Bioacoustics Lab- Spring 2011 BRING LAPTOP & HEADPHONES

Size: px
Start display at page:

Download "Bioacoustics Lab- Spring 2011 BRING LAPTOP & HEADPHONES"

Transcription

1 Bioacoustics Lab- Spring 2011 BRING LAPTOP & HEADPHONES Lab Preparation: Bring your Laptop to the class. If don t have one you can use one of the COH s laptops for the duration of the Lab. Before coming to the Lab: Download a copy of the free version of Raven Lite onto your laptop, download only the Software & Documentation, for Mac or PC, from the Cornell Lab of Ornithology website: After you download the program (RavenLite10_Executables) you will also have to register for a code to use the program. You will register for the license by clicking on the link to the right of the Raven Lite 1.0 heading ( Get a free license). Fill out the form and an will be sent to you with the registration code, use it and you ll be ready to go. Sound Files: Download from the Biology 129 Website the Sound Files of Odontocetes, Mysticetes, and Pinnipeds that you are going to use during the Lab. Objectives: The purpose of this lab is to describe (quantitatively and qualitatively) the diversity of sounds produced by marine mammals. All analysis will be conducted using the program called Raven Lite 1.0. For each file, you will create a waveform and spectrogram for analysis. For each species you will obtain a variety of measurements including the duration of a call, the peak frequency, the frequency range, and any qualitative descriptions such as downward or upward frequency sweeps (i.e. upward sweep from khz), harmonics, estimated number of animals vocalizing, etc. If there is more than one animal vocalizing, you should also note the overall frequency range of that species sounds. **In your report, you should print out or draw by hand at least one spectrogram in order to illustrate a typical call and how your measurements were made. In addition, you may want to save/print additional graphs or you can draw the sounds from the spectrograms by hand (make sure to label appropriately) to remind you of what you were looking at.

2 To Begin: Double click on the Raven Lite icon. In the pinnipeds folder, open the file titled CAsealion_male.wav. You will have an Oscillogram (or waveform) and a spectrogram, which should look like the following: Waveform: Pressure fluctuations Time Spectrogram: Waveforms show pressure fluctuations from sound over time. Sound travels through air or water as waves of high and low pressure. For example, when your stereo speaker vibrates - as the speaker cone moves out, it pushes air molecules together (higher pressure), and then as it pulls away from the compressed molecules there is a relative decrease in pressure. These pressure waves travel away from the speaker towards your ear. The changes in pressure are what you hear as sound. Relative, ambient (normal environmental) air or water pressure is usually 0 in the waveform. Louder sounds will have much greater fluctuations in pressure (variations above and below 0) than quieter sounds. (For the CA Sea Lion Male plot the ambient pressure level is 128 U). You can use the waveform plot to determine where the sound is the loudest in the call by finding the point were the

3 amplitude it the highest. The command panel in Raven Use the illustration below for working with both waveform and spectrogram plots throughout the lab To play the sound click the icon Use to change the color pattern of the spectrogram (color, grayscale, etc.) This is VERY useful when trying to visualize the calls. Show/Hide Waveform Show/Hide Spectrogram Hide Axes Playing commands Changes speed of playback ( to hear blue/fin whale sounds). 0.5= half speed, 1= real speed, 5= 5x fast, etc.) Zoom in to highlighted area or zoom out. Very useful for taking measurements. Play the sounds a few times and see if you can follow what you hear on the spectrogram (sometimes changing the playback rate helps). In the spectrogram, frequency (Hz or khz) or pitch is shown on the Y-Axis and intensity or loudness of sound is shown with darker shading. Now take some time to play around for a bit with some of the controls on the command panel (highlighting, filtering and listening). Open the sounds of different species, make spectrograms, highlight various calls and listen! **See Tips/Suggestions later for suggestions of how to work with various sounds. Once you feel comfortable using the Raven program, move on to making various measurements on files in the Files for analysis folder. Use your cursor to carefully highlight the calls both horizontally and vertically in the spectrogram. Click and drag in the spectrogram to highlight the frequency range and length of the call you are interested in.

4 + Time: S Frequency: 8465 Hz Power: 62.9 db Parameters to measure To make measurements of what you ve highlighted you will need to use your cursor. Place the cursor in the spectrogram/waveform and see how the different parameters change. Place your cursor at the highest point on the call to determine high frequency or the lowest point to determine low frequency. By moving your cursor in the spectrogram and waveform windows, you will be able to measure different parameters: Time (s or ms), Frequency (Hz or khz), and Power (db) of the sounds you are analyzing. Power is the amount of energy in the sound. To get peak frequency find the highest power and determine where that is along the frequency scale. Use the attached data sheet to make your sound measurements: In some of the sound files there will be multiple signals. Just pick one or more and highlight the horizontal and vertical edges of it carefully. Using your cursor determine: Time (call duration); High Frequency; Low Frequency; Peak Frequency and Power at Peak Freq. For some files, you can also count the number of harmonics. Be careful not to confuse High frequency, which is the Highest pitch of the call, with Peak Frequency- which is the most intense or loudest frequency of the call. For the Frequency measurement, record the range of frequencies used by the species for all signals shown in the file.

5 Tips: Carefully note the units (Hz or khz, s or ms) as these will change between files. Use the comments column to add any qualitative information you think is relevant (i.e. downward sweeps, pulse sound, many/few animals, etc.). Changing the playback rate (speed) can help you hear features of sounds like pulsing (slowing down rapidly pulsed sounds). Try slowing down some of the odontocete sounds. Increase the rate of playback of the blue and fin whale sounds to hear them. Some files are already set at a faster play rate. Watch as the cursor scrolls during playing to determine the speed. Progressively make these sounds slower (and lower frequency) until you can no longer hear them. In real time they are close to or outside of the low range of human hearing. For some files the calls are best visualized with the cool color scheme or standard gama color scheme. Some files contain many animals calling simultaneously, such as the common dolphins. Try to pick one or two whistles out to do your measurements. Use the zoom in feature to get a better image of individual calls and to take your measurements. Lab Report: The lab report should follow the standard format of a scientific paper (Introduction, Materials & Methods, Results, Discussion). Since this exercise is designed to introduce you to field of bioacoustics, as well as improve your quantitative skills, I encourage you to explore various relationships within the data set using graphs or tables. It will give you more to discuss in the synthesis (i.e., Discussion) portion of the report. At least 3 references from the scientific literature are required. Introduction Provide a brief introduction to the topic of sound production in marine mammals. In other words, inform the reader on the main theories of why these animals rely on sound and produce the sounds they do (e.g., communication, echolocation, etc.). This part of the report should also explain the purpose of the investigation and introduce what you plan to compare. Remember: there should be a clear connection between the introduction and the discussion. Methods: Describe the analysis program, how you measured the data, what parameters were measured (peak freq, high freq, etc), and study subjects. Include information on the specific comparisons you made (i.e. calculated means for all Odotocetes). Results: The results section should describe the data in a clear and concise manner. Tables and graphs are always great but think about the relationships that you are trying to describe. Remember to label

6 the axes and do not forget to include the proper units (e.g., Hz or khz, ms) on both graphs and tables. Also, include legends that explain your graphs or tables. At the very least, your report should have a printed or drawn spectrogram illustrating how measurements were made and a table summarizing the results of your analysis. For the more motivated of you- plots showing relationships for things like species/order/suborder vs. vocalization duration, frequency range and peak frequency, etc. will help your grade. Interpretation of the results should be saved for the discussion. Discussion: The discussion section is comprised of a synthesis of your results including your interpretation (i.e., biological) of significant relationships, patterns, or trends in the data. I emphasize synthesis because I do not want you to rehash the results, which is a common mistake. Also, there should be a clear link between the introduction and what you present in the discussion. Below is a list of possible topics for analysis in this lab: Which species or suborder produced the mystery sound and why (based on the summary data from the other species/suborders)? Describe the variation in sound produced between and within groups. Why is there so much variation in sound frequency among all the species analyzed? What is the ecological significance and/or advantage? How do Mysticete sounds differ from Odotoncetes in the parameters measured? How does this relate to their social systems, group behavior, or habitat? Compare the numbers of animals heard in the Odontocete and Mysticete recordings? How does this relate to the differences in the social systems of odontocetes and mysticetes? Compare and contrast the differences in sounds produced by cetaceans and pinnipeds. How do the differences in sounds produced relate to their respective social systems, habitats, or communication needs? Is there a relationship between the power and call duration or peak frequency and duration? How does this change between groups? End the discussion with a solid conclusion (a sentence or two). **These are just a few suggestions for your analysis.

Sound Waves and Beats

Sound Waves and Beats Physics Topics Sound Waves and Beats If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Traveling Waves (Serway

More information

Hands-on Hearing. Sound recording and visualization tools for the science classroom. Jesse Ellis Neurobiology & Behavior

Hands-on Hearing. Sound recording and visualization tools for the science classroom. Jesse Ellis Neurobiology & Behavior Hands-on Hearing Sound recording and visualization tools for the science classroom Jesse Ellis Neurobiology & Behavior jme29@cornell.edu David Rothstein Astrophysics dmr37@cornell.edu Mya Thompson Neurobiology

More information

A graph is an effective way to show a trend in data or relating two variables in an experiment.

A graph is an effective way to show a trend in data or relating two variables in an experiment. Chem 111-Packet GRAPHING A graph is an effective way to show a trend in data or relating two variables in an experiment. Consider the following data for exercises #1 and 2 given below. Temperature, ºC

More information

PHYSICS 107 LAB #9: AMPLIFIERS

PHYSICS 107 LAB #9: AMPLIFIERS Section: Monday / Tuesday (circle one) Name: Partners: PHYSICS 107 LAB #9: AMPLIFIERS Equipment: headphones, 4 BNC cables with clips at one end, 3 BNC T connectors, banana BNC (Male- Male), banana-bnc

More information

3A: PROPERTIES OF WAVES

3A: PROPERTIES OF WAVES 3A: PROPERTIES OF WAVES Int roduct ion Your ear is complicated device that is designed to detect variations in the pressure of the air at your eardrum. The reason this is so useful is that disturbances

More information

PHYSICS LAB. Sound. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

PHYSICS LAB. Sound. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY PHYSICS LAB Sound Printed Names: Signatures: Date: Lab Section: Instructor: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY Revision August 2003 Sound Investigations Sound Investigations 78 Part I -

More information

8A. ANALYSIS OF COMPLEX SOUNDS. Amplitude, loudness, and decibels

8A. ANALYSIS OF COMPLEX SOUNDS. Amplitude, loudness, and decibels 8A. ANALYSIS OF COMPLEX SOUNDS Amplitude, loudness, and decibels Last week we found that we could synthesize complex sounds with a particular frequency, f, by adding together sine waves from the harmonic

More information

Sound Waves and Beats

Sound Waves and Beats Sound Waves and Beats Computer 32 Sound waves consist of a series of air pressure variations. A Microphone diaphragm records these variations by moving in response to the pressure changes. The diaphragm

More information

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit.

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit. Experiment 0: Review I. References The 174 and 275 Lab Manuals Any standard text on error analysis (for example, Introduction to Error Analysis, J. Taylor, University Science Books, 1997) The manual for

More information

2 Oscilloscope Familiarization

2 Oscilloscope Familiarization Lab 2 Oscilloscope Familiarization What You Need To Know: Voltages and currents in an electronic circuit as in a CD player, mobile phone or TV set vary in time. Throughout the course you will investigate

More information

Passive Acoustic Monitoring for Cetaceans Across the Continental Shelf off Virginia: 2016 Annual Progress Report

Passive Acoustic Monitoring for Cetaceans Across the Continental Shelf off Virginia: 2016 Annual Progress Report Passive Acoustic Monitoring for Cetaceans Across the Continental Shelf off Virginia: Submitted to: Naval Facilities Engineering Command Atlantic under Contract No. N62470-15-D-8006, Task Order 032. Prepared

More information

University of Pennsylvania Department of Electrical and Systems Engineering Digital Audio Basics

University of Pennsylvania Department of Electrical and Systems Engineering Digital Audio Basics University of Pennsylvania Department of Electrical and Systems Engineering Digital Audio Basics ESE250 Spring 2013 Lab 4: Time and Frequency Representation Friday, February 1, 2013 For Lab Session: Thursday,

More information

creation stations AUDIO RECORDING WITH AUDACITY 120 West 14th Street

creation stations AUDIO RECORDING WITH AUDACITY 120 West 14th Street creation stations AUDIO RECORDING WITH AUDACITY 120 West 14th Street www.nvcl.ca techconnect@cnv.org PART I: LAYOUT & NAVIGATION Audacity is a basic digital audio workstation (DAW) app that you can use

More information

Lab 8. ANALYSIS OF COMPLEX SOUNDS AND SPEECH ANALYSIS Amplitude, loudness, and decibels

Lab 8. ANALYSIS OF COMPLEX SOUNDS AND SPEECH ANALYSIS Amplitude, loudness, and decibels Lab 8. ANALYSIS OF COMPLEX SOUNDS AND SPEECH ANALYSIS Amplitude, loudness, and decibels A complex sound with particular frequency can be analyzed and quantified by its Fourier spectrum: the relative amplitudes

More information

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics Sound Section 1 Preview Section 1 Sound Waves Section 2 Sound Intensity and Resonance Section 3 Harmonics Sound Section 1 TEKS The student is expected to: 7A examine and describe oscillatory motion and

More information

C and solving for C gives 1 C

C and solving for C gives 1 C Physics 241 Lab RLC Radios http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html Name: Section 1: 1. Begin today by reviewing the experimental procedure for finding C, L and resonance.

More information

Properties of Sound. Goals and Introduction

Properties of Sound. Goals and Introduction Properties of Sound Goals and Introduction Traveling waves can be split into two broad categories based on the direction the oscillations occur compared to the direction of the wave s velocity. Waves where

More information

Fundamentals of Digital Audio *

Fundamentals of Digital Audio * Digital Media The material in this handout is excerpted from Digital Media Curriculum Primer a work written by Dr. Yue-Ling Wong (ylwong@wfu.edu), Department of Computer Science and Department of Art,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY /6.071 Introduction to Electronics, Signals and Measurement Spring 2006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY /6.071 Introduction to Electronics, Signals and Measurement Spring 2006 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.071/6.071 Introduction to Electronics, Signals and Measurement Spring 006 Lab. Introduction to signals. Goals for this Lab: Further explore the lab hardware. The oscilloscope

More information

MUSC 316 Sound & Digital Audio Basics Worksheet

MUSC 316 Sound & Digital Audio Basics Worksheet MUSC 316 Sound & Digital Audio Basics Worksheet updated September 2, 2011 Name: An Aggie does not lie, cheat, or steal, or tolerate those who do. By submitting responses for this test you verify, on your

More information

Seeing Sound Waves. sound waves in many different forms, and you get to have fun making a loud mess.

Seeing Sound Waves. sound waves in many different forms, and you get to have fun making a loud mess. Seeing Sound Waves Overview: This section is actually a collection of the experiments that build on each other. We ll be playing with sound waves in many different forms, and you get to have fun making

More information

EENG-201 Experiment # 4: Function Generator, Oscilloscope

EENG-201 Experiment # 4: Function Generator, Oscilloscope EENG-201 Experiment # 4: Function Generator, Oscilloscope I. Objectives Upon completion of this experiment, the student should be able to 1. To become familiar with the use of a function generator. 2.

More information

Date Period Name. Write the term that corresponds to the description. Use each term once. beat

Date Period Name. Write the term that corresponds to the description. Use each term once. beat Date Period Name CHAPTER 15 Study Guide Sound Vocabulary Review Write the term that corresponds to the description. Use each term once. beat Doppler effect closed-pipe resonator fundamental consonance

More information

ECE4902 Lab 5 Simulation. Simulation. Export data for use in other software tools (e.g. MATLAB or excel) to compare measured data with simulation

ECE4902 Lab 5 Simulation. Simulation. Export data for use in other software tools (e.g. MATLAB or excel) to compare measured data with simulation ECE4902 Lab 5 Simulation Simulation Export data for use in other software tools (e.g. MATLAB or excel) to compare measured data with simulation Be sure to have your lab data available from Lab 5, Common

More information

Creating Digital Music

Creating Digital Music Chapter 2 Creating Digital Music Chapter 2 exposes students to some of the most important engineering ideas associated with the creation of digital music. Students learn how basic ideas drawn from the

More information

Using Audacity to make a recording

Using Audacity to make a recording Using Audacity to make a recording Audacity is free, open source software for recording and editing sounds. It is available for Mac OS X, Microsoft Windows, GNU/Linux, and other operating systems and can

More information

Anthropogenic Noise and Marine Mammals

Anthropogenic Noise and Marine Mammals Anthropogenic Noise and Marine Mammals Blue Whale Fin Whale John K. Horne Gray Whale Humpback Whale Relevant Web Sites/Reports Oceans of Noise: www.wdcs.org.au Ocean noise and Marine mammals: www.nap.edu

More information

AUDIOSCOPE OPERATING MANUAL

AUDIOSCOPE OPERATING MANUAL AUDIOSCOPE OPERATING MANUAL Online Electronics Audioscope software plots the amplitude of audio signals against time allowing visual monitoring and interpretation of the audio signals generated by Acoustic

More information

Lab 4 Fourier Series and the Gibbs Phenomenon

Lab 4 Fourier Series and the Gibbs Phenomenon Lab 4 Fourier Series and the Gibbs Phenomenon EE 235: Continuous-Time Linear Systems Department of Electrical Engineering University of Washington This work 1 was written by Amittai Axelrod, Jayson Bowen,

More information

Psychology of Language

Psychology of Language PSYCH 150 / LIN 155 UCI COGNITIVE SCIENCES syn lab Psychology of Language Prof. Jon Sprouse 01.10.13: The Mental Representation of Speech Sounds 1 A logical organization For clarity s sake, we ll organize

More information

PHYSICS 220 LAB #1: ONE-DIMENSIONAL MOTION

PHYSICS 220 LAB #1: ONE-DIMENSIONAL MOTION /53 pts Name: Partners: PHYSICS 22 LAB #1: ONE-DIMENSIONAL MOTION OBJECTIVES 1. To learn about three complementary ways to describe motion in one dimension words, graphs, and vector diagrams. 2. To acquire

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waves and Sound 16.1 The Nature of Waves 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. 1 16.1 The Nature of Waves Transverse Wave 16.1 The Nature of Waves

More information

PLEASE NOTE: EVERY ACTIVITY IN THIS SECTION MUST BE SAVED AS A WAV AND UPLOADED TO YOUR BOX.COM FOLDER FOR GRADING.

PLEASE NOTE: EVERY ACTIVITY IN THIS SECTION MUST BE SAVED AS A WAV AND UPLOADED TO YOUR BOX.COM FOLDER FOR GRADING. PLEASE NOTE: EVERY ACTIVITY IN THIS SECTION MUST BE SAVED AS A WAV AND UPLOADED TO YOUR BOX.COM FOLDER FOR GRADING. Multitrack Recording There will often be times when you will want to record more than

More information

MUS 302 ENGINEERING SECTION

MUS 302 ENGINEERING SECTION MUS 302 ENGINEERING SECTION Wiley Ross: Recording Studio Coordinator Email =>ross@email.arizona.edu Twitter=> https://twitter.com/ssor Web page => http://www.arts.arizona.edu/studio Youtube Channel=>http://www.youtube.com/user/wileyross

More information

AUDITORY ILLUSIONS & LAB REPORT FORM

AUDITORY ILLUSIONS & LAB REPORT FORM 01/02 Illusions - 1 AUDITORY ILLUSIONS & LAB REPORT FORM NAME: DATE: PARTNER(S): The objective of this experiment is: To understand concepts such as beats, localization, masking, and musical effects. APPARATUS:

More information

THE SPEAKER. The decibel scale is related to the physical sound intensity measured in watts/cm 2 by the following equation:

THE SPEAKER. The decibel scale is related to the physical sound intensity measured in watts/cm 2 by the following equation: OBJECTIVES: THE SPEAKER 1) Know the definition of "decibel" as a measure of sound intensity or power level. ) Know the relationship between voltage and power level measured in decibels. 3) Illustrate how

More information

5: SOUND WAVES IN TUBES AND RESONANCES INTRODUCTION

5: SOUND WAVES IN TUBES AND RESONANCES INTRODUCTION 5: SOUND WAVES IN TUBES AND RESONANCES INTRODUCTION So far we have studied oscillations and waves on springs and strings. We have done this because it is comparatively easy to observe wave behavior directly

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS WAVES: STANDING WAVES QUESTIONS No Brain Too Small PHYSICS PAN FLUTES (2016;1) Assume the speed of sound in air is 343 m s -1. A pan flute is a musical instrument made of a set of pipes that are closed

More information

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air Resonance Tube Equipment Capstone, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adaptors, channel), voltage sensor, 1.5 m leads (2), (room) thermometer, flat rubber

More information

Physics I Notes: Chapter 13 Sound

Physics I Notes: Chapter 13 Sound Physics I Notes: Chapter 13 Sound I. Properties of Sound A. Sound is the only thing that one can hear! Where do sounds come from?? Sounds are produced by VIBRATING or OSCILLATING OBJECTS! Sound is a longitudinal

More information

Week 15. Mechanical Waves

Week 15. Mechanical Waves Chapter 15 Week 15. Mechanical Waves 15.1 Lecture - Mechanical Waves In this lesson, we will study mechanical waves in the form of a standing wave on a vibrating string. Because it is the last week of

More information

Fourier Series and Gibbs Phenomenon

Fourier Series and Gibbs Phenomenon Fourier Series and Gibbs Phenomenon University Of Washington, Department of Electrical Engineering This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects Real Analog - Circuits 1 Chapter 11: Lab Projects 11.2.1: Signals with Multiple Frequency Components Overview: In this lab project, we will calculate the magnitude response of an electrical circuit and

More information

creation stations AUDIO RECORDING WITH AUDACITY 120 West 14th Street

creation stations AUDIO RECORDING WITH AUDACITY 120 West 14th Street creation stations AUDIO RECORDING WITH AUDACITY 120 West 14th Street www.nvcl.ca techconnect@cnv.org PART I: LAYOUT & NAVIGATION Audacity is a basic digital audio workstation (DAW) app that you can use

More information

Mini Mixer. Learn It! Build It! Core Concept Instructor Set. Materials:

Mini Mixer. Learn It! Build It! Core Concept Instructor Set. Materials: Mini Mixer Core Concept Instructor Set Materials: mydaq Stereo Speaker/Headphones Learn It! The typical speaker design takes advantage of the principals of electromagnetism. As current runs through a wire,

More information

Speaking of Electricity & Magnetism

Speaking of Electricity & Magnetism Speaking of Electricity & Magnetism Pre- Lab: Sound Waves and Their Generation from Speakers A Bit of History Mr. Watson, come here! I want to see you! These words were spoken by Alexander Graham Bell

More information

VOCAL FX PROJECT LESSON 9 TUTORIAL ACTIVITY

VOCAL FX PROJECT LESSON 9 TUTORIAL ACTIVITY LESSON 9 TUTORIAL REQUIRED MATERIALS: VOCAL FX PROJECT STUDENT S GUIDE NAME: PERIOD: TEACHER: CLASS: CLASS TIME: Audio Files (Pre-recorded or Recorded in the classroom) Computer with Mixcraft Mixcraft

More information

Activity P52: LRC Circuit (Voltage Sensor)

Activity P52: LRC Circuit (Voltage Sensor) Activity P52: LRC Circuit (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) AC circuits P52 LRC Circuit.DS (See end of activity) (See end of activity) Equipment Needed Qty

More information

CHAPTER ONE SOUND BASICS. Nitec in Digital Audio & Video Production Institute of Technical Education, College West

CHAPTER ONE SOUND BASICS. Nitec in Digital Audio & Video Production Institute of Technical Education, College West CHAPTER ONE SOUND BASICS Nitec in Digital Audio & Video Production Institute of Technical Education, College West INTRODUCTION http://www.youtube.com/watch?v=s9gbf8y0ly0 LEARNING OBJECTIVES By the end

More information

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Spring Semester, Introduction to EECS 2

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Spring Semester, Introduction to EECS 2 Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Spring Semester, 2007 6.082 Introduction to EECS 2 Lab #1: Matlab and Control of PC Hardware Goal:... 2 Instructions:...

More information

TEAK Sound and Music

TEAK Sound and Music Sound and Music 2 Instructor Preparation Guide Important Terms Wave A wave is a disturbance or vibration that travels through space. The waves move through the air, or another material, until a sensor

More information

Appendix C: Graphing. How do I plot data and uncertainties? Another technique that makes data analysis easier is to record all your data in a table.

Appendix C: Graphing. How do I plot data and uncertainties? Another technique that makes data analysis easier is to record all your data in a table. Appendix C: Graphing One of the most powerful tools used for data presentation and analysis is the graph. Used properly, graphs are an important guide to understanding the results of an experiment. They

More information

Type pwd on Unix did on Windows (followed by Return) at the Octave prompt to see the full path of Octave's working directory.

Type pwd on Unix did on Windows (followed by Return) at the Octave prompt to see the full path of Octave's working directory. MUSC 208 Winter 2014 John Ellinger, Carleton College Lab 2 Octave: Octave Function Files Setup Open /Applications/Octave The Working Directory Type pwd on Unix did on Windows (followed by Return) at the

More information

Reflection and Absorption

Reflection and Absorption Reflection and Absorption Fill in the blanks. Reading Skill: Cause and Effect - questions 3, 5, 10, 15, 16, 17, 20 Do Sounds Bounce? 1. When a sound wave hits a surface, some of its energy bounces, or,

More information

Sampling and Reconstruction

Sampling and Reconstruction Experiment 10 Sampling and Reconstruction In this experiment we shall learn how an analog signal can be sampled in the time domain and then how the same samples can be used to reconstruct the original

More information

Concepts of Physics Lab 1: Motion

Concepts of Physics Lab 1: Motion THE MOTION DETECTOR Concepts of Physics Lab 1: Motion Taner Edis and Peter Rolnick Fall 2018 This lab is not a true experiment; it will just introduce you to how labs go. You will perform a series of activities

More information

Resonance Tube Lab 9

Resonance Tube Lab 9 HB 03-30-01 Resonance Tube Lab 9 1 Resonance Tube Lab 9 Equipment SWS, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adaptors, channel), voltage sensor, 1.5 m leads

More information

Speaking of Electricity & Magnetism

Speaking of Electricity & Magnetism Speaking of Electricity & Magnetism Pre- Lab: Sound Waves and Their Generation by Speakers A Bit of History Mr. Watson, come here! I want to see you! These words were spoken by Alexander Graham Bell to

More information

Laboratory 1: Motion in One Dimension

Laboratory 1: Motion in One Dimension Phys 131L Spring 2018 Laboratory 1: Motion in One Dimension Classical physics describes the motion of objects with the fundamental goal of tracking the position of an object as time passes. The simplest

More information

eqwave USER MANUAL 2.21 Environmental Systems & Services Pty Ltd 8 River Street Richmond, Victoria Australia 3121

eqwave USER MANUAL 2.21 Environmental Systems & Services Pty Ltd 8 River Street Richmond, Victoria Australia 3121 eqwave USER MANUAL 2.21 Environmental Systems & Services Pty Ltd 8 River Street Richmond, Victoria Australia 3121 Phone: +61 3 8420 8999 Fax: +61 3 8420 8900 www.esands.com Table of Contents Introduction...3

More information

Name: SPH 3U Date: Unit 4: Waves and Sound Independent Study Unit. Instrument Chosen:

Name: SPH 3U Date: Unit 4: Waves and Sound Independent Study Unit. Instrument Chosen: Unit 4: Waves and Sound Independent Study Unit Name: Instrument Chosen: In this ISU, you will be investigating sound and waves, as well as analyzing a musical instrument of your choosing. It will be up

More information

Sketch-Up Guide for Woodworkers

Sketch-Up Guide for Woodworkers W Enjoy this selection from Sketch-Up Guide for Woodworkers In just seconds, you can enjoy this ebook of Sketch-Up Guide for Woodworkers. SketchUp Guide for BUY NOW! Google See how our magazine makes you

More information

Lab 6 Instrument Familiarization

Lab 6 Instrument Familiarization Lab 6 Instrument Familiarization What You Need To Know: Voltages and currents in an electronic circuit as in a CD player, mobile phone or TV set vary in time. Throughout todays lab you will investigate

More information

Sound 05/02/2006. Lecture 10 1

Sound 05/02/2006. Lecture 10 1 What IS Sound? Sound is really tiny fluctuations of air pressure units of pressure: N/m 2 or psi (lbs/square-inch) Carried through air at 345 m/s (770 m.p.h) as compressions and rarefactions in air pressure

More information

PRINT YOUR NAME. D 1. What is the wavelength of the wave? (A) 0.5 m (B) 1 m (C) 1.5 m (D) 2 m (E) 3 m

PRINT YOUR NAME. D 1. What is the wavelength of the wave? (A) 0.5 m (B) 1 m (C) 1.5 m (D) 2 m (E) 3 m PRINT YOUR NAME The figure to the right shows a snapshot of the displacement of air in a standing wave on a 1.5 m organ pipe. The following questions refer to this figure. D 1. What is the wavelength of

More information

Creating & Editing Audio: Audacity Document for Follow-Along Exercises. Follow the instructions below to learn the different features of Audacity

Creating & Editing Audio: Audacity Document for Follow-Along Exercises. Follow the instructions below to learn the different features of Audacity Creating & Editing Audio: Audacity Document for Follow-Along Exercises Follow the instructions below to learn the different features of Audacity I. An overview of Audacity II. Create a recording using

More information

describe sound as the transmission of energy via longitudinal pressure waves;

describe sound as the transmission of energy via longitudinal pressure waves; 1 Sound-Detailed Study Study Design 2009 2012 Unit 4 Detailed Study: Sound describe sound as the transmission of energy via longitudinal pressure waves; analyse sound using wavelength, frequency and speed

More information

Laboratory Assignment 2 Signal Sampling, Manipulation, and Playback

Laboratory Assignment 2 Signal Sampling, Manipulation, and Playback Laboratory Assignment 2 Signal Sampling, Manipulation, and Playback PURPOSE This lab will introduce you to the laboratory equipment and the software that allows you to link your computer to the hardware.

More information

PHYSICS 107 LAB #3: WAVES ON STRINGS

PHYSICS 107 LAB #3: WAVES ON STRINGS Section: Monday / Tuesday (circle one) Name: Partners: Total: /40 PHYSICS 107 LAB #3: WAVES ON STRINGS Equipment: Function generator, amplifier, driver, elastic string, pulley and clamp, rod and table

More information

George Mason University Signals and Systems I Spring 2016

George Mason University Signals and Systems I Spring 2016 George Mason University Signals and Systems I Spring 2016 Laboratory Project #4 Assigned: Week of March 14, 2016 Due Date: Laboratory Section, Week of April 4, 2016 Report Format and Guidelines for Laboratory

More information

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air Resonance Tube Equipment Capstone, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adapters, channel), voltage sensor, 1.5 m leads (2), (room) thermometer, flat rubber

More information

Voltage Current and Resistance II

Voltage Current and Resistance II Voltage Current and Resistance II Equipment: Capstone with 850 interface, analog DC voltmeter, analog DC ammeter, voltage sensor, RLC circuit board, 8 male to male banana leads 1 Purpose This is a continuation

More information

Passive Acoustic Monitoring for Marine Mammals at Site C in Jacksonville, FL, February August 2014

Passive Acoustic Monitoring for Marine Mammals at Site C in Jacksonville, FL, February August 2014 Passive Acoustic Monitoring for Marine Mammals at Site C in Jacksonville, FL, February August 2014 A Summary of Work Performed by Amanda J. Debich, Simone Baumann- Pickering, Ana Širović, John A. Hildebrand,

More information

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope.

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope. The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a digital oscilloscope. THEORY The oscilloscope, or scope for short, is a device for drawing

More information

2. Bat Detectors 101. Connect mic to laptop. Generic bat recording/analysis system. All in one hand-held unit. Power source (battery/solar)

2. Bat Detectors 101. Connect mic to laptop. Generic bat recording/analysis system. All in one hand-held unit. Power source (battery/solar) 2. Bat Detectors 101 Generic bat recording/analysis system Power source (battery/solar) Microphone Data storage (Laptop/SD card) Call analysis software 1 All in one hand-held unit Connect mic to laptop

More information

P109. Introductory Acoustics Laboratory. Physics of Sound Lab Manual

P109. Introductory Acoustics Laboratory. Physics of Sound Lab Manual P109 Introductory Acoustics Laboratory Physics of Sound Lab Manual Department of Physics Spring 2013 Table of Contents --PRE-LABS due at the BEGINNING of each LAB Lab 1: Introduction to Sound (no pre-lab)...1

More information

1: INTRODUCTION TO SOUND SIGNALS INTRODUCTION

1: INTRODUCTION TO SOUND SIGNALS INTRODUCTION 1: INTRODUCTION TO SOUND SIGNALS INTRODUCTION Acoustics is the interdisciplinary science that studies sound, or mechanical pressure waves in gases, liquids, and solids. The acoustic labs will use various

More information

Ph 2306 Experiment 2: A Look at Sound

Ph 2306 Experiment 2: A Look at Sound Name ID number Date Lab CRN Lab partner Lab instructor Ph 2306 Experiment 2: A Look at Sound Objective Because sound is something that we can only hear, it is difficult to analyze. You have probably seen

More information

A sound wave is introduced into a medium by the vibration of an object. Sound is a longitudinal, mechanical

A sound wave is introduced into a medium by the vibration of an object. Sound is a longitudinal, mechanical Sound Waves Dancing Liquids A sound wave is introduced into a medium by the vibration of an object. Sound is a longitudinal, mechanical wave. For example, a guitar string forces surrounding air molecules

More information

NALA ATSI SOUND ENGINEERING SCHOOL

NALA ATSI SOUND ENGINEERING SCHOOL NALA ATSI SOUND ENGINEERING SCHOOL PART 1: THE BASICS A) EQUIPMENT/GEAR: What do you need to record? B) IMPORTANT TERMS: What is the difference between Stereo and Mono? What is EQing? What is compression?

More information

Moving Man LAB #2 PRINT THESE PAGES AND TURN THEM IN BEFORE OR ON THE DUE DATE GIVEN IN YOUR .

Moving Man LAB #2 PRINT THESE PAGES AND TURN THEM IN BEFORE OR ON THE DUE DATE GIVEN IN YOUR  . Moving Man LAB #2 Total : Start : Finish : Name: Date: Period: PRINT THESE PAGES AND TURN THEM IN BEFORE OR ON THE DUE DATE GIVEN IN YOUR EMAIL. POSITION Background Graphs are not just an evil thing your

More information

SigCal32 User s Guide Version 3.0

SigCal32 User s Guide Version 3.0 SigCal User s Guide . . SigCal32 User s Guide Version 3.0 Copyright 1999 TDT. All rights reserved. No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical,

More information

4: EXPERIMENTS WITH SOUND PULSES

4: EXPERIMENTS WITH SOUND PULSES 4: EXPERIMENTS WITH SOUND PULSES Sound waves propagate (travel) through air at a velocity of approximately 340 m/s (1115 ft/sec). As a sound wave travels away from a small source of sound such as a vibrating

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

BIO 365L Neurobiology Laboratory. Training Exercise 1: Introduction to the Computer Software: DataPro

BIO 365L Neurobiology Laboratory. Training Exercise 1: Introduction to the Computer Software: DataPro BIO 365L Neurobiology Laboratory Training Exercise 1: Introduction to the Computer Software: DataPro 1. Don t Panic. When you run DataPro, you will see a large number of windows, buttons, and boxes. In

More information

Week 8 AM Modulation and the AM Receiver

Week 8 AM Modulation and the AM Receiver Week 8 AM Modulation and the AM Receiver The concept of modulation and radio transmission is introduced. An AM receiver is studied and the constructed on the prototyping board. The operation of the AM

More information

PHY 1405 Conceptual Physics I Making a Spring Scale. Leader: Recorder: Skeptic: Encourager:

PHY 1405 Conceptual Physics I Making a Spring Scale. Leader: Recorder: Skeptic: Encourager: PHY 1405 Conceptual Physics I Making a Spring Scale Leader: Recorder: Skeptic: Encourager: Materials Helical Spring Newton mass set Slotted gram mass set Mass hanger Laptop Balloon Ring stand with meter

More information

Today s Topic: Beats & Standing Waves

Today s Topic: Beats & Standing Waves Today s Topic: Beats & Standing Waves Learning Goal: SWBAT explain how interference can be caused by frequencies and reflections. Students produce waves on a long slinky. They oscillate the slinky such

More information

Experiment 8: An AC Circuit

Experiment 8: An AC Circuit Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

More information

2809 CAD TRAINING: Part 1 Sketching and Making 3D Parts. Contents

2809 CAD TRAINING: Part 1 Sketching and Making 3D Parts. Contents Contents Getting Started... 2 Lesson 1:... 3 Lesson 2:... 13 Lesson 3:... 19 Lesson 4:... 23 Lesson 5:... 25 Final Project:... 28 Getting Started Get Autodesk Inventor Go to http://students.autodesk.com/

More information

Sound Ch. 26 in your text book

Sound Ch. 26 in your text book Sound Ch. 26 in your text book Objectives Students will be able to: 1) Explain the relationship between frequency and pitch 2) Explain what the natural frequency of an object is 3) Explain how wind and

More information

Recording guidebook This provides information and handy tips on recording vocals and live instruments at home.

Recording guidebook This provides information and handy tips on recording vocals and live instruments at home. Welcome to The Hit Kit s QuickStart instructions! Read on and you ll be set up and making your first steps in the world of music making in no time at all! Remember, you can find complete instructions to

More information

An introduction to physics of Sound

An introduction to physics of Sound An introduction to physics of Sound Outlines Acoustics and psycho-acoustics Sound? Wave and waves types Cycle Basic parameters of sound wave period Amplitude Wavelength Frequency Outlines Phase Types of

More information

1. Describe what happened to the water when a vibrating tuning fork was placed into it.

1. Describe what happened to the water when a vibrating tuning fork was placed into it. Exploring Energy Conclusions Answer the following questions based off the Exploring Energy Stations. Give as much detail as you can and avoid words like it and they. Please note: If the question asks why,

More information

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15 INTRODUCTION The Diligent Analog Discovery (DAD) allows you to design and test both analog and digital circuits. It can produce, measure and

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 2. A string is firmly attached at both ends. When a frequency of 60 Hz is applied, the string vibrates in the standing wave

More information

ECE 2201 PRELAB 6 BJT COMMON EMITTER (CE) AMPLIFIER

ECE 2201 PRELAB 6 BJT COMMON EMITTER (CE) AMPLIFIER ECE 2201 PRELAB 6 BJT COMMON EMITTER (CE) AMPLIFIER Hand Analysis P1. Determine the DC bias for the BJT Common Emitter Amplifier circuit of Figure 61 (in this lab) including the voltages V B, V C and V

More information

Using Audacity free audio recording/playback software to help learn your part

Using Audacity free audio recording/playback software to help learn your part Using Audacity free audio recording/playback software to help learn your part by fellow BHS member, Ted Blank of New England Harmony Brigade - www.nehb.net Background How can a PC help the learning process?

More information

Sound. Use a Microphone to analyze the frequency components of a tuning fork. Record overtones produced with a tuning fork.

Sound. Use a Microphone to analyze the frequency components of a tuning fork. Record overtones produced with a tuning fork. Sound PART ONE - TONES In this experiment, you will analyze various common sounds. You will use a Microphone connected to a computer. Logger Pro will display the waveform of each sound, and will perform

More information

Lab 3: Very Brief Introduction to Micro-Cap SPICE

Lab 3: Very Brief Introduction to Micro-Cap SPICE Lab 3: Very Brief Introduction to Micro-Cap SPICE Starting Micro-Cap SPICE Micro-Cap SPICE is available on CoE machines under the Spectrum Software menu: Programs Spectrum Software Micro-Cap 10 Evaluation

More information