-6 Waves Trilogy. 1.0 Figure 1 shows an incomplete electromagnetic spectrum. Figure 1. A microwaves B C ultraviolet D gamma

6-6 Waves Trilogy. 1.0 Figure 1 shows an incomplete electromagnetic spectrum. Figure 1. A microwaves B C ultraviolet D gamma 6-6 Waves Trilogy.0 Figure shows an incomplete electromagnetic spectrum. Figure A microwaves B C ultraviolet D gamma. Which position are X-rays found in? Tick one box. [ mark] A B C D.2 Which three waves

More information

Light, Lasers, and Holograms Teleclass Webinar!

Light, Lasers, and Holograms Teleclass Webinar! Welcome to the Supercharged Science Light, Lasers, and Holograms Teleclass Webinar! You can fill out this worksheet as we go along to get the most out of time together, or you can use it as a review exercise

More information

Unit 6 Electromagnetic Radiation:

Unit 6 Electromagnetic Radiation: Unit 6 Electromagnetic Radiation: Electromagnetic Radiation is a wave. Electromagnetic Radiation is not a mechanical wave. Does not need a medium. Can travel through empty space Examples of Electromagnetic

More information

Optics & Light. See What I m Talking About. Grade 8 - Science OPTICS - GRADE 8 SCIENCE 1

Optics & Light. See What I m Talking About. Grade 8 - Science OPTICS - GRADE 8 SCIENCE 1 Optics & Light See What I m Talking About Grade 8 - Science OPTICS - GRADE 8 SCIENCE 1 Overview In this cluster, students broaden their understanding of how light is produced, transmitted, and detected.

More information

National 4. Waves and Radiation. Summary Notes. Name:

National 4. Waves and Radiation. Summary Notes. Name: National 4 Waves and Radiation Summary Notes Name: Mr Downie 2014 1 Sound Waves To produce a sound the particles in an object must vibrate. This means that sound can travel through solids, liquids and

More information

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer.

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer. Test 1: Example #2 Paul Avery PHY 3400 Feb. 15, 1999 Note: * indicates the correct answer. 1. A red shirt illuminated with yellow light will appear (a) orange (b) green (c) blue (d) yellow * (e) red 2.

More information

Chapter 18 The Electromagnetic Spectrum and Light

Chapter 18 The Electromagnetic Spectrum and Light Chapter 18 Sections 18.1 Electromagnetic Waves 18.2 The 18.3 Behavior of Light 18.4 Color 18.5 Sources of Light Chapter 18 The and Light Section 18.1 Electromagnetic Waves To review: mechanical waves require

More information

Q1. The diagram shows the oscilloscope traces of two different sounds P and Q. The oscilloscope setting is exactly the same in both cases.

Q1. The diagram shows the oscilloscope traces of two different sounds P and Q. The oscilloscope setting is exactly the same in both cases. Q1. The diagram shows the oscilloscope traces of two different sounds P and Q. The oscilloscope setting is exactly the same in both cases. P and Q sound different. Write down two differences in the way

More information

[4] (b) Fig. 6.1 shows a loudspeaker fixed near the end of a tube of length 0.6 m. tube m 0.4 m 0.6 m. Fig. 6.

[4] (b) Fig. 6.1 shows a loudspeaker fixed near the end of a tube of length 0.6 m. tube m 0.4 m 0.6 m. Fig. 6. 1 (a) Describe, in terms of vibrations, the difference between a longitudinal and a transverse wave. Give one example of each wave.................... [4] (b) Fig. 6.1 shows a loudspeaker fixed near the

More information

EM waves do not need a medium to travel through EM waves are transverse waves All EM waves travel at the speed of light = 3.

EM waves do not need a medium to travel through EM waves are transverse waves All EM waves travel at the speed of light = 3. EM waves do not need a medium to travel through EM waves are transverse waves All EM waves travel at the speed of light = 3.00 x 10 8 m/s So, if they all travel at the same speed, how are they different?

More information

1. Transverse Waves: the particles in the medium move perpendicular to the direction of the wave motion

1. Transverse Waves: the particles in the medium move perpendicular to the direction of the wave motion Mechanical Waves Represents the periodic motion of matter e.g. water, sound Energy can be transferred from one point to another by waves Waves are cyclical in nature and display simple harmonic motion

More information

Chapter 25. Electromagnetic Waves

Chapter 25. Electromagnetic Waves Chapter 25 Electromagnetic Waves EXAM # 3 Nov. 20-21 Chapter 23 Chapter 25 Powerpoint Nov. 4 Problems from previous exams Physics in Perspective (pg. 836 837) Chapter 25 Electromagnetic Waves Units of

More information