PHY 1405 Conceptual Physics I Making a Spring Scale. Leader: Recorder: Skeptic: Encourager:

Size: px
Start display at page:

Download "PHY 1405 Conceptual Physics I Making a Spring Scale. Leader: Recorder: Skeptic: Encourager:"

Transcription

1 PHY 1405 Conceptual Physics I Making a Spring Scale Leader: Recorder: Skeptic: Encourager: Materials Helical Spring Newton mass set Slotted gram mass set Mass hanger Laptop Balloon Ring stand with meter stick and clamps to support spring 1 latex glove Masking Tape Introduction A fundamental property of matter is that if you stretch it a little bit and then release it, it returns to its original shape. We refer to this type of behavior by saying matter is elastic. Of course some matter is more elastic than other but none is infinitely elastic. If you push or pull on matter hard enough, you can exceed its ability to return to its original shape. In that case we say that we exceeded the elastic limit, and you can change the shape of an object or break it. In this activity we want to explore the elastic behavior of matter. A familiar object which shows elastic behavior over a large distance is a spring. It turns out that there is a very simple relationship between how hard you pull on a spring and the amount it stretches, known as Hooke s Law. In this activity, we will investigate that relationship between the force used to stretch a spring and the amount that the spring stretches. This relationship is the idea behind how spring scales work, and we will make our own spring scale at the end of this lab. Procedure You group has been given an uninflated balloon. Hold one end of it and pull on the other. Q1) Does the balloon stretch? Release the balloon. Q2) Did the balloon return to its original shape? Q3) Would you say the balloon is elastic? Explain. This time stretch the balloon further. Q4) To stretch the balloon further, do you have to pull the same, less or more than before? phys1405, making a spring scale, p. 1/1

2 Your group should have a latex glove. Note some people have an allergy to latex. Do not handle the glove if you are allergic to latex. Stretch the latex glove and then release it. Q5) Was the latex glove easier or more difficult to stretch for a given distance than the balloon? Q6) What properties of a material do you think will affect how elastic it is? I.e. why do you think it is easier to stretch the latex glove than the balloon? Try stretching the glove further. Q7) To stretch the glove further, do you have to pull the glove with the same, less or more force than before? Q8) Complete the following. To stretch an elastic material a greater distance a force must be applied. This suggests that there is a specific type of relationship exhibited between the force required to stretch an elastic material and the distance it stretches. Q9) The force applied to an elastic material is to the distance the material stretches. We will now investigate elasticity quantitatively and test our hypothesis formed in Q9 for the case of a spring. 1. Set-up Use clamps to suspend the provided spring in front of the meter stick mounted to a ring stand. Hang the mass hanger from the bottom of the spring. You want to arrange your experiment such that the position of the bottom of the mass hanger with respect to the meter stick can be easily determined. Your set up should appear as in figure 1. Figure 1 Experimental set up for the determination of Hooke's law. phys1405, making a spring scale, p. 2/2

3 2. Data Acquisition We will now apply a force to stretch the spring by hanging a known weight from the spring. Note the position of the bottom of the mass hanger, then place a.50 N weight on the mass hanger. Record the change in length of the spring in the table in figure 2. Repeat your measurements by adjusting the weights to increase the force on the spring to 1.0 N and then 1.5 N, 2.0 N, and 2.5 N, respectively. For each weight, record the stretch of the spring from the original position of the mass hanger (with no weight added) in the table in figure 2. Figure 2 Data table for Hooke's Law Spring Stretch (cm) Weight (N) Data Analysis Graph the Data An important first step in analyzing data is to graph it. In this case graph your data as Force vs. stretch on an x-y coordinate system. To accomplish this we will use a piece of software called LoggerPro - which we will often use in this course. Please note that graphs are always described by saying the y coordinate vs. the x coordinate. So when you graph Force vs. Stretch, Force will be on the y-axis and Stretch will be on the x-axis. Also, when you construct a graph it should always have the following features. 1. A descriptive title 2. Each axis labeled with the quantity it represents. The units of measure should be included in parentheses following the label. 3. Each axis should have tick marks with values labeled 4. The data should fill the graph appropriately Double click on the icon for LoggerPro. Close the Tip of the Day Box the comes up, then click OK on the dialog box that asks if you want to Continue Without Interface. Enter your data in the table. Put the stretch data in the column labeled x and the force data in the column labeled y. We want better titles than just X and Y. Double click on the X label on the data table. A window will come up where you can enter an appropriate title as well as units for the x-axis. Repeat for the y-axis. At this point, you should have a good graph except it doesn t fill the page very well. Move the cursor over the graph and double click on the graph. The following window phys1405, making a spring scale, p. 3/3

4 should appear.. If not already chosen, click on the tab labeled Axes Options. Underneath the Y-Axis choose Autoscale from 0 from the Scaling Menu and choose the same under the X-Axis. At this point you should have a good graph of your data. Model the Data Q10) When you doubled the force, by what factor did the stretch change? Q11) When you tripled the force, by what factor did the stretch change? Q12) When you quadrupled the force, by what factor did the stretch change? Q13) What type of relationship shows this behavior? Probably in Q13 you answered either direct, proportional, or possibly directly proportional. In such a case we expect a mathematical relationship between force and stretch of the form F = kx where k is a proportionality constant. We can use the software to find k. Click on the button. A window will appear from which you can fit different types of mathematical relationships to your data. Choose Proportional and click on the button which says Try Fit. Click OK to accept the fit. The graph will now have a box which shows the proportionality constant that the computer found labeled as A. Q14) Print a copy of your graph to attach to your report at this point. Q15) Record the proportionality constant found by the computer including units. Q16) Use the proportionality constant to complete the following relationship. F = x phys1405, making a spring scale, p. 4/4

5 The proportionality constant is known as the spring constant. It is usually interpreted as a measure of how stiff a spring is. The greater the spring constant is the stiffer the spring. Q17) Give an interpretation of the meaning of the proportionality constant that you determined by completing the following statement. It takes a force of to stretch the spring by. Q18) Which do you think has a greater spring constant, the balloon or the latex glove? Explain. Q19) Use your answer to Q16) to find the stretch that would result if a force of 1 N were applied. Make a Spring Scale Tape a strip of masking about 50 cm long to the table. Make a mark at the top of the tape labeled 0 N. Use a meter stick to mark 1 N increments on the tape from the 0 N mark using the distance you found in Q19). Subdivide each of your 1 N increments into 5 equal pieces so that your scale will read to the nearest.2 N. When completed your tape should appear something like that shown in figure 3. Figure 3 Sample Scale 0 N 1 N 2 N 3 N Remove any weights from the mass hanger. Attach your scale vertically to the meter stick on the ring stand so that the 0 N mark coincides with the bottom of the mass hanger. Congratulations, you have just made a spring scale. Trade the Newton mass set for a gram mass set at the front of the classroom. phys1405, making a spring scale, p. 5/5

6 Use the spring scale you have just made to find the weight of the following masses. Mass (kg) Weight (N) Q20) Do you observe any relationship between the mass and the weight? Describe it. We will explore the relationship between mass and weight more in Ch. 4 Q21) Attach a portion of your tape to this sheet. phys1405, making a spring scale, p. 6/6

Experiment P20: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier)

Experiment P20: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) PASCO scientific Physics Lab Manual: P20-1 Experiment P20: - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) Concept Time SW Interface Macintosh file Windows file harmonic motion 45 m 700

More information

Experiment P11: Newton's Second Law Constant Force (Force Sensor, Motion Sensor)

Experiment P11: Newton's Second Law Constant Force (Force Sensor, Motion Sensor) PASCO scientific Physics Lab Manual: P11-1 Experiment P11: Newton's Second Law Constant Force (Force Sensor, Motion Sensor) Concept Time SW Interface Macintosh file Windows file Newton s Laws 30 m 500

More information

Activity P40: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier)

Activity P40: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) Name Class Date Activity P40: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Harmonic motion P40

More information

Standing Waves. Equipment

Standing Waves. Equipment rev 12/2016 Standing Waves Equipment Qty Items Parts Number 1 String Vibrator WA-9857 1 Mass and Hanger Set ME-8967 1 Pulley ME-9448B 1 Universal Table Clamp ME-9376B 1 Small Rod ME-8988 2 Patch Cords

More information

Science Binder and Science Notebook. Discussions

Science Binder and Science Notebook. Discussions Lane Tech H. Physics (Joseph/Machaj 2016-2017) A. Science Binder Science Binder and Science Notebook Name: Period: Unit 1: Scientific Methods - Reference Materials The binder is the storage device for

More information

Physics Lab 2.2: Tug-of-War

Physics Lab 2.2: Tug-of-War Physics Lab 2.2: Tug-of-War Name Period Purpose: To investigate the tension in a string, the function of a simple pulley, and a simple tug-of-war. Materials: 1 75 cm string 2 30-cm strings 1000 g of assorted

More information

3. Draw a side-view picture of the situation below, showing the ringstand, rubber band, and your hand when the rubber band is fully stretched.

3. Draw a side-view picture of the situation below, showing the ringstand, rubber band, and your hand when the rubber band is fully stretched. 1 Forces and Motion In the following experiments, you will investigate how the motion of an object is related to the forces acting on it. For our purposes, we ll use the everyday definition of a force

More information

A graph is an effective way to show a trend in data or relating two variables in an experiment.

A graph is an effective way to show a trend in data or relating two variables in an experiment. Chem 111-Packet GRAPHING A graph is an effective way to show a trend in data or relating two variables in an experiment. Consider the following data for exercises #1 and 2 given below. Temperature, ºC

More information

DNAZone Classroom Kit

DNAZone Classroom Kit DNAZone Classroom Kit Kit title Appropriate grade level Abstract Time PA Department of Education standards met with this kit Kit created by: Kit creation date Seeing Math: An Introduction to Graphing High

More information

Experiment 8: An AC Circuit

Experiment 8: An AC Circuit Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

More information

Experiment P31: Waves on a String (Power Amplifier)

Experiment P31: Waves on a String (Power Amplifier) PASCO scientific Vol. 2 Physics Lab Manual: P31-1 Experiment P31: (Power Amplifier) Concept Time SW Interface Macintosh file Windows file Waves 45 m 700 P31 P31_WAVE.SWS EQUIPMENT NEEDED Interface Pulley

More information

Page 21 GRAPHING OBJECTIVES:

Page 21 GRAPHING OBJECTIVES: Page 21 GRAPHING OBJECTIVES: 1. To learn how to present data in graphical form manually (paper-and-pencil) and using computer software. 2. To learn how to interpret graphical data by, a. determining the

More information

Finding the Young Modulus of a Wire Student Worksheet

Finding the Young Modulus of a Wire Student Worksheet Student Worksheet In this experiment you will take measurements to determine the Young modulus of a wire. Theory The Young modulus E of a wire is a measure of the stiffness of a material. It is a very

More information

PHYSICS 133 EXPERIMENTS ELECTRICS CIRCUITS I - 1

PHYSICS 133 EXPERIMENTS ELECTRICS CIRCUITS I - 1 PHYSICS 133 EXPERIMENTS ELECTRICS CIRCUITS I - 1 Electric Circuits I Goals To develop a model for how current flows in a circuit To see how a battery supplies current and voltage to a circuit To measure

More information

Experiment G: Introduction to Graphical Representation of Data & the Use of Excel

Experiment G: Introduction to Graphical Representation of Data & the Use of Excel Experiment G: Introduction to Graphical Representation of Data & the Use of Excel Scientists answer posed questions by performing experiments which provide information about a given problem. After collecting

More information

Motions and Forces Collision I

Motions and Forces Collision I Motions and Forces Collision I Discovery Question What happens when two objects collide? Introduction Thinking About the Question Materials Safety Trial I: Weighing the cart with the Force probe Trial

More information

Appendix 3 - Using A Spreadsheet for Data Analysis

Appendix 3 - Using A Spreadsheet for Data Analysis 105 Linear Regression - an Overview Appendix 3 - Using A Spreadsheet for Data Analysis Scientists often choose to seek linear relationships, because they are easiest to understand and to analyze. But,

More information

Laboratory 1: Motion in One Dimension

Laboratory 1: Motion in One Dimension Phys 131L Spring 2018 Laboratory 1: Motion in One Dimension Classical physics describes the motion of objects with the fundamental goal of tracking the position of an object as time passes. The simplest

More information

Math Labs. Activity 1: Rectangles and Rectangular Prisms Using Coordinates. Procedure

Math Labs. Activity 1: Rectangles and Rectangular Prisms Using Coordinates. Procedure Math Labs Activity 1: Rectangles and Rectangular Prisms Using Coordinates Problem Statement Use the Cartesian coordinate system to draw rectangle ABCD. Use an x-y-z coordinate system to draw a rectangular

More information

Young s Modulus of Fishing Wire

Young s Modulus of Fishing Wire Young s Modulus of Fishing Wire Abstract I have found out that there is a reduction in errors when there are accurate ways of measuring used such as using a micrometre instead of vernier caliphers and

More information

Experiment P01: Understanding Motion I Distance and Time (Motion Sensor)

Experiment P01: Understanding Motion I Distance and Time (Motion Sensor) PASCO scientific Physics Lab Manual: P01-1 Experiment P01: Understanding Motion I Distance and Time (Motion Sensor) Concept Time SW Interface Macintosh file Windows file linear motion 30 m 500 or 700 P01

More information

Evaluation copy. Ocean Floor Mapping. computer OBJECTIVES MATERIALS PROCEDURE

Evaluation copy. Ocean Floor Mapping. computer OBJECTIVES MATERIALS PROCEDURE Name Date Ocean Floor Mapping Computer 12 Oceanographers, marine geologists, and archeologists use sound to investigate objects below the surfaces of bodies of water. A signal is sent out and bounces back

More information

Physics 131 Lab 1: ONE-DIMENSIONAL MOTION

Physics 131 Lab 1: ONE-DIMENSIONAL MOTION 1 Name Date Partner(s) Physics 131 Lab 1: ONE-DIMENSIONAL MOTION OBJECTIVES To familiarize yourself with motion detector hardware. To explore how simple motions are represented on a displacement-time graph.

More information

Motion Lab : Relative Speed. Determine the Speed of Each Car - Gathering information

Motion Lab : Relative Speed. Determine the Speed of Each Car - Gathering information Motion Lab : Introduction Certain objects can seem to be moving faster or slower based on how you see them moving. Does a car seem to be moving faster when it moves towards you or when it moves to you

More information

Experiment P02: Understanding Motion II Velocity and Time (Motion Sensor)

Experiment P02: Understanding Motion II Velocity and Time (Motion Sensor) PASCO scientific Physics Lab Manual: P02-1 Experiment P02: Understanding Motion II Velocity and Time (Motion Sensor) Concept Time SW Interface Macintosh file Windows file linear motion 30 m 500 or 700

More information

Experiment P55: Light Intensity vs. Position (Light Sensor, Motion Sensor)

Experiment P55: Light Intensity vs. Position (Light Sensor, Motion Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P55-1 Experiment P55: (Light Sensor, Motion Sensor) Concept Time SW Interface Macintosh file Windows file illuminance 30 m 500/700 P55 Light vs. Position P55_LTVM.SWS

More information

Standing waves in a string

Standing waves in a string Standing waves in a string Introduction When you shake a string, a pulse travels down its length. When it reaches the end, the pulse can be reflected. A series of regularly occurring pulses will generate

More information

Physics 1021 Experiment 3. Sound and Resonance

Physics 1021 Experiment 3. Sound and Resonance 1 Physics 1021 Sound and Resonance 2 Sound and Resonance Introduction In today's experiment, you will examine beat frequency using tuning forks, a microphone and LoggerPro. You will also produce resonance

More information

Excel Manual X Axis Label Below Chart 2010 >>>CLICK HERE<<<

Excel Manual X Axis Label Below Chart 2010 >>>CLICK HERE<<< Excel Manual X Axis Label Below Chart 2010 When the X-axis is crowded with labels one way to solve the problem is to split the labels for to use two rows of labels enter the two rows of X-axis labels as

More information

Lab 1. Motion in a Straight Line

Lab 1. Motion in a Straight Line Lab 1. Motion in a Straight Line Goals To understand how position, velocity, and acceleration are related. To understand how to interpret the signed (+, ) of velocity and acceleration. To understand how

More information

Graphing Techniques. Figure 1. c 2011 Advanced Instructional Systems, Inc. and the University of North Carolina 1

Graphing Techniques. Figure 1. c 2011 Advanced Instructional Systems, Inc. and the University of North Carolina 1 Graphing Techniques The construction of graphs is a very important technique in experimental physics. Graphs provide a compact and efficient way of displaying the functional relationship between two experimental

More information

Graphing with Excel. Data Table

Graphing with Excel. Data Table Graphing with Excel Copyright L. S. Quimby There are many spreadsheet programs and graphing programs that you can use to produce very nice graphs for your laboratory reports and homework papers, but Excel

More information

Lab 12. Vibrating Strings

Lab 12. Vibrating Strings Lab 12. Vibrating Strings Goals To experimentally determine relationships between fundamental resonant of a vibrating string and its length, its mass per unit length, and tension in string. To introduce

More information

Forensics with TI-NspireTM Technology

Forensics with TI-NspireTM Technology Forensics with TI-NspireTM Technology 2013 Texas Instruments Incorporated 1 education.ti.com Science Objectives Identify counterfeit coins based on the characteristic property of density. Model data using

More information

Statistics 101: Section L Laboratory 10

Statistics 101: Section L Laboratory 10 Statistics 101: Section L Laboratory 10 This lab looks at the sampling distribution of the sample proportion pˆ and probabilities associated with sampling from a population with a categorical variable.

More information

PHYS 1405 Conceptual Physics I Heat Transfer

PHYS 1405 Conceptual Physics I Heat Transfer PHYS 1405 Conceptual Physics I Heat Transfer Leader: Skeptic: Recorder: Encourager: Materials Part 1 Air convection apparatus, candle, flash paper, matches/lighter Part 2 LabPro, Laptop, stainless temperature

More information

Lab 11. Vibrating Strings

Lab 11. Vibrating Strings Lab 11. Vibrating Strings Goals To experimentally determine relationships between fundamental resonant of a vibrating string and its length, its mass per unit length, and tension in string. To introduce

More information

CREATING (AB) SINGLE- SUBJECT DESIGN GRAPHS IN MICROSOFT EXCEL Lets try to graph this data

CREATING (AB) SINGLE- SUBJECT DESIGN GRAPHS IN MICROSOFT EXCEL Lets try to graph this data CREATING (AB) SINGLE- SUBJECT DESIGN GRAPHS IN MICROSOFT EXCEL 2003 Lets try to graph this data Date Baseline Data Date NCR (intervention) 11/10 11/11 11/12 11/13 2 3 3 1 11/15 11/16 11/17 11/18 3 3 2

More information

NCSS Statistical Software

NCSS Statistical Software Chapter 147 Introduction A mosaic plot is a graphical display of the cell frequencies of a contingency table in which the area of boxes of the plot are proportional to the cell frequencies of the contingency

More information

Laboratory Experiment #1 Introduction to Spectral Analysis

Laboratory Experiment #1 Introduction to Spectral Analysis J.B.Francis College of Engineering Mechanical Engineering Department 22-403 Laboratory Experiment #1 Introduction to Spectral Analysis Introduction The quantification of electrical energy can be accomplished

More information

PURPOSE: To understand the how position-time and velocity-time graphs describe motion in the real world.

PURPOSE: To understand the how position-time and velocity-time graphs describe motion in the real world. PURPOSE: To understand the how position-time and velocity-time graphs describe motion in the real world. INTRODUCTION In this lab you ll be performing four activities that will allow you to compare motion

More information

Standing Waves. Miscellaneous Cables and Adapters. Capstone Software Clamp and Pulley White Flexible String

Standing Waves. Miscellaneous Cables and Adapters. Capstone Software Clamp and Pulley White Flexible String Partner 1: Partner 2: Section: Partner 3 (if applicable): Purpose: Continuous waves traveling along a string are reflected when they arrive at the (in this case fixed) end of a string. The reflected wave

More information

Step 1: Set up the variables AB Design. Use the top cells to label the variables that will be displayed on the X and Y axes of the graph

Step 1: Set up the variables AB Design. Use the top cells to label the variables that will be displayed on the X and Y axes of the graph Step 1: Set up the variables AB Design Use the top cells to label the variables that will be displayed on the X and Y axes of the graph Step 1: Set up the variables X axis for AB Design Enter X axis label

More information

M. Conner Name: AP Physics C: RC Circuits Lab

M. Conner Name: AP Physics C: RC Circuits Lab M. Conner Name: Date: Period: Equipment: breadboard jumper wires one 1 k, one 4.7 k, and one 5.6 k resistors one 1000 F, one 2200 F, and one 470 F capacitor one small alligator clip wire variable power

More information

Physics 253 Fundamental Physics Mechanic, September 9, Lab #2 Plotting with Excel: The Air Slide

Physics 253 Fundamental Physics Mechanic, September 9, Lab #2 Plotting with Excel: The Air Slide 1 NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 253 Fundamental Physics Mechanic, September 9, 2010 Lab #2 Plotting with Excel: The Air Slide Lab Write-up Due: Thurs., September 16, 2010 Place

More information

Free vibration of cantilever beam FREE VIBRATION OF CANTILEVER BEAM PROCEDURE

Free vibration of cantilever beam FREE VIBRATION OF CANTILEVER BEAM PROCEDURE FREE VIBRATION OF CANTILEVER BEAM PROCEDURE AIM Determine the damped natural frequency, logarithmic decrement and damping ratio of a given system from the free vibration response Calculate the mass of

More information

Computer Tools for Data Acquisition

Computer Tools for Data Acquisition Computer Tools for Data Acquisition Introduction to Capstone You will be using a computer to assist in taking and analyzing data throughout this course. The software, called Capstone, is made specifically

More information

Experiment A2 Galileo s Inclined Plane Procedure

Experiment A2 Galileo s Inclined Plane Procedure Experiment A2 Galileo s Inclined Plane Procedure Deliverables: Checked lab notebook, Full lab report (including the deliverables from A1) Overview In the first part of this lab, you will perform Galileo

More information

Relationship to theory: This activity involves the motion of bodies under constant velocity.

Relationship to theory: This activity involves the motion of bodies under constant velocity. UNIFORM MOTION Lab format: this lab is a remote lab activity Relationship to theory: This activity involves the motion of bodies under constant velocity. LEARNING OBJECTIVES Read and understand these instructions

More information

Materials. Density, Hooke's law, Young modulus. 174 minutes. 174 marks. Page 1 of 29

Materials. Density, Hooke's law, Young modulus. 174 minutes. 174 marks. Page 1 of 29 Materials Density, Hooke's law, Young modulus 174 minutes 174 marks Page 1 of 29 Q1. A uniform wooden beam of mass 35.0 kg and length 5.52 m is supported by two identical vertical steel cables A and B

More information

Pre-LAB 5 Assignment

Pre-LAB 5 Assignment Name: Lab Partners: Date: Pre-LA 5 Assignment Fundamentals of Circuits III: Voltage & Ohm s Law (Due at the beginning of lab) Directions: Read over the Lab Fundamentals of Circuits III: Voltages :w & Ohm

More information

Physics 4C Chabot College Scott Hildreth

Physics 4C Chabot College Scott Hildreth Physics 4C Chabot College Scott Hildreth The Inverse Square Law for Light Intensity vs. Distance Using Microwaves Experiment Goals: Experimentally test the inverse square law for light using Microwaves.

More information

Overview of Teaching Motion using MEMS Accelerometers

Overview of Teaching Motion using MEMS Accelerometers Overview of Teaching Motion using MEMS Accelerometers Introduction to the RET MEMS Research Project I participated in a Research Experience for Teachers (RET) program sponsored by UC Santa Barbara and

More information

Important Considerations For Graphical Representations Of Data

Important Considerations For Graphical Representations Of Data This document will help you identify important considerations when using graphs (also called charts) to represent your data. First, it is crucial to understand how to create good graphs. Then, an overview

More information

Graph Matching. walk back and forth in front of. Motion Detector

Graph Matching. walk back and forth in front of. Motion Detector Graph Matching One of the most effective methods of describing motion is to plot graphs of position, velocity, and acceleration vs. time. From such a graphical representation, it is possible to determine

More information

Graphing Your Motion

Graphing Your Motion Name Date Graphing Your Motion Palm 33 Graphs made using a Motion Detector can be used to study motion. In this experiment, you will use a Motion Detector to make graphs of your own motion. OBJECTIVES

More information

PHYSICS 220 LAB #1: ONE-DIMENSIONAL MOTION

PHYSICS 220 LAB #1: ONE-DIMENSIONAL MOTION /53 pts Name: Partners: PHYSICS 22 LAB #1: ONE-DIMENSIONAL MOTION OBJECTIVES 1. To learn about three complementary ways to describe motion in one dimension words, graphs, and vector diagrams. 2. To acquire

More information

MATHEMATICAL FUNCTIONS AND GRAPHS

MATHEMATICAL FUNCTIONS AND GRAPHS 1 MATHEMATICAL FUNCTIONS AND GRAPHS Objectives Learn how to enter formulae and create and edit graphs. Familiarize yourself with three classes of functions: linear, exponential, and power. Explore effects

More information

Activity P52: LRC Circuit (Voltage Sensor)

Activity P52: LRC Circuit (Voltage Sensor) Activity P52: LRC Circuit (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) AC circuits P52 LRC Circuit.DS (See end of activity) (See end of activity) Equipment Needed Qty

More information

iworx Sample Lab Experiment AN-2: Compound Action Potentials

iworx Sample Lab Experiment AN-2: Compound Action Potentials Experiment AN-2: Compound Action Potentials Exercise 1: The Compound Action Potential Aim: To apply a brief stimulus at the proximal end of the nerve and record a compound action potential from the distal

More information

CHM 109 Excel Refresher Exercise adapted from Dr. C. Bender s exercise

CHM 109 Excel Refresher Exercise adapted from Dr. C. Bender s exercise CHM 109 Excel Refresher Exercise adapted from Dr. C. Bender s exercise (1 point) (Also see appendix II: Summary for making spreadsheets and graphs with Excel.) You will use spreadsheets to analyze data

More information

DS-0321 FFT Analysis Software

DS-0321 FFT Analysis Software DS-0321 FFT Analysis Software Operation manual Damping factor measurement using Hilbert transform ONO SOKKI CO., LTD. The DS-0321 FFT Analysis software has the Hilbert operation function. A time envelope

More information

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1.

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1. Objectives The purpose of this laboratory project is to introduce to equipment, measurement techniques, and simulations commonly used in AC circuit analysis. In this laboratory session, each student will:

More information

Experiment P24: Motor Efficiency (Photogate, Power Amplifier, Voltage Sensor)

Experiment P24: Motor Efficiency (Photogate, Power Amplifier, Voltage Sensor) PASCO scientific Physics Lab Manual: P24-1 Experiment P24: Motor Efficiency (Photogate, Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh File Windows File energy 30 m 700 P24 Motor

More information

Activity 3. How Do You Measure Up? TheProbJem

Activity 3. How Do You Measure Up? TheProbJem \ Name Date Activity 3 How Do You Measure Up? Height Does increasing the amount of time practicing a sport increase performance levels in that sport? Does decreasing the speed at which a car is driven

More information

Ocean Optics R-2000 Raman Spectrometer Setup and Operating Instructions Arlen Viste and Deanna Donohoue April 2000 Update 2003, DEW

Ocean Optics R-2000 Raman Spectrometer Setup and Operating Instructions Arlen Viste and Deanna Donohoue April 2000 Update 2003, DEW Ocean Optics R-2000 Raman Spectrometer Setup and Operating Instructions Arlen Viste and Deanna Donohoue April 2000 Update 2003, DEW References Raman Systems R-2000 Operating Manual, Version 1.6, Ocean

More information

Chabot College Physics Lab Ohm s Law & Simple Circuits Scott Hildreth

Chabot College Physics Lab Ohm s Law & Simple Circuits Scott Hildreth Chabot College Physics Lab Ohm s Law & Simple Circuits Scott Hildreth Goals: Learn how to make simple circuits, measuring resistances, currents, and voltages across components. Become more comfortable

More information

Speed of Sound in Air

Speed of Sound in Air Speed of Sound in Air OBJECTIVE To explain the condition(s) necessary to achieve resonance in an open tube. To understand how the velocity of sound is affected by air temperature. To determine the speed

More information

Lab 1B LabVIEW Filter Signal

Lab 1B LabVIEW Filter Signal Lab 1B LabVIEW Filter Signal Due Thursday, September 12, 2013 Submit Responses to Questions (Hardcopy) Equipment: LabVIEW Setup: Open LabVIEW Skills learned: Create a low- pass filter using LabVIEW and

More information

(1) Brass, an alloy of copper and zinc, consists of 70% by volume of copper and 30% by volume of zinc.

(1) Brass, an alloy of copper and zinc, consists of 70% by volume of copper and 30% by volume of zinc. PhysicsAndMathsTutor.com 1 Q1. (a) Define the density of a material....... (1) Brass, an alloy of copper and zinc, consists of 70% by volume of copper and 30% by volume of zinc. density of copper = 8.9

More information

4: EXPERIMENTS WITH SOUND PULSES

4: EXPERIMENTS WITH SOUND PULSES 4: EXPERIMENTS WITH SOUND PULSES Sound waves propagate (travel) through air at a velocity of approximately 340 m/s (1115 ft/sec). As a sound wave travels away from a small source of sound such as a vibrating

More information

CHAPTER 15. Cross Section Sheets. None, except batch processing of an input file.

CHAPTER 15. Cross Section Sheets. None, except batch processing of an input file. CHAPTER 15 Cross Section Sheets 15.1 Introduction Objectives Project Manager Menu Bar Application Learn the procedures for laying out cross section sheets. Cross Section Sheets None, except batch processing

More information

J. La Favre Fusion 360 Lesson 5 April 24, 2017

J. La Favre Fusion 360 Lesson 5 April 24, 2017 In this lesson, you will create a funnel like the one in the illustration to the left. The main purpose of this lesson is to introduce you to the use of the Revolve tool. The Revolve tool is similar to

More information

Experiment 3 Topic: Dynamic System Response Week A Procedure

Experiment 3 Topic: Dynamic System Response Week A Procedure Experiment 3 Topic: Dynamic System Response Week A Procedure Laboratory Assistant: Email: Office Hours: LEX-3 Website: Brock Hedlund bhedlund@nd.edu 11/05 11/08 5 pm to 6 pm in B14 http://www.nd.edu/~jott/measurements/measurements_lab/e3

More information

Ohm s Law. Equipment. Setup

Ohm s Law. Equipment. Setup rev 05/2018 Ohm s Law Equipment Qty Item Part Number 1 AC/DC Electronics Laboratory EM-8656 1 Current Sensor CI-6556 1 Multimeter 4 Patch Cords 2 Banana Clips 1 100Ω Resistor Purpose The purpose of this

More information

Graphs. This tutorial will cover the curves of graphs that you are likely to encounter in physics and chemistry.

Graphs. This tutorial will cover the curves of graphs that you are likely to encounter in physics and chemistry. Graphs Graphs are made by graphing one variable which is allowed to change value and a second variable that changes in response to the first. The variable that is allowed to change is called the independent

More information

CHM 152 Lab 1: Plotting with Excel updated: May 2011

CHM 152 Lab 1: Plotting with Excel updated: May 2011 CHM 152 Lab 1: Plotting with Excel updated: May 2011 Introduction In this course, many of our labs will involve plotting data. While many students are nerds already quite proficient at using Excel to plot

More information

total j = BA, [1] = j [2] total

total j = BA, [1] = j [2] total Name: S.N.: Experiment 2 INDUCTANCE AND LR CIRCUITS SECTION: PARTNER: DATE: Objectives Estimate the inductance of the solenoid used for this experiment from the formula for a very long, thin, tightly wound

More information

Physics 3 Lab 5 Normal Modes and Resonance

Physics 3 Lab 5 Normal Modes and Resonance Physics 3 Lab 5 Normal Modes and Resonance 1 Physics 3 Lab 5 Normal Modes and Resonance INTRODUCTION Earlier in the semester you did an experiment with the simplest possible vibrating object, the simple

More information

Lab 4 Projectile Motion

Lab 4 Projectile Motion b Lab 4 Projectile Motion What You Need To Know: x x v v v o ox ox v v ox at 1 t at a x FIGURE 1 Linear Motion Equations The Physics So far in lab you ve dealt with an object moving horizontally or an

More information

Appendix C: Graphing. How do I plot data and uncertainties? Another technique that makes data analysis easier is to record all your data in a table.

Appendix C: Graphing. How do I plot data and uncertainties? Another technique that makes data analysis easier is to record all your data in a table. Appendix C: Graphing One of the most powerful tools used for data presentation and analysis is the graph. Used properly, graphs are an important guide to understanding the results of an experiment. They

More information

Recovering highlight detail in over exposed NEF images

Recovering highlight detail in over exposed NEF images Recovering highlight detail in over exposed NEF images Request I would like to compensate tones in overexposed RAW image, exhibiting a loss of detail in highlight portions. Response Highlight tones can

More information

Momentum and Impulse. Objective. Theory. Investigate the relationship between impulse and momentum.

Momentum and Impulse. Objective. Theory. Investigate the relationship between impulse and momentum. [For International Campus Lab ONLY] Objective Investigate the relationship between impulse and momentum. Theory ----------------------------- Reference -------------------------- Young & Freedman, University

More information

Ph 3455 The Photoelectric Effect

Ph 3455 The Photoelectric Effect Ph 3455 The Photoelectric Effect Required background reading Tipler, Llewellyn, section 3-3 Prelab Questions 1. In this experiment you will be using a mercury lamp as the source of photons. At the yellow

More information

Two Dimensional Motion Activity (Projectile Motion)

Two Dimensional Motion Activity (Projectile Motion) Two Dimensional Motion Activity (Projectile Motion) Purpose A projectile launched into the air either horizontally or at an angle represents Two Dimensional Motion. Using a launcher and two photogates,

More information

Using LTSPICE to Analyze Circuits

Using LTSPICE to Analyze Circuits Using LTSPICE to Analyze Circuits Overview: LTSPICE is circuit simulation software that automatically constructs circuit equations using circuit element models (built in or downloadable). In its modern

More information

Parts to be supplied by the student: Breadboard and wires IRLZ34N N-channel enhancement-mode power MOSFET transistor

Parts to be supplied by the student: Breadboard and wires IRLZ34N N-channel enhancement-mode power MOSFET transistor University of Utah Electrical & Computer Engineering Department ECE 1250 Lab 3 Electronic Speed Control and Pulse Width Modulation A. Stolp, 12/31/12 Rev. Objectives 1 Introduce the Oscilloscope and learn

More information

SolidWorks Design & Technology

SolidWorks Design & Technology SolidWorks Design & Technology Training Course at PHSG Ex 5. Lego man Working with part files 8mm At first glance the Lego man looks complicated but I hope you will see that if you approach a project one

More information

Excel Lab 2: Plots of Data Sets

Excel Lab 2: Plots of Data Sets Excel Lab 2: Plots of Data Sets Excel makes it very easy for the scientist to visualize a data set. In this assignment, we learn how to produce various plots of data sets. Open a new Excel workbook, and

More information

Notes on Experiment #1

Notes on Experiment #1 Notes on Experiment #1 Bring graph paper (cm cm is best) From this week on, be sure to print a copy of each experiment and bring it with you to lab. There will not be any experiment copies available in

More information

Name Date Class Period. What happens to ordered pairs when a rule is applied to the coordinates?

Name Date Class Period. What happens to ordered pairs when a rule is applied to the coordinates? Name Date Class Period Activity B Extension 4.1 Modeling Transformations MATERIALS small white boards or paper markers masking tape yarn QUESTION What happens to ordered pairs when a rule is applied to

More information

MARBLE RACING. Practice Calculating Speed

MARBLE RACING. Practice Calculating Speed MARBLE RACING Practice Calculating Speed Problem How does the angle of the ramp affect the marble s speed? Materials Ruler Meter stick Masking Tape 5 Books Marble Timer Protractor Procedure 1. Mark a finish

More information

Faraday's Law. Objective: In today's experiment you will investigate electromagnetic induction and determine the factors that affect it.

Faraday's Law. Objective: In today's experiment you will investigate electromagnetic induction and determine the factors that affect it. Faraday's Law 1 Objective: In today's experiment you will investigate electromagnetic induction and determine the factors that affect it. Theory: The phenomenon of electromagnetic induction was first studied

More information

Sensors and Scatterplots Activity Excel Worksheet

Sensors and Scatterplots Activity Excel Worksheet Name: Date: Sensors and Scatterplots Activity Excel Worksheet Directions Using our class datasheets, we will analyze additional scatterplots, using Microsoft Excel to make those plots. To get started,

More information

Bioacoustics Lab- Spring 2011 BRING LAPTOP & HEADPHONES

Bioacoustics Lab- Spring 2011 BRING LAPTOP & HEADPHONES Bioacoustics Lab- Spring 2011 BRING LAPTOP & HEADPHONES Lab Preparation: Bring your Laptop to the class. If don t have one you can use one of the COH s laptops for the duration of the Lab. Before coming

More information

Experiment P10: Acceleration of a Dynamics Cart II (Motion Sensor)

Experiment P10: Acceleration of a Dynamics Cart II (Motion Sensor) PASCO scientific Physics Lab Manual: P10-1 Experiment P10: (Motion Sensor) Concept Time SW Interface Macintosh file Windows file Newton s Laws 30 m 500 or 700 P10 Cart Acceleration II P10_CAR2.SWS EQUIPMENT

More information

Principles and Applications of Microfluidic Devices AutoCAD Design Lab - COMSOL import ready

Principles and Applications of Microfluidic Devices AutoCAD Design Lab - COMSOL import ready Principles and Applications of Microfluidic Devices AutoCAD Design Lab - COMSOL import ready Part I. Introduction AutoCAD is a computer drawing package that can allow you to define physical structures

More information

1-What type of graph is used to show trends? 2-What type of graph is used to compare information?

1-What type of graph is used to show trends? 2-What type of graph is used to compare information? AGENDA ABSENT BLOCK 9/3 & 9/4 week-4 TOPIC: the NATURE of SCIENCE OBJ : 9, 10, 11 DO NOW: 1-What type of graph is used to show trends? 2-What type of graph is used to compare information? Science of Life

More information

Properties of Sound. Goals and Introduction

Properties of Sound. Goals and Introduction Properties of Sound Goals and Introduction Traveling waves can be split into two broad categories based on the direction the oscillations occur compared to the direction of the wave s velocity. Waves where

More information

Laboratory 2: Graphing

Laboratory 2: Graphing Purpose It is often said that a picture is worth 1,000 words, or for scientists we might rephrase it to say that a graph is worth 1,000 words. Graphs are most often used to express data in a clear, concise

More information