Exercise 4: Electric and magnetic fields

Size: px
Start display at page:

Download "Exercise 4: Electric and magnetic fields"

Transcription

1 Astronomy 102 Name: Exercise 4: Electric and magnetic fields Learning outcome: Ultimately, to understand how a changing electric field induces a magnetic field, and how a changing magnetic field induces an electric field, and how both are aspects of electromagnetic radiation. Electromagnetic radiation, as we ve seen in previous exercises, is pervasive. Yet until the middle of the 19 th century, physicists widely believed that EM waves could exist in a vacuum. Further, they did not connect EM waves to light, even though some of them suspected that there would be a connection. The magnetic field of a coil of current-carrying wire Equipment needed: a coil of wire, a power supply, the Labquest data loggers with magnetic field strength detectors, a set of small compasses In 1819, Hans Oersted did a demonstration for his graduate students, trying to show that a current in a wire generated a magnetic field; to detect the magnetic field, he held a compass near the wire. At first, his demonstration failed, but then he had the insight to change the orientation of his compass, and the needle turned in response to the current; when he reversed the current flow direction, the needle of the compass turned the other way. Ampère s Law (Maxwell Equation 4) states that an electric current generates a magnetic field, and this exercise will illustrate that point. First, set up the coil and power supply in the middle of the room; if possible, keep the coil upright, but you can lay the coil flat. Don t connect the power supply yet. Array the compasses such that they are scattered inside and outside the coil at differing distances from the coil.. 1. On the next page, sketch the floor plan of the room, indicating where the coil is, and how it is oriented. The instructor will show you which way north is in the room, though the compasses should make that pretty obvious! Turn on the power supply. 2. Show, on your sketch, the orientation of the needles of each compass. Try to make the orientations as accurate as possible, so that you can tell if the needle orientation is only a little affected, or if it is affected a lot. Turn off the power supply. 3. Calibrate all of the Labquest dataloggers and the magnetic field strength detectors by making sure they get the same reading for the terrestrial magnetic

2 field strength. Place a detector near every spot where there is a compass. Turn on the power supply, and note, on the sketch, the value of the magnetic field strength. Do the magnetic field strengths correspond well with the amount of deflection on the compass needles? N 4. As best as you can, draw the magnetic field lines on your sketch. What pattern does this resemble (think back to Exercise 1)?

3 The ring launcher Equipment needed: ring launcher, a set of different mass and material rings, a field extender, and an electronic balance In 1865, James Clerk Maxwell published an article titled A Dynamical Theory of the Electromagnetic Field in the Philosophical Transactions of the Royal Society of London. In the article, he described a set of equations that unified the until-then separate forces of electricity and magnetism as one force called electromagnetism. Eventually, his equations were distilled into the four Maxwell s Equations of Electromagnetism. Because the phenomena were discovered long before Maxwell s time, the individual equations are known by other scientists names. In particular, Faraday s Law (Maxwell Equation 3) suggests that a changing magnetic field induces an electric field. If there is a conductive material, like a wire, in the field, an electric current will be set up in the material. A good illustration of these principles is found in the ring launcher. The launcher is simply a coil of wire attached to an electrical cord when plugged into the wall socket, the alternating current (AC) of a standard building power supply will generate an alternating direction electric current in the coil, which in turn will generate an alternating direction magnetic field within the coil and an alternating direction electric current and magnetic field in any ring of material placed around the coil. The two magnetic fields (inside the coil and inside the ring of material) will repel and move the ring up. Actually, the generation of force is still not that well explained; check out a recent attempt at explanation by a physics professor: This doesn t mean that we can t at least discover some empirical relationships about the force that propels. 5. Place the coil attached to the bulb circuit on the ring launcher and briefly turn on the launcher. What happened to the bulb? Explain this phenomenon, using the word induction or induced. 6. Now carefully launch (or attempt to launch) various rings of different materials and sizes. Record the information in the table below; with the height the ring goes up, you can be approximate.

4 Ring material Ring height (cm) Ring mass (g) Maximum movement height (cm) The rings are all machined to be the same thickness and diameter, so when a ring is double the mass of another ring of the same material, it is twice the height of the other ring. 7. The conductivity of a ring depends on the area though which the current will move for the rings, the area is the inside of the ring. So if one ring is twice the mass of another ring of the same material, what can be said about the ring s area (compared to the other ring s area)? 8. So what is the mathematical relationship between ring height and ring conductivity, roughly?

5 9. Test this theory: copper has about twice the conductivity of aluminum. Look at the data for the aluminum and copper rings of the same height. Which would you predict would have a greater maximum movement height, and why? Was your prediction true? How confident are you about the ring height/conductivity connection in part b? 10. How did the split ring do? Explain the result in terms of Maxwell s Equations. 11. Place the iron core snugly in the middle of the coil, then launch a ring. Record the maximum movement height in centimeters and compare this number to the movement height of the same ring without the iron core. Why does the iron core improve the maximum movement height?

Note on Posted Slides

Note on Posted Slides Note on Posted Slides These are the slides that I intended to show in class on Tue. Mar. 25, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably

More information

Protomotor. Category: Physics: Electricity & Magnetism. Type: Make & Take Rough Parts List: Tools: Drill Hot glue gun

Protomotor. Category: Physics: Electricity & Magnetism. Type: Make & Take Rough Parts List: Tools: Drill Hot glue gun Protomotor Category: Physics: Electricity & Magnetism Type: Make & Take Rough Parts List: 1 Baseboard 1 Dowel 1 Pushpin 1 Penny 4 Magnets 1 Cup 1 Nail 1 Battery 1 Paperclip 1 Brass fastener Electrical

More information

California State University, Bakersfield. Signals and Systems. Luis Medina,

California State University, Bakersfield. Signals and Systems. Luis Medina, Luis Medina, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 9 (Intro, History and Background) July 29 th, 2013 1 Electric Fields An electric field surrounds

More information

SPH3U UNIVERSITY PHYSICS

SPH3U UNIVERSITY PHYSICS SPH3U UNIVERSITY PHYSICS ELECTRICITY & MAGNETISM L Faraday s Discovery (P.588-591) Faraday s Discovery In 1819, when Oersted demonstrated the ability of a steady current to produce a steady magnetic field,

More information

College Physics B - PHY2054C. Transformers & Electromagnetic Waves 10/08/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building

College Physics B - PHY2054C. Transformers & Electromagnetic Waves 10/08/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building College - PHY2054C & Electromagnetic Waves 10/08/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building PHY2054C Second Mini-Exam next week on Wednesday!! Location: UPL 101, 10:10-11:00 AM Exam

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 11: MAGNETISM AND ELECTROMAGNET INDUCTION This lecture will help you understand: Magnetic Poles Magnetic Fields Magnetic Domains Electric Currents and Magnetic Fields

More information

In this lecture. Electromagnetism. Electromagnetism. Oersted s Experiment. Electricity & magnetism are different aspects of the same basic phenomenon:

In this lecture. Electromagnetism. Electromagnetism. Oersted s Experiment. Electricity & magnetism are different aspects of the same basic phenomenon: In this lecture Electromagnetism Electromagnetic Effect Electromagnets Electromechanical Devices Transformers Electromagnetic Effect Electricity & magnetism are different aspects of the same basic phenomenon:

More information

In an unmagnetized piece of iron, the atoms are arranged in domains. In each domain the atoms are aligned, but the domains themselves are random.

In an unmagnetized piece of iron, the atoms are arranged in domains. In each domain the atoms are aligned, but the domains themselves are random. 4/7 Properties of the Magnetic Force 1. Perpendicular to the field and velocity. 2. If the velocity and field are parallel, the force is zero. 3. Roughly (field and vel perp), the force is the product

More information

Qualitative Magnetism Laboratory

Qualitative Magnetism Laboratory Qualitative Magnetism Laboratory 1 Object To learn about magnetism and the many facets of induction from eight dierent experimental stations where various aspects of magnetism will be shown. 2 Equipment

More information

Chapter 25. Electromagnetic Waves

Chapter 25. Electromagnetic Waves Chapter 25 Electromagnetic Waves EXAM # 3 Nov. 20-21 Chapter 23 Chapter 25 Powerpoint Nov. 4 Problems from previous exams Physics in Perspective (pg. 836 837) Chapter 25 Electromagnetic Waves Units of

More information

Section 1 WHAT IS HAPPENING IN THE WIRES?

Section 1 WHAT IS HAPPENING IN THE WIRES? Section 1 WHAT IS HAPPENING IN THE WIRES? INTRODUCTION Electricity is usually invisible. Except for lightning and sparks, you never see it in daily life. However, light bulbs and a magnetic compass can

More information

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT INTRODUCTION Thus far this text has dealt with direct current (DC); that is, current that does not change direction. However, a coil rotating in a magnetic field

More information

Today: Finish Chapter 24. Begin Chapter 25 (Magnetic Induction)

Today: Finish Chapter 24. Begin Chapter 25 (Magnetic Induction) Today: Finish Chapter 24 Begin Chapter 25 (Magnetic Induction) Next Homework posted, due next Fri Dec 11 Electromagnetic Induction Voltage can be induced (created) by a changing magnetic field. C.f. last

More information

Some Review PSC 4011 : Electricity

Some Review PSC 4011 : Electricity Some Review PSC 4011 : Electricity 1. A) Aluminum E) Plastic B) Copper F) Porcelain C) Germanium G) Silicon D) Nichrome H) Silver Of the above materials, name all those that could be used in each of the

More information

Some Review PSC 4011 : Electricity

Some Review PSC 4011 : Electricity Some Review PSC 4011 : Electricity 1. A) Aluminum E) Plastic B) Copper F) Porcelain C) Germanium G) Silicon D) Nichrome H) Silver Of the above materials, name all those that could be used in each of the

More information

Electromagnetism - Grade 11

Electromagnetism - Grade 11 OpenStax-CNX module: m32837 1 Electromagnetism - Grade 11 Rory Adams Free High School Science Texts Project Mark Horner Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative

More information

ELECTROMAGNETIC WAVES HERTZ S EXPERIMENTS & OBSERVATIONS

ELECTROMAGNETIC WAVES HERTZ S EXPERIMENTS & OBSERVATIONS VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT ELECTROMAGNETIC WAVES HERTZ S EXPERIMENTS & OBSERVATIONS PRODUCTION & RECEPTION OF RADIO WAVES Heinrich Rudolf Hertz (1857 1894) was a German physicist who

More information

Tangent Galvanometer Investigating the Relationship Between Current and Magnetic Field

Tangent Galvanometer Investigating the Relationship Between Current and Magnetic Field Investigating the Relationship Between Current and Magnetic Field The tangent galvanometer is a device that allows you to measure the strength of the magnetic field at the center of a coil of wire as a

More information

10 Electromagnetic Interactions

10 Electromagnetic Interactions Lab 10 Electromagnetic Interactions What You Need To Know: The Physics Electricity and magnetism are intrinsically linked and not separate phenomena. A changing magnetic field can create an electric field

More information

MICROWAVE & RF RADIATION: (RFR Information - Technology Newsletter, Full Version)

MICROWAVE & RF RADIATION: (RFR Information - Technology Newsletter, Full Version) MICROWAVE & RF RADIATION: (RFR Information - Technology Newsletter, Full Version) George M. Harris, P.E. (February, 2011) Questions: -What is Microwave & Radiofrequency, (RF), Radiation? -What are its

More information

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

Chapter 21. Alternating Current Circuits and Electromagnetic Waves Chapter 21 Alternating Current Circuits and Electromagnetic Waves AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal

More information

Electromagnetic Induction - A

Electromagnetic Induction - A Electromagnetic Induction - A APPARATUS 1. Two 225-turn coils 2. Table Galvanometer 3. Rheostat 4. Iron and aluminum rods 5. Large circular loop mounted on board 6. AC ammeter 7. Variac 8. Search coil

More information

P202/219 Laboratory IUPUI Physics Department INDUCED EMF

P202/219 Laboratory IUPUI Physics Department INDUCED EMF INDUCED EMF BJECIVE o obtain a qualitative understanding of Faraday s Law of Electromagnetic Induction and Lenz s Law of Induced Current by constructing a simple transformer. EQUIMEN wo identical coils,

More information

Lesson 24 Electromagnetic Waves

Lesson 24 Electromagnetic Waves Physics 30 Lesson 24 Electromagnetic Waves On April 11, 1846, Michael Faraday was scheduled to introduce Sir Charles Wheatstone at a meeting of the Royal Society of London. Unfortunately, Wheatstone had

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 11 Electricity and Magnetism AC circuits and EM waves Resonance in a Series RLC circuit Transformers Maxwell, Hertz and EM waves Electromagnetic Waves 6/18/2007 http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

PHYS 272/fall2015: Assignment EXAM02FALL15

PHYS 272/fall2015: Assignment EXAM02FALL15 PHYS 272/fall2015: Assignment EXAM02FALL15 User: avina For user = avina (14knqt10425 overriding avina for randomization) Logout f15ex02q03 [7 points] (Last updated: Thu Oct 29 08:45:50 2015) [avina] Current

More information

Questions on Electromagnetism

Questions on Electromagnetism Questions on Electromagnetism 1. The dynamo torch, Figure 1, is operated by successive squeezes of the handle. These cause a permanent magnet to rotate within a fixed coil of wires, see Figure 2. Harder

More information

Relevant KS2 Links: SC1 1b, 2a, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m; SC3 1a; MA2 1k; MA3 4b; MA4 1a, 1c, 2a, 2b, 2c, 2e;

Relevant KS2 Links: SC1 1b, 2a, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m; SC3 1a; MA2 1k; MA3 4b; MA4 1a, 1c, 2a, 2b, 2c, 2e; Electromagnetism Relevant KS2 Links: SC1 1b, 2a, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m; SC3 1a; MA2 1k; MA3 4b; MA4 1a, 1c, 2a, 2b, 2c, 2e; Base Concepts Conveyed: Moving charges make magnetic fields.

More information

Power Transformers. Energy Systems Research Laboratory, FIU

Power Transformers. Energy Systems Research Laboratory, FIU Power Transformers By: Alberto Berzoy Energy Systems Research Laboratory Department of Electrical & Computer Engineering Florida International University Miami, Florida, USA Overview 2 Introduction Transformer

More information

Electrical Theory 2 Lessons for Fall Semester:

Electrical Theory 2 Lessons for Fall Semester: Electrical Theory 2 Lessons for Fall Semester: Lesson 1 Magnetism Lesson 2 Introduction to AC Theory Lesson 3 Lesson 4 Capacitance and Capacitive Reactance Lesson 5 Impedance and AC Circuits Lesson 6 AC

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions designed to see whether you understand the main concepts of the chapter. 1. The four areas in Figure 20.34 are in a magnetic field.

More information

12. Electromagnetic Induction

12. Electromagnetic Induction Leaving Cert Physics Long Questions: 2017-2002 12. Electromagnetic Induction Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Contents Electromagnetic

More information

Magnetism and Electricity

Magnetism and Electricity Magnetism and Electricity Investigation 1-Part 1: Investigating Magnets and Materials Force: a push or a pull Magnet: an object that sticks to iron Magnetism: a specific kind of force Attract: when magnets

More information

37 Electromagnetic Induction. Magnetism can produce electric current, and electric current can produce magnetism.

37 Electromagnetic Induction. Magnetism can produce electric current, and electric current can produce magnetism. Magnetism can produce electric current, and electric current can produce magnetism. In 1831, two physicists, Michael Faraday in England and Joseph Henry in the United States, independently discovered that

More information

Magnetism can produce electric current can. produce magnetism Electromagnetic Induction

Magnetism can produce electric current can. produce magnetism Electromagnetic Induction Magnetism can produce electric current, and electric current can produce magnetism. In 1831, two physicists, Michael Faraday in England and Joseph Henry in the United States, independently discovered that

More information

CHAPTER 8: ELECTROMAGNETISM

CHAPTER 8: ELECTROMAGNETISM CHAPTER 8: ELECTROMAGNETISM 8.1: MAGNETIC EFFECT OF A CURRENT-CARRYING CONDUCTOR Electromagnets 1. Conductor is a material that can flow.. 2. Electromagnetism is the study of the relationship between.and..

More information

CHAPTER 5 Test B Lsn 5-6 to 5-8 TEST REVIEW

CHAPTER 5 Test B Lsn 5-6 to 5-8 TEST REVIEW IB PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 5 Test B Lsn 5-6 to 5-8 TEST REVIEW 1. This question is about electric circuits. (a) (b) Define (i) (ii) electromotive force

More information

Self-assessment practice test questions Block 4

Self-assessment practice test questions Block 4 elf-assessment practice test questions Block 4 1 A student uses a bar magnet to magnetise an iron wire, as shown in the diagram. he strokes the N pole of the magnet along the length of the wire, and repeats

More information

Project: Electromagnetic Ring Launcher

Project: Electromagnetic Ring Launcher Project: Electromagnetic Ring Launcher Introduction: In science museums and physics-classrooms an experiment is very commonly demonstrated called the Jumping Ring or Electromagnetic Ring Launcher. The

More information

People quickly saw that you could rearrange this to two other forms:

People quickly saw that you could rearrange this to two other forms: Introduction: Before describing the Ohmmapper, it is worthwhile to review just what an Ohm is and why you may want to map them. In the late 1700's, when electricity was first being discovered, people knew

More information

Magnetic Induction Kit

Magnetic Induction Kit Magnetic Induction Kit Investigating Faraday=s laws of electromagnetic induction DO094 Revision History 1) 003 Original. ) 3.7.07 Corrected EMF definition. Added Appendix. Reformatted. Copyright 003-007

More information

Induction Ring Launcher

Induction Ring Launcher Induction Ring Launcher Matos V, Silva L and Sena Esteves J Introduction The apparatus described in this paper was invented by the American engineer and inventor Elihu Thomson (1853 1937) [1] to demonstrate

More information

Generators and Alternating Current

Generators and Alternating Current Generators and Alternating Current If one end of a magnet is moved in and out of a coil of wire, the induced voltage alternates in direction. The greater the frequency with which the magnet moves in and

More information

Review 6. unlike poles cause the magnets to attract. like poles cause the magnets to repel.

Review 6. unlike poles cause the magnets to attract. like poles cause the magnets to repel. Review 6 1. The two characteristics of all magnets are: they attract and hold Iron, and, if free to move, they will assume roughly a south - north position. 2. Lines of flux always leave the north pole

More information

Brown University Department of Physics. Physics 6 Spring 2006 A SIMPLE FLUXGATE MAGNETOMETER

Brown University Department of Physics. Physics 6 Spring 2006 A SIMPLE FLUXGATE MAGNETOMETER Brown University Department of Physics Physics 6 Spring 2006 1 Introduction A SIMPLE FLUXGATE MAGNETOMETER A simple fluxgate magnetometer can be constructed out available equipment in the lab. It can easily

More information

A 11/89. Instruction Manual and Experiment Guide for the PASCO scientific Model SF-8616 and 8617 COILS SET. Copyright November 1989 $15.

A 11/89. Instruction Manual and Experiment Guide for the PASCO scientific Model SF-8616 and 8617 COILS SET. Copyright November 1989 $15. Instruction Manual and Experiment Guide for the PASCO scientific Model SF-8616 and 8617 012-03800A 11/89 COILS SET Copyright November 1989 $15.00 How to Use This Manual The best way to learn to use the

More information

AC Circuit. What is alternating current? What is an AC circuit?

AC Circuit. What is alternating current? What is an AC circuit? Chapter 21 Alternating Current Circuits and Electromagnetic Waves 1. Alternating Current 2. Resistor in an AC circuit 3. Capacitor in an AC circuit 4. Inductor in an AC circuit 5. RLC series circuit 6.

More information

The Forefathers of Radio. By Bob Buus, W2OD

The Forefathers of Radio. By Bob Buus, W2OD The Forefathers of Radio By Bob Buus, W2OD Benjamin Franklin Jan. 17, 1706 April 17, 1790 (84) Born in Boston Apprentice Printer 1723 to Philadelphia 1723-26 in London Printing Business Retired in 1747

More information

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment)

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) 1. In an A.C. circuit A ; the current leads the voltage by 30 0 and in circuit B, the current lags behind the voltage by 30 0. What is the

More information

Experiment 18: Earth s Magnetic Field

Experiment 18: Earth s Magnetic Field Experiment 18: Earth s Magnetic Field Figure 18.1: Earth s Magnetic Field - Note that each of the 3 elements of the circuit are connected in series. Note the large power supply: large power supply! large

More information

Performance-based assessments for basic electricity competencies

Performance-based assessments for basic electricity competencies Performance-based assessments for basic electricity competencies This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license,

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

CHAPTER 13 REVIEW. Knowledge. Understanding

CHAPTER 13 REVIEW. Knowledge. Understanding CHAPTER 13 REVIEW K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Which of the following

More information

EC-5 MAGNETIC INDUCTION

EC-5 MAGNETIC INDUCTION EC-5 MAGNETIC INDUCTION If an object is placed in a changing magnetic field, or if an object is moving in a non-uniform magnetic field in such a way that it experiences a changing magnetic field, a voltage

More information

Physics 4C Chabot College Scott Hildreth

Physics 4C Chabot College Scott Hildreth Physics 4C Chabot College Scott Hildreth The Inverse Square Law for Light Intensity vs. Distance Using Microwaves Experiment Goals: Experimentally test the inverse square law for light using Microwaves.

More information

Physics of the Electric Guitar

Physics of the Electric Guitar Physics of the Electric Guitar Connections in Electricity and Magnetism First discovered by Michael Faraday, electromagnetic induction is the process of using magnetic fields to produce voltage, and in

More information

Magnetism. Kate, Haley, Jackson, Cole, Tristan, & Taylor Period 1

Magnetism. Kate, Haley, Jackson, Cole, Tristan, & Taylor Period 1 Magnetism Kate, Haley, Jackson, Cole, Tristan, & Taylor Period 1 B=μ 0 I/(2πr) µ0 = 4π 10-7 Tm/A *measured in Teslas Review of Concepts -The magnetic field in the Earth is created by the rotation of the

More information

Producing Electric Current

Producing Electric Current Electromagnetic Induction Working independently in 181, Michael Faraday in Britain and Joseph Henry in the United States both found that moving a loop of wire through a magnetic field caused an electric

More information

ELECTROMAGNETIC INDUCTION

ELECTROMAGNETIC INDUCTION NAME SCHOOL INDEX NUMBER DATE ELECTROMAGNETIC INDUCTION 1. 1995 Q5 P2 (a) (i) State the law of electromagnetic induction ( 2 marks) (ii) Describe an experiment to demonstrate Faraday s law (4 marks) (b)

More information

Walchand Institute of Technology. Basic Electrical and Electronics Engineering. Transformer

Walchand Institute of Technology. Basic Electrical and Electronics Engineering. Transformer Walchand Institute of Technology Basic Electrical and Electronics Engineering Transformer 1. What is transformer? explain working principle of transformer. Electrical power transformer is a static device

More information

Experiment 9: AC circuits

Experiment 9: AC circuits Experiment 9: AC circuits Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Introduction Last week (RC circuit): This week:

More information

LABORATORY PROJECT NO. 1 ELECTROMAGNETIC PROJECTILE LAUNCHER. 350 scientists and engineers from the United States and 60 other countries attended

LABORATORY PROJECT NO. 1 ELECTROMAGNETIC PROJECTILE LAUNCHER. 350 scientists and engineers from the United States and 60 other countries attended 2260 LABORATORY PROJECT NO. 1 ELECTROMAGNETIC PROJECTILE LAUNCHER 1. Introduction 350 scientists and engineers from the United States and 60 other countries attended the 1992 Symposium on Electromagnetic

More information

OPAC 202 Optical Design and Instrumentation. Topic 3 Review Of Geometrical and Wave Optics. Department of

OPAC 202 Optical Design and Instrumentation. Topic 3 Review Of Geometrical and Wave Optics. Department of OPAC 202 Optical Design and Instrumentation Topic 3 Review Of Geometrical and Wave Optics Department of http://www.gantep.edu.tr/~bingul/opac202 Optical & Acustical Engineering Gaziantep University Feb

More information

Unit 4: Electricity (Part 1)

Unit 4: Electricity (Part 1) Unit 4: Electricity (Part 1) Learning Outcomes Students should be able to: 1. Explain what is meant by current, potential difference and resistance, stating their units 2. Draw and interpret circuit diagrams

More information

Exclusive Technology Feature. Leakage Inductance (Part 1): Friend Or Foe? The Underlying Physics. ISSUE: October 2015

Exclusive Technology Feature. Leakage Inductance (Part 1): Friend Or Foe? The Underlying Physics. ISSUE: October 2015 ISSUE: October 2015 Leakage Inductance (Part 1): Friend Or Foe? by Ernie Wittenbreder, Technical Witts, Flagstaff, Ariz There are situations in which leakage inductance in a transformer or coupled inductor

More information

Lab 7: Magnetic Field of Current-Carrying Wires

Lab 7: Magnetic Field of Current-Carrying Wires OBJECTIVES In this lab you will Measure the deflection of a compass needle due to a magnetic field of a wire Test the relation between current and magnetic field strength Calculate the distance dependence

More information

Faraday s Law PHYS 296 Your name Lab section

Faraday s Law PHYS 296 Your name Lab section Faraday s Law PHYS 296 Your name Lab section PRE-LAB QUIZZES 1. What will we investigate in this lab? 2. State and briefly explain Faraday s Law. 3. For the setup in Figure 1, when you move the bar magnet

More information

22-1 (SJP, Phys 2020, Fa '01)

22-1 (SJP, Phys 2020, Fa '01) 22-1 (SJP, Phys 2020, Fa '01) Ch. 22: Electromagnetic waves. We ve seen some of the ideas/discoveries of Ampere, Faraday, and others. So far, E & B seem different but somehow related. In what is perhaps

More information

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Experiment 4: Grounding and Shielding

Experiment 4: Grounding and Shielding 4-1 Experiment 4: Grounding and Shielding Power System Hot (ed) Neutral (White) Hot (Black) 115V 115V 230V Ground (Green) Service Entrance Load Enclosure Figure 1 Typical residential or commercial AC power

More information

Outcomes from this session

Outcomes from this session Outcomes from this session At the end of this session you should be able to Understand what is meant by the term losses. Iron Losses There are three types of iron losses Eddy current losses Hysteresis

More information

1 K Hinds 2012 TRANSFORMERS

1 K Hinds 2012 TRANSFORMERS 1 K Hinds 2012 TRANSFORMERS A transformer changes electrical energy of a given voltage into electrical energy at a different voltage level. It consists of two coils which are not electrically connected,

More information

Team 2228 CougarTech 1. Training L1. Electric Circuits

Team 2228 CougarTech 1. Training L1. Electric Circuits Team 2228 CougarTech 1 Training L1 Electric Circuits Team 2228 CougarTech 2 Objectives Understand: Understand the electrical Language Understand the basic components of electric circuits Understand ohms

More information

Physics 345 Pre-lab 1

Physics 345 Pre-lab 1 Physics 345 Pre-lab 1 Suppose we have a circular aperture in a baffle and two light sources, a point source and a line source. 1. (a) Consider a small light bulb with an even tinier filament (point source).

More information

Lecture 1 Introduction into the Subject

Lecture 1 Introduction into the Subject Lecture 1 Introduction into the Subject Brief History of Electromagnetics: The Early Stages ancient Greeks and Chinese aware of quite a few electric and magnetic phenomena (evidence points back to 600

More information

Inductance in DC Circuits

Inductance in DC Circuits Inductance in DC Circuits Anurag Srivastava Concept: Inductance is characterized by the behavior of a coil of wire in resisting any change of electric current through the coil. Arising from Faraday's law,

More information

END-OF-SUBCOURSE EXAMINATION

END-OF-SUBCOURSE EXAMINATION END-OF-SUBCOURSE EXAMINATION Circle the letter of the correct answer to each question. When you have answered all of the questions, use a Number 2 pencil to transfer your answers to the TSC Form 59. 1.

More information

Units. In the following formulae all lengths are expressed in centimeters. The inductance calculated will be in micro-henries = 10-6 henry.

Units. In the following formulae all lengths are expressed in centimeters. The inductance calculated will be in micro-henries = 10-6 henry. INDUCTANCE Units. In the following formulae all lengths are expressed in centimeters. The inductance calculated will be in micro-henries = 10-6 henry. Long straight round wire. If l is the length; d, the

More information

PART A. 1. List the types of DC Motors. Give any difference between them. BTL 1 Remembering

PART A. 1. List the types of DC Motors. Give any difference between them. BTL 1 Remembering UNIT I DC MACHINES Three phase circuits, a review. Construction of DC machines Theory of operation of DC generators Characteristics of DC generators Operating principle of DC motors Types of DC motors

More information

Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University

Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University 1. OBJECTIVES Introduction to the concept of resonance Observing resonance

More information

Science Sensors/Probes

Science Sensors/Probes Science Sensors/Probes Vernier Sensors and Probes Vernier is a company that manufacturers several items that help educators bring science to life for their students. One of their most prominent contributions

More information

UNIT-04 ELECTROMAGNETIC INDUCTION & ALTERNATING CURRNT

UNIT-04 ELECTROMAGNETIC INDUCTION & ALTERNATING CURRNT UNIT-04 ELECTROMAGNETIC INDUCTION & ALTERNATING CURRNT.MARK QUESTIONS:. What is the magnitude of the induced current in the circular loop-a B C D of radius r, if the straight wire PQ carries a steady current

More information

Faraday's Law. Objective: In today's experiment you will investigate electromagnetic induction and determine the factors that affect it.

Faraday's Law. Objective: In today's experiment you will investigate electromagnetic induction and determine the factors that affect it. Faraday's Law 1 Objective: In today's experiment you will investigate electromagnetic induction and determine the factors that affect it. Theory: The phenomenon of electromagnetic induction was first studied

More information

Magnetic field measurements, Helmholtz pairs, and magnetic induction.

Magnetic field measurements, Helmholtz pairs, and magnetic induction. Magnetic field measurements, Helmholtz pairs, and magnetic induction. Part 1: Measurement of constant magnetic field: 1. Connections and measurement of resistance: a. Pick up the entire magnet assembly

More information

Electromagnetic Induction. Transformer 5/16/11

Electromagnetic Induction. Transformer 5/16/11 ransformer Content 23.1 Principles of electromagnetic induction 23.2 he a.c. generator 23.3 he transformer Learning Outcomes Candidates should be able to: (a) describe an experiment which shows that a

More information

University Physics II Dr. Michael Zelin Thursday 2:00pm 3:50pm. Faraday s Law. Group 9 Braden Reed Shawn Newton Sean-Michael Stubbs

University Physics II Dr. Michael Zelin Thursday 2:00pm 3:50pm. Faraday s Law. Group 9 Braden Reed Shawn Newton Sean-Michael Stubbs University Physics II Dr. Michael Zelin Thursday 2:00pm 3:50pm Faraday s Law by Group 9 Braden Reed Shawn Newton Sean-Michael Stubbs Lab Performed October 27, 2016 Report Submitted November 3, 2016 Objective:

More information

Home Lab 2 Pinhole Viewer Box

Home Lab 2 Pinhole Viewer Box 1 Home Lab 2 Pinhole Viewer Box Overview A pinhole camera, also known as camera obscura, or "dark chamber", is a simple optical imaging device in the shape of a closed box or chamber. In one of its sides

More information

KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS PRECIOUS BLOOD HIGH SCHOOL 232/1 PHYSICS PAPER 2 SCHOOLS NET KENYA Osiligi House, Opposite KCB, Ground Floor Off Magadi

More information

Activity 1 Position, Velocity, Acceleration PHYS 010

Activity 1 Position, Velocity, Acceleration PHYS 010 Name: Date: Partners: Purpose: To investigate and analyse basic properties of motion using a Vernier Go! Motion Detector and logging software. Materials: 1. PC with Logger Lite Software installed. 2. Go!

More information

6 Experiment II: Law of Reflection

6 Experiment II: Law of Reflection Lab 6: Microwaves 3 Suggested Reading Refer to the relevant chapters, 1 Introduction Refer to Appendix D for photos of the apparatus This lab allows you to test the laws of reflection, refraction and diffraction

More information

Exercise 10. Transformers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to transformers

Exercise 10. Transformers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to transformers Exercise 10 Transformers EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the basic operating principles of transformers, as well as with the different ratios of transformers:

More information

PHYSICS AND THE GUITAR JORDY NETZEL LAKEHEAD UNIVERSITY

PHYSICS AND THE GUITAR JORDY NETZEL LAKEHEAD UNIVERSITY PHYSICS AND THE GUITAR JORDY NETZEL LAKEHEAD UNIVERSITY 2 PHYSICS & THE GUITAR TYPE THE DOCUMENT TITLE Wave Mechanics Starting with wave mechanics, or more specifically standing waves, it follows then

More information

Electromagnetic Induction. Chapter 37

Electromagnetic Induction. Chapter 37 Electromagnetic Induction Chapter 37 Wire moves past magnetic field Field moves past wire a voltage is produced. Electromagnetic induction Magnetism is not the source of voltage the wire is not the source

More information

Figure 1. Why is iron a suitable material for the core of a transformer?

Figure 1. Why is iron a suitable material for the core of a transformer? INDUCED POTENTIAL, TRANSFORMERS: NAT GRID Q1. Figure 1 shows the construction of a simple transformer. Figure 1 Why is iron a suitable material for the core of a transformer? Tick one box. It is a metal.

More information

Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Third Semester. Electrical and Electronics Engineering

Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Third Semester. Electrical and Electronics Engineering Question Paper Code : 31391 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013. Third Semester Electrical and Electronics Engineering EE 2201/EE 33/EI 1202/10133 EE 302/080280016 MEASUREMENTS AND

More information

On the axes of Fig. 4.1, sketch the variation with displacement x of the acceleration a of a particle undergoing simple harmonic motion.

On the axes of Fig. 4.1, sketch the variation with displacement x of the acceleration a of a particle undergoing simple harmonic motion. 1 (a) (i) Define simple harmonic motion. (b)... On the axes of Fig. 4.1, sketch the variation with displacement x of the acceleration a of a particle undergoing simple harmonic motion. Fig. 4.1 A strip

More information

12/6/2011. Electromagnetic Induction. Electromagnetic Induction and Electromagnetic Waves. Checking Understanding. Magnetic Flux. Lenz s Law.

12/6/2011. Electromagnetic Induction. Electromagnetic Induction and Electromagnetic Waves. Checking Understanding. Magnetic Flux. Lenz s Law. Electromagnetic Induction and Electromagnetic Waves Topics: Electromagnetic induction Lenz s law Faraday s law The nature of electromagnetic waves The spectrum of electromagnetic waves Electromagnetic

More information

James Clerk Maxwell. Electric and Magnetic Fields

James Clerk Maxwell. Electric and Magnetic Fields L 30 Electricity and Magnetism [7] Electromagnetic Waves Faraday laid the groundwork with his discovery of electromagnetic induction Maxwell added the last piece of the puzzle Hertz made the experimental

More information

Physics 4BL: Electricity and Magnetism Lab manual. UCLA Department of Physics and Astronomy

Physics 4BL: Electricity and Magnetism Lab manual. UCLA Department of Physics and Astronomy Physics 4BL: Electricity and Magnetism Lab manual UCLA Department of Physics and Astronomy Last revision April 16, 2017 1 Lorentz Force Laboratory 2: Lorentz Force In 1897, only 120 years ago, J.J. Thomson

More information

DESIGN, CONSTRUCTION, AND THE TESTING OF AN ELECTRIC MONOCHORD WITH A TWO-DIMENSIONAL MAGNETIC PICKUP. Michael Dickerson

DESIGN, CONSTRUCTION, AND THE TESTING OF AN ELECTRIC MONOCHORD WITH A TWO-DIMENSIONAL MAGNETIC PICKUP. Michael Dickerson DESIGN, CONSTRUCTION, AND THE TESTING OF AN ELECTRIC MONOCHORD WITH A TWO-DIMENSIONAL MAGNETIC PICKUP by Michael Dickerson Submitted to the Department of Physics and Astronomy in partial fulfillment of

More information