The Development of Large-Area Psec- Resolution TOF Systems

Size: px
Start display at page:

Download "The Development of Large-Area Psec- Resolution TOF Systems"

Transcription

1 The Development of Large-Area Psec- Resolution TOF Systems Henry Frisch Enrico Fermi Institute and Physics Dept University of Chicago With Harold Sanders, and Fukun Tang (EFI-EDG) Karen Byrum and Gary Drake (ANL); Tim Credo (IMSA, now Harvard), Shreyas Bhat, and David Yu (students) 1

2 What is the intrinsic limit for TOF for rel.. particles? Typical path lengths for light and electrons are set by physical dimensions of the light collection and amplifying device. These are now on the order of an inch. One inch is 100 psec. That s what we measure- no surprise! (pictures swiped from T. Credo talk at Workshop) 2

3 Major advances for TOF measurements: Microphotograph of Burle 25 micron tube- Greg Sellberg (Fermilab) 1. Development of MCP s with micron pore diameters 3

4 Major advances for TOF measurements: Output at anode from simulation of 10 particles going through fused quartz window- T. Credo, R. Schroll 2. Ability to simulate electronics and systems to predict design performance Jitter on leading edge 0.86 psec 4

5 Major advances for TOF measurements: Simulation with IHP Gen3 SiGe process- Fukun Tang (EFI-EDG) 3. Electronics with typical gate jitters << 1 psec 5

6 Geometry for a Collider Detector 2 by 2 MCP s Beam Axis Coil r is expensive- need a thin segmented detector 6

7 Generating the signal Use Cherenkov light - fast A 2 x 2 MCPactual thickness ~3/4 e.g. Burle (Photonis) with mods per our work 7

8 Anode Structure Anode Structure 1. RF Transmission Lines 2. Summing smaller anode pads into 1 by 1 readout pixels 3. An equal time summake transmission lines equal propagation times 4. Work on leading edge- ringing not a problem for this fine segmentation 8

9 Tim s Equal-Time Collector Equal-time transmissionline traces to output pin 4 Outputseach to a TDC chip (ASIC) Chip to have < 1psec resolution(!) -we are doing this in the EDG (Harold, Tang). 9

10 Mounting electronics on back of MCP- matching Conducting Epoxy- machine deposited by Greg Sellberg (Fermilab) dum 10

11 EDG s Unique Capabilities - Harold s Design for Readout dum Each module ha 5 chips- 4 TDC chips (one per quadrant) and a DAQ `mother chip. Problems are stability, calibration, rel. phase, noise. Both chips are underway 11

12 Tang s work in IHP (200 GHz) design tools dum 12

13 Requirement: Psec-Resolution TDC MCP_PMT Output Signal Start Tang Slide Reference Clock Stop 500pS Tw 1 ps Resolution Time-to-Digital Converter!!! 13

14 Approaches & Possibilities (2) Time Stretcher Zero -walk Disc. 1/4 Tang Slide Receiver Stretcher Driver 11-bit Counter PMT 2 Ghz PLL REF_CLK CK5Ghz psfront-end (Timing Module Option #2) 14

15 Time Stretcher: Simulation Result Tang Slide x200 Stretched Time Interval (Output Signal ) Stretched Time = 274ns (pedestal=74ns) 1ns Time Interval (Input Signal) 0 50ns 100ns 150ns 200ns 250ns 300ns 15

16 VCO: Submission of Oct Ultimate Goal: To build TDC with 1 psec Resolution for Large Scale of Time-of of-flight Detector. Primary Goal: To build 2-Ghz 2 VCO, key module of PLL that generates the TDC reference signal Cycle-to to-cycle Time-jitter < 1 ps To evaluate IHP SG25H1/M4M5 Technology for our applications To gain experiences on using Cadence tools (Virtuoso Analog Environment) Circuit Design (VSE) Simulation (Spectre) Chip Layout (VLE, XLE, VCAR) DRC and LVS Check (Diva, Assura, Calibre) Parasitic Extraction (Diva) Post Layout Simulation (Spectre) Tang Slide GDSII Stream out Validation Tape Out 16

17 Diagram of Phase-Locked Loop Tang Slide F ref PD I 1 CP LF Uc VCO F0 I 2 1 N PD: Phase Detector CP: Charge Pump LF: Loop Filter VCO: Voltage Controlled Oscillator 17

18 IHP (SG25H1) 0.25µm SiGe BiCMOS Technology 0.25µm BiCMOS technology 200Ghz NPN HBT (hetero-junction bipolar transistor) MIM Capacitors (layer2-layer3) layer3) ( 1f/1u 2 ) Inductors (layer3-layer4) layer4) High dielectric stack for RF passive component 5 metal layers (Al) Digital Library: Developing Tang Slide 18

19 Tang Slide SG25 Process Specification 19

20 Tang Slide 2-GHz BiCMOS VCO Schematic Negative Resistance and Current-Limited Voltage Control Oscillator with Accumulating PMOS Varicap and 50Ω Line Drivers 20

21 V-F F Plot (3 model 27C-55C) Frequency Tang Slide Temperature: 27C-55C Supply: VDD=2.5V VControl varied 0.18V VControl 21

22 Phase Noise ( 3 model 27C) Worst offset Tang Slide Best Typical Worst dbc/hz dbc/hz dbc/hz Best Temperature: 27C Supply: VDD=2.5V Tang Slide 22

23 Calculation of Cycle-to to-cycle Jitter Tang Slide 23

24 Virtuoso XL Layout View Tang Slide 24

25 Virtuoso Chip Assembly Router View Tang Slide 25

26 Transit Analysis: Comparison of Schematic and Post Layout Simulations loads Schematic Post Layout Tang Slide 26

27 Simulation for Coil Showering and various PMTs (Shreyas Shreyas Bhat) Right now, we have a simulation using GEANT4, ROOT, connected by a python script GEANT4: pi + enters solenoid, e-e showers ROOT: MCP simulation - get position, time of arrival of charge at anode pads Both parts are approximations Could we make this less home-brew and more modular? Could we use GATE (Geant4 Application for Tomographic Emission) to simplify present and future modifications? Working with Prof. Chin-tu Chen and students, UCHospitals Radiology- they know GATE very well, use it regularly 27

28 Possible Collider Applications Possible Collider Applications Separating b from b-bar in measuring the top mass (lessens combinatorics) Identifying csbar and udbar modes of the W to jj decays in the top mass analysis (need this once one is below 1 GeV, I believe) Separating out vertices from different collisions at the LHC in the z-t plane Identifying photons with vertices at the LHC (requires spacial resolution and converter ahead of the TOF system Locating the Higgs vertex in H to gamma-gamma at the LHC (mass resolution) Kaon ID in same-sign tagging in B physics (X3 in CDF Bs mixing analysis) Fixed target geometries- LHCb, Diffractive LHC Higgs, (and rare K and charm FT experiments) Super-B factory (Nagoya Group, V avra at SLAC) 9/21/

29 The ILC, Radiology Synergies- The ILC, Radiology ANL,Fermilab,SLAC, BSD,Saclay, Photonis ILC- met with Fermilab last week to discuss possible ILC applications- have propsed a workshop with them to explore physics of particle ID at the ILC Positron-Emission Tomography have a draft of a proposal to UC for a program for applying HEP techniques to radiology -with Chin-Tu Chen, Radiology Have agreed to write MOU with Saclay (Patrick LeDu) Have agreed to write MOU with Photonis/Burle to develop new MCPs optimized for timing We are working with Jerry V avra (SLAC) on measurement setups (Karen and Gary at ANL have the setup). 9/21/

30 Status 1. Have a simulation of Cherenkov radiation in MCP into electronics 2. Have placed an order with Burle- have the 1 st of 4 tubes and have a good working relationship (their good will and expertise is a major part of the effort): 10 micron tube in the works; optimized versions discussed 3. Have licence and tools from IHP working on our work stations- Tang is adept and fast working with them. Excellent support from Cadence. 4. Have modeled DAQ/System chip in Altera (Jakob Van Santen: Sr) 5. ANL has put together a test stand with working DAQ, has bought a very-fast laser, has made contact with advanced accel folks:(+students) 6. Have established strong working relationship with Chin-Tu Chen s PET group at UC; source of good students; common interests (with Saclay too). Hope can establish a program in the application of HEP to meds 7. Harold and Tang have a good grasp of the overall system problems and scope, and have a top-level design plus details 8. Have found Greg Sellberg at Fermilab to offer expert precision assembly advice and help (wonderful tools and talent!). 9. Are 9/21/2006 working closely with Jerry HJF DOE V avra Review (SLAC); will work with Saclay 30

31 This was the text on my penultimate slide at the workshop at Arlington TX in April Next Steps 1. Start testing the MK-0 device we have (ANL) 2. Understand the electrical circuit in the MCP and specify the next model (MK-I) we want 3. Finish the design and place the order to IHP for the 1 st chip. THE END (not really) Substantial Progress on all 3 See hep.uchicago.edu/~frisch For more documents and links 31

32 The Electronics Development Group of the EFI Over a million dollars of software tools from a number of vendors- built up by Harold. Nowhere else I know of Major impact on CDF,Atlas, KTeV,, Quiet, Serves not just UC- other institutions send folks here- systems are collaborative Student involvement- we train students in cutting-edge electronics (grad and underg) Highly innovative designs - 32

33 DOE-ADR Funds First chip submission was last week-adr Tang leaves tomorrow for Germany for IHP Workshop-ADR Starting on next submission design Will seed collaborative work with ANL, SLAC (V avra), and, hopefully, Fermilab Would like to discuss longer-term support for a program of Applications of HEP Techniques to Radiology, and also some EDG support. 33

34 Backup Slides Miscellaneous.. 34

35 Got Burle MK-0 0 (our name)- many thanks! Paul Mitchell has done nice things- wonderful test bed for understanding 35

36 V-F F Plot: Comparison of Schematic and Post Layout Simulations Frequency Post Layout Schematic Vcontrol 36

37 Phase Noise: Post Layout Simulations VDD=2.5V Temp.=27C, 55C Phase offset 27C dbc/hz (Sch: ) 55C dbc/hz (Sch: ) 37

38 A real CDF event- r-phi view Key idea- fit t 0 (start) from all tracks 38

39 Conclusion (1) VCO time-jitter met our requirement. (2) Post layout simulation matched schematic simulation very well. (3) Some problems we have encountered with pcell library, layout, DRC, LVS and auto-routing functionalities. (4) Ready for October Submission. 39

40 Shreyas Bhat slide Input Source code, Macros Files Geometry Materials Particle: Type Energy Initial Positions, Momentum Physics processes Verbose level Need to redo geometry (local approx. cylinder) Need to redo field Need to connect two modules (python script in place for older simulation) + Generation, Coil Showering GEANT4 PMT/MCP GEANT4 - swappable Have position, time, momentum, kinetic energy of each particle for each step (including upon entrance to PMT) Pure GEANT4 Get position, time 40

41 Input Macros Files - precompiled source Geometry Materials Particle: Type Energy Initial Positions, Momentum Verbose level But, we need to write Source code for Magnetic Field, recompile GATE + Generation GATE Solenoid Showering GATE PMT/MCP GATE - swap with default digitization module Get position, time Shreyas Bhat slide Physics processes macros file 41

42 The Hard Parts- Reality 1. Haven t yet plugged in a device- all simulation 2. Harold and Paul Mitchell (Burle) have taught us that the hard part is the return path from MCP-OUT to the Gd 3. Haven t yet submitted a design to IHP- don t know the realities of making chips (in progress as we speak) 4. Have no equipment to test these chips when we get them 5. Have no experience on how to measure device performance when we actually get them. 6. We are a small group- lots to do! 42

The Development of Large- Area Psec-Resolution TOF Systems

The Development of Large- Area Psec-Resolution TOF Systems The Development of Large- Area Psec-Resolution TOF Systems Henry Frisch Enrico Fermi Institute and Physics Dept University of Chicago An introduction- many thanks to many folks- my collaborators, and esp.

More information

The Development of Large Area Psec Resolution TOF Systems

The Development of Large Area Psec Resolution TOF Systems The Development of Large Area Psec Resolution TOF Systems Henry Frisch Enrico Fermi Institute and Physics Dept University of Chicago An introduction many thanks to many folks my collaborators, and esp.

More information

Henry J. Frisch Enrico Fermi Institute and Physics Dept University of Chicago. 3/19/2007 IBM Psec Timing 1

Henry J. Frisch Enrico Fermi Institute and Physics Dept University of Chicago. 3/19/2007 IBM Psec Timing 1 The Development of Large- Area Psec TOF Systems Henry J. Frisch Enrico Fermi Institute and Physics Dept University of Chicago 1 Introduction Resolution on time measurements translates into resolution in

More information

Electronics Development for psec Time-of. of-flight Detectors. Enrico Fermi Institute University of Chicago. Fukun Tang

Electronics Development for psec Time-of. of-flight Detectors. Enrico Fermi Institute University of Chicago. Fukun Tang Electronics Development for psec Time-of of-flight Detectors Fukun Tang Enrico Fermi Institute University of Chicago With Karen Byrum and Gary Drake (ANL) Henry Frisch, Mary Heintz and Harold Sanders (UC)

More information

RP220 Trigger update & issues after the new baseline

RP220 Trigger update & issues after the new baseline RP220 Trigger update & issues after the new baseline By P. Le Dû pledu@cea.fr Cracow - P. Le Dû 1 New layout features Consequence of the meeting with RP420 in Paris last September Add 2 vertical detection

More information

Transmission-Line Readout with Good Time and Space Resolution for Large-Area MCP-PMTs

Transmission-Line Readout with Good Time and Space Resolution for Large-Area MCP-PMTs Transmission-Line Readout with Good Time and Space Resolution for Large-Area MCP-PMTs Fukun Tang (UC) C. Ertley, H. Frisch, J-F. Genat, Tyler Natoli (UC) J. Anderson, K. Byrum, G. Drake, E. May (ANL) Greg

More information

Transmission-Line Readout with Good Time and Space Resolution for Large-Area MCP-PMTs

Transmission-Line Readout with Good Time and Space Resolution for Large-Area MCP-PMTs Transmission-Line Readout with Good Time and Space Resolution for Large-Area MCP-PMTs Fukun Tang (UChicago) C. Ertley, H. Frisch, J-F. Genat, Tyler Natoli (UChicago) J. Anderson, K. Byrum, G. Drake, E.

More information

Working Towards Large Area, Picosecond-Level Photodetectors

Working Towards Large Area, Picosecond-Level Photodetectors Working Towards Large Area, Picosecond-Level Photodetectors Matthew Wetstein - Enrico Fermi Institute, University of Chicago HEP Division, Argonne National Lab Introduction: What If? Large Water-Cherenkov

More information

Electronic Readout System for Belle II Imaging Time of Propagation Detector

Electronic Readout System for Belle II Imaging Time of Propagation Detector Electronic Readout System for Belle II Imaging Time of Propagation Detector Dmitri Kotchetkov University of Hawaii at Manoa for Belle II itop Detector Group March 3, 2017 Barrel Particle Identification

More information

A 4 Channel Waveform Sampling ASIC in 130 nm CMOS

A 4 Channel Waveform Sampling ASIC in 130 nm CMOS A 4 Channel Waveform Sampling ASIC in 130 nm CMOS E. Oberla, H. Grabas, J.F. Genat, H. Frisch Enrico Fermi Institute, University of Chicago K. Nishimura, G. Varner University of Hawai I Large Area Picosecond

More information

A 4-Channel Fast Waveform Sampling ASIC in 130 nm CMOS

A 4-Channel Fast Waveform Sampling ASIC in 130 nm CMOS A 4-Channel Fast Waveform Sampling ASIC in 130 nm CMOS E. Oberla, H. Grabas, M. Bogdan, J.F. Genat, H. Frisch Enrico Fermi Institute, University of Chicago K. Nishimura, G. Varner University of Hawai I

More information

MCP-PMT status. Samo Korpar. University of Maribor and Jožef Stefan Institute, Ljubljana Super KEKB - 3st Open Meeting, 7-9 July 2009

MCP-PMT status. Samo Korpar. University of Maribor and Jožef Stefan Institute, Ljubljana Super KEKB - 3st Open Meeting, 7-9 July 2009 , Ljubljana, 7-9 July 2009 Outline: MCP aging waveform readout (MPPC) summary (slide 1) Aging preliminary news from Photonis Old information: Current performance (no Al protection layer): 50% drop of efficiency

More information

Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology

Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology 2009 IEEE Nuclear Science Symposium, Orlando, Florida, October 28 th 2009 Jean-Francois Genat On behalf of Mircea Bogdan 1, Henry J. Frisch

More information

itop System Overview Kurtis Nishimura University of Hawaii October 12, 2012 US Belle II Firmware Review

itop System Overview Kurtis Nishimura University of Hawaii October 12, 2012 US Belle II Firmware Review itop System Overview Kurtis Nishimura University of Hawaii October 12, 2012 US Belle II Firmware Review Detection of Internally Reflected Cherenkov Light Charged particles of same momentum but different

More information

A high resolution TOF counter - a way to compete with a RICH detector?

A high resolution TOF counter - a way to compete with a RICH detector? A high resolution TOF counter - a way to compete with a RICH detector? J. Va vra, SLAC representing D.W.G.S. Leith, B. Ratcliff, and J. Schwiening Note: This work was possible because of the Focusing DIRC

More information

Seminar. BELLE II Particle Identification Detector and readout system. Andrej Seljak advisor: Prof. Samo Korpar October 2010

Seminar. BELLE II Particle Identification Detector and readout system. Andrej Seljak advisor: Prof. Samo Korpar October 2010 Seminar BELLE II Particle Identification Detector and readout system Andrej Seljak advisor: Prof. Samo Korpar October 2010 Outline Motivation BELLE experiment and future upgrade plans RICH proximity focusing

More information

Performance of 8-stage Multianode Photomultipliers

Performance of 8-stage Multianode Photomultipliers Performance of 8-stage Multianode Photomultipliers Introduction requirements by LHCb MaPMT characteristics System integration Test beam and Lab results Conclusions MaPMT Beetle1.2 9 th Topical Seminar

More information

Development of a sampling ASIC for fast detector signals

Development of a sampling ASIC for fast detector signals Development of a sampling ASIC for fast detector signals Hervé Grabas Work done in collaboration with Henry Frisch, Jean-François Genat, Eric Oberla, Gary Varner, Eric Delagnes, Dominique Breton. Signal

More information

Design and Fabrication of a Radiation-Hard 500-MHz Digitizer Using Deep Submicron Technology

Design and Fabrication of a Radiation-Hard 500-MHz Digitizer Using Deep Submicron Technology Design and Fabrication of a Radiation-Hard 500-MHz Digitizer Using Deep Submicron Technology Project Summary K.K. Gan *, M.O. Johnson, R.D. Kass, J. Moore Department of Physics, The Ohio State University

More information

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment K. Matsuoka (KMI, Nagoya Univ.) on behalf of the Belle II TOP group 5th International Workshop on New

More information

The DIRC-like TOF : a time-of-flight Cherenkov detector for particle identification at SuperB

The DIRC-like TOF : a time-of-flight Cherenkov detector for particle identification at SuperB The DIRC-like TOF : a time-of-flight Cherenkov detector for particle identification at SuperB Laboratoire de l Accélérateur Linéaire (CNRS/IN2P3), Université Paris-Sud 11 N. Arnaud, D. Breton, L. Burmistrov,

More information

TOP R&D status. Noriaki Sato (Nagoya Univ.) Super B-Factory Workshop in Hawaii. Status MCP-PMT R&D Summary

TOP R&D status. Noriaki Sato (Nagoya Univ.) Super B-Factory Workshop in Hawaii. Status MCP-PMT R&D Summary TOP R&D status Noriaki Sato (Nagoya Univ.) 2005.04.20 Super B-Factory Workshop in Hawaii Status MCP-PMT R&D Summary Status of TOP Counter, 2005.04.20 Super B-Factory Workshop p.1/22 TOP Counter Ring Imaging

More information

R & D for Aerogel RICH

R & D for Aerogel RICH 1 R & D for Aerogel RICH Ichiro Adachi KEK Proto-Collaboration Meeting March 20, 2008 2 1 st Cherenkov Image detected by 3 hybrid avalanche photon detectors from a beam test About 3:00 AM TODAY Clear image

More information

Development of large readout area, high time resolution RPCs for LEPS2 at SPring-8

Development of large readout area, high time resolution RPCs for LEPS2 at SPring-8 Development of large readout area, high time resolution RPCs for LEPS2 at SPring-8 1 Department of physics, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan E-mail: natsuki@scphys.kyoto-u.ac.jp

More information

Trigger Rate Dependence and Gas Mixture of MRPC for the LEPS2 Experiment at SPring-8

Trigger Rate Dependence and Gas Mixture of MRPC for the LEPS2 Experiment at SPring-8 Trigger Rate Dependence and Gas Mixture of MRPC for the LEPS2 Experiment at SPring-8 1 Institite of Physics, Academia Sinica 128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan cyhsieh0531@gmail.com

More information

A Fast Waveform-Digitizing ASICbased DAQ for a Position & Time Sensing Large-Area Photo-Detector System

A Fast Waveform-Digitizing ASICbased DAQ for a Position & Time Sensing Large-Area Photo-Detector System A Fast Waveform-Digitizing ASICbased DAQ for a Position & Time Sensing Large-Area Photo-Detector System Eric Oberla on behalf of the LAPPD collaboration PHOTODET 2012 12-June-2012 Outline LAPPD overview:

More information

Development of TOP counter for Super B factory

Development of TOP counter for Super B factory 2009/5/11-13 Workshop on fast Cherenkov detectors - Photon detection, DIRC design and DAQ Development of TOP counter for Super B factory - Introduction - Design study - Focusing system - Prototype development

More information

Expanding the scope of fast timing photo-detection with the more affordable, second generation LAPPD TM

Expanding the scope of fast timing photo-detection with the more affordable, second generation LAPPD TM Expanding the scope of fast timing photo-detection with the more affordable, second generation LAPPD TM Evan Angelico, Andrey Elagin, Henry Frisch, Todd Seiss, Eric Spieglan Enrico Fermi Institute, University

More information

Voltage Controlled Quartz Crystal Oscillator (VCXO) ASIC

Voltage Controlled Quartz Crystal Oscillator (VCXO) ASIC General: Voltage Controlled Quartz Oscillator (VCXO) ASIC Paulo Moreira CERN, 21/02/2003 The VCXO ASIC is a test structure designed by the CERN microelectronics group in a commercial 0.25 µm CMOS technology

More information

Picosecond Time Stretcher and Time-to- Amplitude Converter Design and Simulations

Picosecond Time Stretcher and Time-to- Amplitude Converter Design and Simulations Picosecond Time Stretcher and Time-to- Amplitude Converter Design and Simulations Introduction Fukun Tang Enrico Fermi Institute, The University of Chicago Proposed Picosecond (psec) Time Stretcher psec

More information

Development of the MCP-PMT for the Belle II TOP Counter

Development of the MCP-PMT for the Belle II TOP Counter Development of the MCP-PMT for the Belle II TOP Counter July 2, 2014 at NDIP 2014 Shigeki Hirose (Nagoya University) K. Matsuoka, T. Yonekura, T. Iijima, K. Inami, D. Furumura, T. Hayakawa, Y. Kato, R.

More information

Fast Timing Electronics

Fast Timing Electronics Fast Timing Electronics Fast Timing Workshop DAPNIA Saclay, March 8-9th 2007 Jean-François Genat LPNHE Paris Jean-François Genat, Fast Timing Workshop, DAPNIA, Saclay, March 8-9th 2007 Outline Fast detectors,

More information

PoS(LHCP2018)031. ATLAS Forward Proton Detector

PoS(LHCP2018)031. ATLAS Forward Proton Detector . Institut de Física d Altes Energies (IFAE) Barcelona Edifici CN UAB Campus, 08193 Bellaterra (Barcelona), Spain E-mail: cgrieco@ifae.es The purpose of the ATLAS Forward Proton (AFP) detector is to measure

More information

Muon Collider background rejection in ILCroot Si VXD and Tracker detectors

Muon Collider background rejection in ILCroot Si VXD and Tracker detectors Muon Collider background rejection in ILCroot Si VXD and Tracker detectors N. Terentiev (Carnegie Mellon U./Fermilab) MAP 2014 Winter Collaboration Meeting Dec. 3-7, 2014 SLAC New MARS 1.5 TeV Muon Collider

More information

LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring

LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring Eduardo Picatoste Olloqui on behalf of the LHCb Collaboration Universitat de Barcelona, Facultat de Física,

More information

TOP counter for Belle II - post installation R&Ds

TOP counter for Belle II - post installation R&Ds Raita Omori, Genta Muroyama, Noritsugu Tsuzuki, for the Belle II TOP Group Nagoya University E-mail: raita@hepl.phys.nagoya-u.ac.jp, muroyama@hepl.phys.nagoya-u.ac.jp, noritsugu@hepl.phys.nagoya-u.ac.jp

More information

Particle ID in the Belle II Experiment

Particle ID in the Belle II Experiment Particle ID in the Belle II Experiment Oskar Hartbrich University of Hawaii at Manoa for the Belle2 TOP Group IAS HEP 2017, HKUST SuperKEKB & Belle II Next generation B factory at the intensity frontier

More information

Simulation studies of a novel, charge sharing, multi-anode MCP detector

Simulation studies of a novel, charge sharing, multi-anode MCP detector Simulation studies of a novel, charge sharing, multi-anode MCP detector Photek LTD E-mail: tom.conneely@photek.co.uk James Milnes Photek LTD E-mail: james.milnes@photek.co.uk Jon Lapington University of

More information

PoS(PD07)026. Compact, Low-power and Precision Timing Photodetector Readout. Gary S. Varner. Larry L. Ruckman. Jochen Schwiening, Jaroslav Va vra

PoS(PD07)026. Compact, Low-power and Precision Timing Photodetector Readout. Gary S. Varner. Larry L. Ruckman. Jochen Schwiening, Jaroslav Va vra Compact, Low-power and Precision Timing Photodetector Readout Dept. of Physics and Astronomy, University of Hawaii E-mail: varner@phys.hawaii.edu Larry L. Ruckman Dept. of Physics and Astronomy, University

More information

8.882 LHC Physics. Detectors: Muons. [Lecture 11, March 11, 2009] Experimental Methods and Measurements

8.882 LHC Physics. Detectors: Muons. [Lecture 11, March 11, 2009] Experimental Methods and Measurements 8.882 LHC Physics Experimental Methods and Measurements Detectors: Muons [Lecture 11, March 11, 2009] Organization Project 1 (charged track multiplicity) no one handed in so far... well deadline is tomorrow

More information

SiPMs as detectors of Cherenkov photons

SiPMs as detectors of Cherenkov photons SiPMs as detectors of Cherenkov photons Peter Križan University of Ljubljana and J. Stefan Institute Light07, September 26, 2007 Contents Photon detection for Ring Imaging CHerenkov counters Can G-APDs

More information

Pixel hybrid photon detectors

Pixel hybrid photon detectors Pixel hybrid photon detectors for the LHCb-RICH system Ken Wyllie On behalf of the LHCb-RICH group CERN, Geneva, Switzerland 1 Outline of the talk Introduction The LHCb detector The RICH 2 counter Overall

More information

Timing and cross-talk properties of Burle multi-channel MCP PMTs

Timing and cross-talk properties of Burle multi-channel MCP PMTs Timing and cross-talk properties of Burle multi-channel MCP PMTs Peter Križan University of Ljubljana and J. Stefan Institute RICH07, October 15-20, 2007 Contents Motivation for fast single photon detection

More information

Particle identification at Belle-II

Particle identification at Belle-II Particle identification at Belle-II Matthew Barrett University of Hawaiʻi at Mānoa University of Oxford seminar Outline The B factories Belle II and superkekb The TOP subdetector The Belle II sub-detectors

More information

Resolution and Efficiency of Large Area Picosecond Photo-Detectors

Resolution and Efficiency of Large Area Picosecond Photo-Detectors Resolution and Efficiency of Large Area Picosecond Photo-Detectors M. Hutchinson Department of Physics University of Chicago Chicago, IL 60637 (Dated: May 31, 01) This paper presents large area picosecond

More information

CALICE AHCAL overview

CALICE AHCAL overview International Workshop on the High Energy Circular Electron-Positron Collider in 2018 CALICE AHCAL overview Yong Liu (IHEP), on behalf of the CALICE collaboration Nov. 13, 2018 CALICE-AHCAL Progress, CEPC

More information

Radiation-hard/high-speed data transmission using optical links

Radiation-hard/high-speed data transmission using optical links Radiation-hard/high-speed data transmission using optical links K.K. Gan a, B. Abi c, W. Fernando a, H.P. Kagan a, R.D. Kass a, M.R.M. Lebbai b, J.R. Moore a, F. Rizatdinova c, P.L. Skubic b, D.S. Smith

More information

Performance of Microchannel Plates Fabricated Using Atomic Layer Deposition

Performance of Microchannel Plates Fabricated Using Atomic Layer Deposition Performance of Microchannel Plates Fabricated Using Atomic Layer Deposition Andrey Elagin on behalf of the LAPPD collaboration Introduction Performance (timing) Conclusions Large Area Picosecond Photo

More information

The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment

The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment Shruti Shrestha On Behalf of the Mu3e Collaboration International Conference on Technology and Instrumentation in Particle Physics

More information

on-chip Design for LAr Front-end Readout

on-chip Design for LAr Front-end Readout Silicon-on on-sapphire (SOS) Technology and the Link-on on-chip Design for LAr Front-end Readout Ping Gui, Jingbo Ye, Ryszard Stroynowski Department of Electrical Engineering Physics Department Southern

More information

A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC

A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC Jean-Francois Genat Thanh Hung Pham on behalf of W. Da Silva 1, J. David 1, M. Dhellot 1, D. Fougeron 2, R. Hermel 2, J-F. Huppert

More information

RF Time Measuring Technique With Picosecond Resolution and Its Possible Applications at JLab. A. Margaryan

RF Time Measuring Technique With Picosecond Resolution and Its Possible Applications at JLab. A. Margaryan RF Time Measuring Technique With Picosecond Resolution and Its Possible Applications at JLab A. Margaryan 1 Contents Introduction RF time measuring technique: Principles and experimental results of recent

More information

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips Strip Detectors First detector devices using the lithographic capabilities of microelectronics First Silicon detectors -- > strip detectors Can be found in all high energy physics experiments of the last

More information

Overall Design Considerations for a Detector System at HIEPA

Overall Design Considerations for a Detector System at HIEPA Overall Design Considerations for a Detector System at HIEPA plus more specific considerations for tracking subdetectors Jianbei Liu For the USTC HIEPA detector team State Key Laboratory of Particle Detection

More information

SiGe PLL design at 28 GHz

SiGe PLL design at 28 GHz SiGe PLL design at 28 GHz 2015-09-23 Tobias Tired Electrical and Information Technology Lund University May 14, 2012 Waqas Ahmad (Lund University) Presentation outline E-band wireless backhaul Beam forming

More information

Thin Silicon R&D for LC applications

Thin Silicon R&D for LC applications Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC Next Linear Collider:Physic requirements Vertexing 10 µ mgev σ r φ,z(ip ) 5µ m 3 / 2 p sin

More information

MHz phase-locked loop

MHz phase-locked loop SPECIFICATION 1 FEATURES 50 800 MHz phase-locked loop TSMC CMOS 65 nm Output frequency from 50 to 800 MHz Reference frequency from 4 to 30 MHz Power supply 1.2 V CMOS output Supported foundries: TSMC,

More information

Improvement of the MCP-PMT performance under a high count rate

Improvement of the MCP-PMT performance under a high count rate Improvement of the MCP-PMT performance under a high count rate K. Matsuoka (KMI, Nagoya Univ.) S. Hirose, T. Iijima, K. Inami, Y. Kato, K. Kobayashi, Y. Maeda, G. Muroyama, R. Omori, K. Suzuki (Nagoya

More information

Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors Under Radiation Exposure

Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors Under Radiation Exposure 1 Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors Under Radiation Exposure J. Metcalfe, D. E. Dorfan, A. A. Grillo, A. Jones, F. Martinez-McKinney,

More information

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A ] (]]]]) ]]] ]]] Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

Instructions for gg Coincidence with 22 Na. Overview of the Experiment

Instructions for gg Coincidence with 22 Na. Overview of the Experiment Overview of the Experiment Instructions for gg Coincidence with 22 Na 22 Na is a radioactive element that decays by converting a proton into a neutron: about 90% of the time through β + decay and about

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

CMOS Current Starved Voltage Controlled Oscillator Circuit for a Fast Locking PLL

CMOS Current Starved Voltage Controlled Oscillator Circuit for a Fast Locking PLL IEEE INDICON 2015 1570186537 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 60 61 62 63

More information

Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition

Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition P. K. Rout, B. P. Panda, D. P. Acharya and G. Panda 1 Department of Electronics and Communication Engineering, School of Electrical

More information

Design and Implementation of Phase Locked Loop using Current Starved Voltage Controlled Oscillator in GPDK 90nM

Design and Implementation of Phase Locked Loop using Current Starved Voltage Controlled Oscillator in GPDK 90nM International Journal of Advanced Research Foundation Website: www.ijarf.com, Volume 2, Issue 7, July 2015) Design and Implementation of Phase Locked Loop using Starved Voltage Controlled Oscillator in

More information

MK VCXO-BASED FRAME CLOCK FREQUENCY TRANSLATOR. Features. Description. Block Diagram DATASHEET. Pullable Crystal

MK VCXO-BASED FRAME CLOCK FREQUENCY TRANSLATOR. Features. Description. Block Diagram DATASHEET. Pullable Crystal DATASHEET MK2059-01 Description The MK2059-01 is a VCXO (Voltage Controlled Crystal Oscillator) based clock generator that produces common telecommunications reference frequencies. The output clock is

More information

Signal Integrity Design of TSV-Based 3D IC

Signal Integrity Design of TSV-Based 3D IC Signal Integrity Design of TSV-Based 3D IC October 24, 21 Joungho Kim at KAIST joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr 1 Contents 1) Driving Forces of TSV based 3D IC 2) Signal Integrity Issues

More information

Timing and cross-talk properties of BURLE multi-channel MCP PMTs

Timing and cross-talk properties of BURLE multi-channel MCP PMTs Timing and cross-talk properties of BURLE multi-channel MCP PMTs Faculty of Chemistry and Chemical Engineering, University of Maribor, and Jožef Stefan Institute, Ljubljana, Slovenia E-mail: samo.korpar@ijs.si

More information

An EM-aware methodology for a high-speed multi-protocol 28Gbps SerDes design with TSMC 16FFC

An EM-aware methodology for a high-speed multi-protocol 28Gbps SerDes design with TSMC 16FFC An EM-aware methodology for a high-speed multi-protocol 28Gbps SerDes design with TSMC 16FFC Bud Hunter, SerDes Analog IC Design Manager, Wipro Kelly Damalou, Sr. Technical Account Manager, Helic TSMC

More information

Investigation of a Transmission-Line Readout for Building PET Detector Modules

Investigation of a Transmission-Line Readout for Building PET Detector Modules Investigation of a Transmission-Line Readout for Building PET Detector Modules Contents 1. Introduction 2. Simulation Setup 3. Results 4.Summary and Plans Heejong Kim, Univ. of Chicago Pico-Second Workshop

More information

Micromegas calorimetry R&D

Micromegas calorimetry R&D Micromegas calorimetry R&D June 1, 214 The Micromegas R&D pursued at LAPP is primarily intended for Particle Flow calorimetry at future linear colliders. It focuses on hadron calorimetry with large-area

More information

The CMS Outer HCAL SiPM Upgrade.

The CMS Outer HCAL SiPM Upgrade. The CMS Outer HCAL SiPM Upgrade. Artur Lobanov on behalf of the CMS collaboration DESY Hamburg CALOR 2014, Gießen, 7th April 2014 Outline > CMS Hadron Outer Calorimeter > Commissioning > Cosmic data Artur

More information

Signal Processing for Pico-second Resolution Timing Measurements

Signal Processing for Pico-second Resolution Timing Measurements Signal Processing for Pico-second Resolution Timing Measurements Jean-Francois Genat a Gary Varner b Fukun Tang a Henry Frisch a a Enrico Fermi Institute, University of Chicago 5640 S. Ellis Ave, Chicago

More information

Status of the PRad Experiment (E )

Status of the PRad Experiment (E ) Status of the PRad Experiment (E12-11-106) NC A&T State University Outline Experimental apparatus, current status Installation plan Draft run plan Summary PRad Experimental Setup Main detectors and elements:

More information

SiNANO-NEREID Workshop:

SiNANO-NEREID Workshop: SiNANO-NEREID Workshop: Towards a new NanoElectronics Roadmap for Europe Leuven, September 11 th, 2017 WP3/Task 3.2 Connectivity RF and mmw Design Outline Connectivity, what connectivity? High data rates

More information

Performance of High Pixel Density Multi-anode Microchannel Plate Photomultiplier tubes

Performance of High Pixel Density Multi-anode Microchannel Plate Photomultiplier tubes Performance of High Pixel Density Multi-anode Microchannel Plate Photomultiplier tubes Thomas Conneely R&D Engineer, Photek LTD James Milnes, Jon Lapington, Steven Leach 1 page 1 Company overview Founded

More information

MK LOW PHASE NOISE T1/E1 CLOCK GENERATOR. Features. Description. Block Diagram DATASHEET. Pullable Crystal

MK LOW PHASE NOISE T1/E1 CLOCK GENERATOR. Features. Description. Block Diagram DATASHEET. Pullable Crystal DATASHEET LOW PHASE NOISE T1/E1 CLOCK ENERATOR MK1581-01 Description The MK1581-01 provides synchronization and timing control for T1 and E1 based network access or multitrunk telecommunication systems.

More information

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 138 CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 6.1 INTRODUCTION The Clock generator is a circuit that produces the timing or the clock signal for the operation in sequential circuits. The circuit

More information

CLARO A fast Front-End ASIC for Photomultipliers

CLARO A fast Front-End ASIC for Photomultipliers An introduction to CLARO A fast Front-End ASIC for Photomultipliers INFN Milano-Bicocca Paolo Carniti Andrea Giachero Claudio Gotti Matteo Maino Gianluigi Pessina 2 nd SuperB Collaboration Meeting Dec

More information

Lecture 11. Complex Detector Systems

Lecture 11. Complex Detector Systems Lecture 11 Complex Detector Systems 1 Dates 14.10. Vorlesung 1 T.Stockmanns 1.10. Vorlesung J.Ritman 8.10. Vorlesung 3 J.Ritman 04.11. Vorlesung 4 J.Ritman 11.11. Vorlesung 5 J.Ritman 18.11. Vorlesung

More information

Recent Developments in Ultra-High Speed and Large Area Photomultiplier Tubes

Recent Developments in Ultra-High Speed and Large Area Photomultiplier Tubes Recent Developments in Ultra-High Speed and Large Area Photomultiplier Tubes 1, Tom Conneely and Jon Howorth Photek Ltd 26 Castleham Road, St Leonards-on-Sea, East Sussex, TN38 0NR UK E-mail: james.milnes@photek.co.uk

More information

UFSD: Ultra-Fast Silicon Detector

UFSD: Ultra-Fast Silicon Detector UFSD: Ultra-Fast Silicon Detector Basic goals of UFSD A parameterization of time resolution State of the art How to do better Overview of the sensor design First Results Nicolo Cartiglia with M. Baselga,

More information

PID summary. J. Va vra, SLAC. - Barrel PID - Forward PID

PID summary. J. Va vra, SLAC. - Barrel PID - Forward PID PID summary J. Va vra, SLAC - Barrel PID - Forward PID Barrel PID FDIRC progress (SLAC, Maryland, Hawaii, Orsay, Padova) New FDIRC optics ordered. FDIRC mechanical design for the CRT test is in progress.

More information

PoS(VERTEX2015)008. The LHCb VELO upgrade. Sophie Elizabeth Richards. University of Bristol

PoS(VERTEX2015)008. The LHCb VELO upgrade. Sophie Elizabeth Richards. University of Bristol University of Bristol E-mail: sophie.richards@bristol.ac.uk The upgrade of the LHCb experiment is planned for beginning of 2019 unitl the end of 2020. It will transform the experiment to a trigger-less

More information

DHCAL Prototype Construction José Repond Argonne National Laboratory

DHCAL Prototype Construction José Repond Argonne National Laboratory DHCAL Prototype Construction José Repond Argonne National Laboratory Linear Collider Workshop Stanford University March 18 22, 2005 Digital Hadron Calorimeter Fact Particle Flow Algorithms improve energy

More information

National Accelerator Laboratory

National Accelerator Laboratory Fermi National Accelerator Laboratory FERMILAB-Conf-96/103 Trigger Delay Compensation for Beam Synchronous Sampling James Steimel Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510

More information

EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector

EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector Group Members Uttam Kumar Boda Rajesh Tenukuntla Mohammad M Iftakhar Srikanth Yanamanagandla 1 Table

More information

Single-Stage Vernier Time-to-Digital Converter with Sub-Gate Delay Time Resolution

Single-Stage Vernier Time-to-Digital Converter with Sub-Gate Delay Time Resolution Circuits and Systems, 2011, 2, 365-371 doi:10.4236/cs.2011.24050 Published Online October 2011 (http://www.scirp.org/journal/cs) Single-Stage Vernier Time-to-Digital Converter with Sub-Gate Delay Time

More information

Design and Characterization of a Micro-Strip RF Anode for Large- Area based Photodetectors Orsay- Friday, June Hervé Grabas UChicago / CEA

Design and Characterization of a Micro-Strip RF Anode for Large- Area based Photodetectors Orsay- Friday, June Hervé Grabas UChicago / CEA Design and Characterization of a Micro-Strip RF Anode for Large- Area based Photodetectors Orsay- Friday, June 15. 2012 Hervé Grabas UChicago / CEA Saclay Irfu. Outline Introduction Precise timing in physics

More information

X-ray Detectors: What are the Needs?

X-ray Detectors: What are the Needs? X-ray Detectors: What are the Needs? Sol M. Gruner Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Ithaca, NY 14853 smg26@cornell.edu 1 simplified view of the Evolution of Imaging Synchrotron

More information

VLSI Chip Design Project TSEK06

VLSI Chip Design Project TSEK06 VLSI Chip Design Project TSEK06 Project Description and Requirement Specification Version 1.1 Project: 100 MHz, 10 dbm direct VCO modulating FM transmitter Project number: 4 Project Group: Name Project

More information

Integrated CMOS sensor technologies for the CLIC tracker

Integrated CMOS sensor technologies for the CLIC tracker CLICdp-Conf-2017-011 27 June 2017 Integrated CMOS sensor technologies for the CLIC tracker M. Munker 1) On behalf of the CLICdp collaboration CERN, Switzerland, University of Bonn, Germany Abstract Integrated

More information

Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive Components.

Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive Components. 3 rd International Bhurban Conference on Applied Sciences and Technology, Bhurban, Pakistan. June 07-12, 2004 Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive

More information

The LHCb Upgrade BEACH Simon Akar on behalf of the LHCb collaboration

The LHCb Upgrade BEACH Simon Akar on behalf of the LHCb collaboration The LHCb Upgrade BEACH 2014 XI International Conference on Hyperons, Charm and Beauty Hadrons! University of Birmingham, UK 21-26 July 2014 Simon Akar on behalf of the LHCb collaboration Outline The LHCb

More information

Production of HPDs for the LHCb RICH Detectors

Production of HPDs for the LHCb RICH Detectors Production of HPDs for the LHCb RICH Detectors LHCb RICH Detectors Hybrid Photon Detector Production Photo Detector Test Facilities Test Results Conclusions IEEE Nuclear Science Symposium Wyndham, 24 th

More information

High collection efficiency MCPs for photon counting detectors

High collection efficiency MCPs for photon counting detectors High collection efficiency MCPs for photon counting detectors D. A. Orlov, * T. Ruardij, S. Duarte Pinto, R. Glazenborg and E. Kernen PHOTONIS Netherlands BV, Dwazziewegen 2, 9301 ZR Roden, The Netherlands

More information

EECS240 Spring Advanced Analog Integrated Circuits Lecture 1: Introduction. Elad Alon Dept. of EECS

EECS240 Spring Advanced Analog Integrated Circuits Lecture 1: Introduction. Elad Alon Dept. of EECS EECS240 Spring 2009 Advanced Analog Integrated Circuits Lecture 1: Introduction Elad Alon Dept. of EECS Course Focus Focus is on analog design Typically: Specs circuit topology layout Will learn spec-driven

More information

Status of ATLAS & CMS Experiments

Status of ATLAS & CMS Experiments Status of ATLAS & CMS Experiments Atlas S.C. Magnet system Large Air-Core Toroids for µ Tracking 2Tesla Solenoid for inner Tracking (7*2.5m) ECAL & HCAL outside Solenoid Solenoid integrated in ECAL Barrel

More information

TAPR TICC Timestamping Counter Operation Manual. Introduction

TAPR TICC Timestamping Counter Operation Manual. Introduction TAPR TICC Timestamping Counter Operation Manual Revised: 23 November 2016 2016 Tucson Amateur Packet Radio Corporation Introduction The TAPR TICC is a two-channel timestamping counter ("TSC") implemented

More information

The MUSE experiment. Technical Overview. Guy Ron (for the MUSE collaboration) Hebrew University of Jerusalem

The MUSE experiment. Technical Overview. Guy Ron (for the MUSE collaboration) Hebrew University of Jerusalem The MUSE experiment Technical Overview Guy Ron (for the MUSE collaboration) Hebrew University of Jerusalem MUSE is not your garden variety scattering experiment Low beam flux Large angle, non-magnetic

More information