Exercise 2-1. Battery Feed Power Supply

Size: px
Start display at page:

Download "Exercise 2-1. Battery Feed Power Supply"

Transcription

1 Exercise 2-1 Battery Feed Power Supply When you have completed this exercise, you will be able to demonstrate how the central office supplies power to analog telephone sets. A telephone set requires electrical power to operate. However, an analog telephone set is not connected to an AC power outlet like many other electric appliances. It is powered via the telephone line by a battery feed circuit (non-interruptible DC power source) located in the central office of the local telephone company. This explains why analog telephone sets are still operative during electric power failures. Analog telephone sets with programmed function keys and an alphanumerical display are often powered by an AC power outlet in addition to the battery feed circuit in the local central office. This is because their power consumption is generally higher than that of basic analog telephone sets, and exceeds the maximum value allowed for one telephone set. This is also because a continuous source of power is required to keep data (such as telephone numbers) stored in the telephone memory. Figure 2-2 is a simplified diagram showing how the central office supplies DC power to an analog telephone set. The DC voltage from the battery feed circuit is applied to the subscriber loop interface circuit () of each line interface in the central office. The routes the DC voltage to the T and R terminals of the telephone line via current-limiting resistors (1 and 2 ). In case of an accidental short-circuit between the T and R terminals of the line interface, these resistors prevent damages to the interface circuitry by limiting the DC current flowing through the. The T terminal of the telephone line is connected to the positive terminal of the battery feed circuit through one of the current-limiting resistor and the. Notice that this terminal of the battery feed circuit is connected to ground. This results in a negative-polarity (with respect to ground) DC voltage on the R terminal of the telephone line. Positivepolarity voltages are generally avoided in outside telephone cables because if there is any moisture present, copper from the wires may be lost through electrolysis.

2 CENTRAL OFFICE LINE INTERFACE T TELEPHONE LINE (LOCAL LOOP) T CURRENT-LIMITING RESISTORS 1 ANALOG TELEPHONE SET R DC LOOP CURRENT (I L ) R 2 48 V BATTERY FEED CIRCUIT The value of the DC voltage provided by the battery feed circuit ranges between 24 and 104 V from one country to another. However, the DC voltage value is standardized to 48 V in North America and many other countries such as Brazil, Peru, Ireland, Spain, Sweden, China, Japan, Korea, and Australia. When the telephone handset is lifted off the cradle, the switchhook closes and DC current flows in the telephone set through the, current-limiting resistors, and the telephone line. The value of the DC loop current typically ranges from 20 to 80 ma under normal operating conditions, and is usually limited to 120 ma when the T and R terminals of the line interface are accidentally short-circuited. Figure 2-3 is an equivalent electrical circuit of the telephone set and central office shown in Figure 2-2, when the handset is lifted off the cradle. The DC loop current (I L ) depends on the battery feed circuit voltage ( ), the combined resistance of the two current-limiting resistors ( ), the telephone line resistance (R L ), and the equivalent resistance of the telephone set between the T and R terminals (R T ). Current I L can be calculated using the following equation. I L R L R T (1)

3 ANALOG TELEPHONE SET (OFF-HOOK) TELEPHONE LINE R L CENTRAL OFFICE R T I L I = L + R L + R T The combined resistance of the current-limiting resistors is usually The equivalent resistance R T of an analog telephone set is typically 400 6, although it can be as low as The resistance R L of the telephone line is proportional to the line length. R L is virtually zero in the case of a short line, and can hardly exceeds for the DC loop current to be at least 20 ma when the telephone switchhook closes (when = 48 V). This is an important parameter because the DC loop current must reach a certain minimum value so that it can be used reliably to determine the status (on-hook or off-hook) of the telephone handset. For instance, a maximum line resistance R L of limits the maximum length of a telephone line implemented with a pair of 22-AWG copper wires (0.635-mm diameter) to about 15 km. Figure 2-4 is an equivalent electrical circuit of the telephone set and central office shown in Figure 2-2, when the handset is on the cradle. Since the switchhook is open, resistance R T is infinite and no current flows in the telephone line. ANALOG TELEPHONE SET (ON-HOOK) TELEPHONE LINE R L CENTRAL OFFICE OPEN CIRCUIT (R T = æ) I L I = L + R L + R T = 0 ma

4 Figure 2-5 is another equivalent electrical circuit of the telephone set and central office shown in Figure 2-2, when the T and R terminals of the line interface are accidentally short-circuited. In this situation, the DC current flowing through the (I ) is limited only by the combined resistance of the current-limiting resistors. It is equal to 120 ma when and equal 48 V and 400 6, respectively. CENTRAL OFFICE SHORT-CIRCUIT BETWEEN THE T AND R TERMINALS OF THE LINE INTERFACE I I = In the first part of the exercise, you will set up a central office with the Telephony Training System (TTS). In the second part of the exercise, you will measure the DC voltage across the telephone line and the DC loop current, when the handset of the telephone set is lifted off the cradle. From these measurements, you will calculate the equivalent resistance of the telephone set as well as the total resistance of the telephone line and the current-limiting resistors of the line interface. In the last part of the exercise, you will increase the resistance (length) of the telephone line, while the handset is lifted off the cradle, to determine how this affects the DC voltage across the telephone line (at the telephone side end of the line) and the DC loop current. Refer to Appendix A of this manual to obtain the list of equipment required to perform this exercise.

5 * 1. Make sure that the Reconfigurable Training Module, Model 9431, is connected to the TTS Power Supply, Model Make sure that there is a network connection between the Reconfigurable Training Module and the host computer. Install the Dual Analog Line Interface, Model 9475, into one of the analog/digital (A/D) slots of the Reconfigurable Training Module. Connect two analog telephone sets to the Dual Analog Line Interface. Make sure that the tone dialing mode is selected on the analog telephone sets. Connect the AC/DC power converter supplied with each analog telephone set to one of the AC power outlets on the TTS Power Supply. Connect the DC power output jack of each AC/DC power converter to the DC power input connector on either one of the analog telephone sets. The analog telephone set requires an auxiliary DC power source for the digital display to be operative. * 2. Turn on the host computer. Turn on the TTS Power Supply then the Reconfigurable Training Module. * 3. On the host computer, start the Telephony Training System software, then download the CO program to the Reconfigurable Training Module. The CO program configures the Reconfigurable Training Module so that it operates as a central office. If the host computer is unable to download the CO program to the Reconfigurable Training Module, it may not be using the proper IP address. Have your instructor or the LAN administrator check if the host computer uses the proper IP address to communicate with the Reconfigurable Training Module.

6 * 4. On the host computer, zoom in on ANALOG LINE INTERFACE A, connect Oscilloscope Probe 1 to TP1 (voltage across the telephone line connected to ANALOG LINE INTERFACE A), and start the Oscilloscope. Probe 1 is associated with channel 1 of the Oscilloscope. Make sure that the resistance of the telephone line connected to ANALOG LINE INTERFACE A is set to * 5. Make the following settings on the Oscilloscope: Channel 1 Mode Normal Sensitivity V/div Input Coupling DC Time Base ms/div Display Refresh Manual * 6. Make sure the handset of telephone set A is correctly placed on the cradle. The DC loop current indicated in ANALOG LINE INTERFACE A should be equal to 0 ma because the handset of telephone set A is in the on-hook state. Refresh the Oscilloscope display. Observe that a DC voltage is applied to the telephone line. Record this DC voltage in the following blank space. DC Voltage Across the Telephone Line: V (handset on the cradle) What does this voltage correspond to? * 7. Lift off the handset of telephone set A. Observe that DC current is flowing through the telephone line. Record this current in the following blank space. DC Loop Current: ma (handset off the cradle) * 8. On the host computer, set the sensitivity of channel 1 on the Oscilloscope to 2 V/div.

7 Refresh the Oscilloscope display. Observe that the DC voltage across the telephone line has decreased significantly. Record this DC voltage in the following blank space. DC Voltage Across the Telephone Line: V (handset off the cradle) Replace the handset of telephone set A on the cradle. Briefly explain why the DC voltage across the telephone line decreases when the handset of a telephone set is lifted off the cradle. * 9. Calculate the equivalent resistance (R T ) of telephone set A using the DC loop current and the DC voltage across the telephone line measured when the handset is off the cradle. Record the value in the following blank space. LINE MONITOR 1, which measures the voltage across the telephone line, is connected to the telephone side of the telephone line. Thus, the signal observed at TP1 is the voltage across the Tip and Ring terminals of telephone set A. R T = 6 * 10. Using the DC loop current and the DC voltage across the telephone line that you measured so far, calculate the total resistance of the telephone line and the current-limiting resistors of ANALOG LINE INTERFACE A. Record the value in the following blank space. = 6 * 11. Make the following settings on the Oscilloscope: Display Refresh Continuous * 12. Lift off the handset of telephone set A. On the host computer, increase the resistance of the telephone line connected to ANALOG LINE INTERFACE A by steps until it is equal to 2.0 k6. While doing this, observe the DC loop current as well as the DC voltage across the telephone line (TP1).

8 Replace the handset of telephone set A on the cradle. Describe what happens when the telephone line resistance (length) is increased. * 13. On the host computer, close the Telephony Training System software. Turn off the TTS Power Supply as well as the host computer (if it is no longer required). Disconnect the AC/DC power converters from the TTS Power Supply and the analog telephone sets. Disconnect the analog telephone sets from the Dual Analog Line Interface. Remove the Dual Analog Line Interface from the Reconfigurable Training Module. In this exercise, you learned that the central office applies a DC voltage (48 V in many countries) across the telephone line to supply electrical power to an analog telephone set. You saw that this DC voltage is applied across the telephone line through the and current-limiting resistors of the line interface. You observed that the DC current flowing through the local loop (DC loop current) depends on the value of the current-limiting resistors, the telephone line resistance, and the equivalent resistance of the telephone set. 1. Briefly explain why basic analog telephone sets are still operative during electric power failures.

9 2. In many countries, what is the standard value of the DC voltage provided by the battery feed circuit? 3. Briefly explain why the telephone line resistance cannot exceed a certain maximum value. 4. Briefly explain why positive-polarity voltages (with respect to ground) are generally avoided on outside telephone lines. 5. Describe how DC power is applied to analog telephone sets.

Exercise 1-4. Pulse Dialing

Exercise 1-4. Pulse Dialing Exercise 1-4 Pulse Dialing When you have completed this exercise, you will be able to demonstrate pulse dialing, an older signaling technique to transmit telephone numbers to central offices using a series

More information

Call Progress Tone and Ringing Signal Generation

Call Progress Tone and Ringing Signal Generation Exercise 1-3 Call Progress Tone and Ringing Signal Generation EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with call progress tone and ringing signal generation. DISCUSSION

More information

EXERCISE OBJECTIVE DISCUSSION Introduction 2-31

EXERCISE OBJECTIVE DISCUSSION Introduction 2-31 Exercise 2-3 Two-Dimensional Switching EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with two-dimensional switching. DISCUSSION Introduction The first two exercises of

More information

Exercise 1-1. Architecture of a Digital PABX EXERCISE OBJECTIVE

Exercise 1-1. Architecture of a Digital PABX EXERCISE OBJECTIVE Exercise 1-1 Architecture of a Digital PABX EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the architecture of a digital PABX (the Lab-Volt PABX). You will be able

More information

Exercise 6. Range and Angle Tracking Performance (Radar-Dependent Errors) EXERCISE OBJECTIVE

Exercise 6. Range and Angle Tracking Performance (Radar-Dependent Errors) EXERCISE OBJECTIVE Exercise 6 Range and Angle Tracking Performance EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the radardependent sources of error which limit range and angle tracking

More information

Exercise 4. Angle Tracking Techniques EXERCISE OBJECTIVE

Exercise 4. Angle Tracking Techniques EXERCISE OBJECTIVE Exercise 4 Angle Tracking Techniques EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the principles of the following angle tracking techniques: lobe switching, conical

More information

Exercise 6. The Boost Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The boost chopper

Exercise 6. The Boost Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The boost chopper Exercise 6 The Boost Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the boost chopper. DISCUSSION OUTLINE The Discussion of this exercise covers

More information

Introduction to High-Speed Power Switching

Introduction to High-Speed Power Switching Exercise 3 Introduction to High-Speed Power Switching EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the concept of voltage-type and current-type circuits. You will

More information

The Single-Phase PWM Inverter with Dual-Polarity DC Bus

The Single-Phase PWM Inverter with Dual-Polarity DC Bus Exercise 2 The Single-Phase PWM Inverter with Dual-Polarity DC Bus EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the singlephase PWM inverter with dual-polarity dc

More information

Exercise 2. The Buck Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE. The buck chopper DISCUSSION

Exercise 2. The Buck Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE. The buck chopper DISCUSSION Exercise 2 The Buck Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the buck chopper. DISCUSSION OUTLINE The Discussion of this exercise covers

More information

Exercise 8. Troubleshooting a Radar Target Tracker EXERCISE OBJECTIVE

Exercise 8. Troubleshooting a Radar Target Tracker EXERCISE OBJECTIVE Exercise 8 Troubleshooting a Radar Target Tracker EXERCISE OBJECTIVE When you have completed this exercise, you will be able to apply an efficient troubleshooting procedure in order to locate instructor-inserted

More information

N2820A/21A High-Sensitivity, High Dynamic Range Current Probes

N2820A/21A High-Sensitivity, High Dynamic Range Current Probes N2820A/21A High-Sensitivity, High Dynamic Range Current Probes Data Sheet See the details without losing sight of the big picture Key features and specifications Measure currents as low as 50 µa Measure

More information

Exercise 7. The Buck/Boost Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The Buck/Boost Chopper

Exercise 7. The Buck/Boost Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The Buck/Boost Chopper Exercise 7 The Buck/Boost Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the buck/boost chopper. DISCUSSION OUTLINE The Discussion of this

More information

Smoking and any food or drinks are not permitted in the Applications Lab!

Smoking and any food or drinks are not permitted in the Applications Lab! Pre-Lab Activities: None 220 Lab A Electrical Properties of Transmission Systems and the Local Loop Purpose of the experiment: Experiment with a telephone and view its properties under various different

More information

Solving Series Circuits and Kirchhoff s Voltage Law

Solving Series Circuits and Kirchhoff s Voltage Law Exercise 6 Solving Series Circuits and Kirchhoff s Voltage Law EXERCISE OBJECTIVE When you have completed this exercise, you will be able to calculate the equivalent resistance of multiple resistors in

More information

Exercise 4. Ripple in Choppers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Ripple

Exercise 4. Ripple in Choppers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Ripple Exercise 4 Ripple in Choppers EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with ripple in choppers. DISCUSSION OUTLINE The Discussion of this exercise covers the following

More information

Part V: Requirements and Test Methods for Magnetic Output from Handset Telephones for Hearing Aid Coupling

Part V: Requirements and Test Methods for Magnetic Output from Handset Telephones for Hearing Aid Coupling Issue 9 November 2004 Spectrum Management and Telecommunications Policy Compliance Specification for Terminal Equipment, Terminal Systems, Network Protection Devices, Connection Arrangements and Hearing

More information

Exercise 8. The Four-Quadrant Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The Four-Quadrant Chopper

Exercise 8. The Four-Quadrant Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The Four-Quadrant Chopper Exercise 8 The Four-Quadrant Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the four-quadrant chopper. DISCUSSION OUTLINE The Discussion of

More information

Frequency Agility and Barrage Noise Jamming

Frequency Agility and Barrage Noise Jamming Exercise 1-3 Frequency Agility and Barrage Noise Jamming EXERCISE OBJECTIVE To demonstrate frequency agility, a radar electronic protection is used against spot noise jamming. To justify the use of barrage

More information

Courseware Sample F0

Courseware Sample F0 Electric Power / Controls Courseware Sample 85822-F0 A ELECTRIC POWER / CONTROLS COURSEWARE SAMPLE by the Staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this publication

More information

Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law

Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law Exercise 7 Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law EXERCISE OBJECTIVE When you have completed this exercise, you will be able to calculate the equivalent resistance of multiple

More information

Renewable Energy. DC Power Electronics. Courseware Sample F0

Renewable Energy. DC Power Electronics. Courseware Sample F0 Renewable Energy DC Power Electronics Courseware Sample 86356-F0 A RENEWABLE ENERGY DC POWER ELECTRONICS Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2010 Lab-Volt Ltd. All rights reserved.

More information

Programmable transmitter of temperature, relative humidity and other derived humidity values with 4-20 ma outputs Instruction Manual

Programmable transmitter of temperature, relative humidity and other derived humidity values with 4-20 ma outputs Instruction Manual T3111 TRANSMITTER Programmable transmitter of temperature, relative humidity and other derived humidity values with 4-20 ma outputs Instruction Manual Instruction manual for use of T3111 transmitters Transmitter

More information

Exercise 2-2. Antenna Driving System EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION

Exercise 2-2. Antenna Driving System EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION Exercise 2-2 Antenna Driving System EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the mechanical aspects and control of a rotating or scanning radar antenna. DISCUSSION

More information

Part V: Requirements and Test Methods for Magnetic Output from Handset Telephones for Hearing Aid Coupling and for Receive Volume Control

Part V: Requirements and Test Methods for Magnetic Output from Handset Telephones for Hearing Aid Coupling and for Receive Volume Control Issue 9, Amendment 1 January 2009 Spectrum Management and Telecommunications Compliance Specification for Terminal Equipment, Terminal Systems, Network Protection Devices, Connection Arrangements and Hearing

More information

Exercise 1. Basic PWM DC Motor Drive EXERCISE OBJECTIVE DISCUSSION OUTLINE. Block diagram of a basic PWM dc motor drive DISCUSSION

Exercise 1. Basic PWM DC Motor Drive EXERCISE OBJECTIVE DISCUSSION OUTLINE. Block diagram of a basic PWM dc motor drive DISCUSSION Exercise 1 Basic PWM DC Motor Drive EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the most basic type of PWM dc motor drive: the buck chopper dc motor drive. You will

More information

Part I: Requirements for Terminal Equipment (TE) and Related Access Arrangements Intended for Direct Connection to Analog Wireline Facilities

Part I: Requirements for Terminal Equipment (TE) and Related Access Arrangements Intended for Direct Connection to Analog Wireline Facilities Issue 9, Amendment 5 March 2016 Spectrum Management and Telecommunications Compliance Specification for Terminal Equipment, Terminal Systems, Network Protection Devices, Connection Arrangements and Hearing

More information

Experiment #5 Series and Parallel Resistor Circuits

Experiment #5 Series and Parallel Resistor Circuits Experiment #5 Series and Parallel Resistor Circuits Objective: You will become familiar with the MB Board and learn how to build simple DC circuits. This will introduce you to series and parallel circuits

More information

Contents 1. FEATURES EQUIPMENT DESCRIPTION INSTALLATION OPERATION TROUBLESHOOTING SPECIFICATIONS...

Contents 1. FEATURES EQUIPMENT DESCRIPTION INSTALLATION OPERATION TROUBLESHOOTING SPECIFICATIONS... Contents 1. FEATURES... 3 2. EQUIPMENT DESCRIPTION... 3 3. INSTALLATION... 5 4. OPERATION... 5 5. TROUBLESHOOTING... 7 6. SPECIFICATIONS... 8 2 1. FEATURES Telephone Foreign Exchange Subscriber (FXS) Service:

More information

Faculty of Engineering Electrical Engineering Department Communication Engineering I Lab (EELE 3170) Eng. Adam M. Hammad

Faculty of Engineering Electrical Engineering Department Communication Engineering I Lab (EELE 3170) Eng. Adam M. Hammad Faculty of Engineering Electrical Engineering Department Communication Engineering I Lab (EELE 3170) Eng. Adam M. Hammad EXPERIMENT #2 UNDERSTANDING TELEPHONE BASICS Telephone components: 1. Handset containing

More information

Evaluating Oscilloscopes for Low-Power Measurements

Evaluating Oscilloscopes for Low-Power Measurements Evaluating Oscilloscopes for Low-Power Measurements Application Note Increasing market demand for products that are portable, mobile, green, and that can stay powered for long periods of time is driving

More information

Lab #1: Electrical Measurements I Resistance

Lab #1: Electrical Measurements I Resistance Lab #: Electrical Measurements I esistance Goal: Learn to measure basic electrical quantities; study the effect of measurement apparatus on the quantities being measured by investigating the internal resistances

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 1 Power Diode Single-Phase Rectifiers EXERCISE OBJECTIVE When you have completed this exercise, you will know what a diode is, and how it operates. You will be familiar with two types of circuits

More information

Exercise 3. Phase Sequence EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Phase sequence fundamentals

Exercise 3. Phase Sequence EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Phase sequence fundamentals Exercise 3 Phase Sequence EXERCISE OBJECTIVE When you have completed this exercise, you will know what a phase sequence is and why it is important to know the phase sequence of a three-phase power system.

More information

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope EET 150 Introduction to EET Lab Activity 5 Oscilloscope Introduction Required Parts, Software and Equipment Parts Figure 1, Figure 2, Figure 3 Component /Value Quantity Resistor 10 kω, ¼ Watt, 5% Tolerance

More information

Single-Phase Grid-Tied Inverter (PWM Rectifier/Inverter)

Single-Phase Grid-Tied Inverter (PWM Rectifier/Inverter) Exercise 2 Single-Phase Grid-Tied Inverter (PWM Rectifier/Inverter) EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the singlephase grid-tied inverter. DISCUSSION OUTLINE

More information

Exercise 3. Doubly-Fed Induction Generators EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Doubly-fed induction generator operation

Exercise 3. Doubly-Fed Induction Generators EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Doubly-fed induction generator operation Exercise 3 Doubly-Fed Induction Generators EXERCISE OBJECTIVE hen you have completed this exercise, you will be familiar with the operation of three-phase wound-rotor induction machines used as doubly-fed

More information

Keysight Technologies 7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes. Application Note

Keysight Technologies 7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes. Application Note Keysight Technologies 7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes Application Note Seven Hints for Making Power Measurements with Oscilloscopes Achieving maximized

More information

Exercise 3-2. Cross-Polarization Jamming EXERCISE OBJECTIVE

Exercise 3-2. Cross-Polarization Jamming EXERCISE OBJECTIVE Exercise 3-2 Cross-Polarization Jamming EXERCISE OBJECTIVE To introduce the concept of antenna polarization. To demonstrate the effect of crosspolarization jamming on a tracking radar s angular error signal.

More information

DigiPoints Volume 1. Student Workbook. Module 2 Modem Overview

DigiPoints Volume 1. Student Workbook. Module 2 Modem Overview Modem Overview Page 2.1 DigiPoints Volume 1 Module 2 Modem Overview Summary One of the potential advantages the cable telecommunications industry has is the ability to carry data signals at speeds significantly

More information

1825 Duet Plus Installation Guide

1825 Duet Plus Installation Guide 1825 Duet Plus Installation Guide Algo Communication Products Ltd. www.algosolutions.com 90-00046B - 1 - Table of Contents Release 2 Updates - Feb. 2012... 3 Quick Install for Dry Contact Ringing... 4

More information

MICROTOOLS MICRONETBLINK KIT

MICROTOOLS MICRONETBLINK KIT MICROTOOLS MICRONETBLINK KIT MicroNetBlink TM MicroProbe TM User Guide Manuel Utilisateur Benutzer Handbuch Manuale per l'utente Guía del Usuario Manual do Utilizador 2947-4511-01 Rev. 01 11/01 2001 Fluke

More information

3. Telephone. From Wikipedia: Telephone 최양희서울대학교컴퓨터공학부

3. Telephone. From Wikipedia: Telephone 최양희서울대학교컴퓨터공학부 3. Telephone From Wikipedia: Telephone 최양희서울대학교컴퓨터공학부 Overview The telephone (from the Greek words tele (τηλέ) = far and phone (φωνή) = voice) is a telecommunications device that is used to transmit and

More information

Harmonic Reduction using Thyristor 12-Pulse Converters

Harmonic Reduction using Thyristor 12-Pulse Converters Exercise 5 Harmonic Reduction using Thyristor 12-Pulse Converters EXERCISE OBJECTIVE When you have completed this exercise, you will understand what a thyristor 12- pulse converter is and how it operates.

More information

Keysight Technologies How to Take Fast, Simultaneous Measurements of Two or More Signals Using BenchVue Software. Application Note

Keysight Technologies How to Take Fast, Simultaneous Measurements of Two or More Signals Using BenchVue Software. Application Note Keysight Technologies How to Take Fast, Simultaneous Measurements of Two or More Signals Using BenchVue Software Application Note 02 Keysight How to Take Fast, Simultaneous Measurements of Two or More

More information

7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes.

7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes. 7 Hints That Every Engineer Should Know When Making Power Measurements with Oscilloscopes. Achieving maximized measurement dynamic range 1) Use averaging to increase measurement resolution 2) Use high-resolution

More information

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 2 Ohm s Law 2.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

TLS-3A. Telephone Line Simulator. User Manual , Rev. B Covers Model TLS-3A-01

TLS-3A. Telephone Line Simulator. User Manual , Rev. B Covers Model TLS-3A-01 User Manual TLS-3A Telephone Line Simulator 40-400-00010, Rev. B Covers Model TLS-3A-01 Teltone Corporation 22121-20th Avenue SE Bothell, Washington 98021-4408 USA Phone: 1-800-426-3926 or 425-487-1515

More information

Contents. Software Requirements

Contents. Software Requirements CALIBRATION PROCEDURE NI PXIe-4154 This document contains information for calibrating the NI PXIe-4154 Battery Simulator. For more information about calibration, visit ni.com/calibration. Contents Software

More information

Programmable transmitter of temperature, relative humidity and other derived humidity values with 4-20 ma outputs Instruction Manual

Programmable transmitter of temperature, relative humidity and other derived humidity values with 4-20 ma outputs Instruction Manual T3111 TRANSMITTER Programmable transmitter of temperature, relative humidity and other derived humidity values with 4-20 ma outputs Instruction Manual Instruction manual for use of T3111 transmitters Transmitter

More information

The Art of Electrical Measurements

The Art of Electrical Measurements The Art of Electrical Measurements Purpose: Introduce fundamental electrical test and measurement tools and the art of making electrical measurements. Equipment Required Prelab 1 Digital Multimeter 1 -

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 5 Resistance and Ohm s Law EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the notion of resistance, and know how to measure this parameter using an ohmmeter.

More information

Stealth Technology: The Quest for Reduced RCS

Stealth Technology: The Quest for Reduced RCS Exercise 2-3 Stealth Technology: The Quest for Reduced RCS EXERCISE OBJECTIVE To introduce the basic material and design principles associated with radar stealth technology. To use these principles to

More information

Verifying Power Supply Sequencing with an 8-Channel Oscilloscope APPLICATION NOTE

Verifying Power Supply Sequencing with an 8-Channel Oscilloscope APPLICATION NOTE Verifying Power Supply Sequencing with an 8-Channel Oscilloscope Introduction In systems that rely on multiple power rails, power-on sequencing and power-off sequencing can be critical. If the power supplies

More information

Programmable transmitter of temperature, relative humidity and other derived humidity values with 4-20 ma outputs Instruction Manual

Programmable transmitter of temperature, relative humidity and other derived humidity values with 4-20 ma outputs Instruction Manual T3110 TRANSMITTER Programmable transmitter of temperature, relative humidity and other derived humidity values with 4-20 ma outputs Instruction Manual Instruction manual for use of T3110 transmitter Transmitter

More information

Deceptive Jamming Using Amplitude-Modulated Signals

Deceptive Jamming Using Amplitude-Modulated Signals Exercise 3-1 Deceptive Jamming Using Amplitude-Modulated Signals EXERCISE OBJECTIVE To demonstrate the effect of AM noise and repeater inverse gain jamming, two angular deceptive EA used against sequential

More information

Part IV: Glossary of Terms

Part IV: Glossary of Terms Issue 9 November 2004 Spectrum Management and Telecommunications Policy Compliance Specification for Terminal Equipment, Terminal Systems, Network Protection Devices, Connection Arrangements and Hearing

More information

Exercise 2-1. PAM Signals EXERCISE OBJECTIVE DISCUSSION OUTLINE. Signal sampling DISCUSSION

Exercise 2-1. PAM Signals EXERCISE OBJECTIVE DISCUSSION OUTLINE. Signal sampling DISCUSSION Exercise 2-1 PAM Signals EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the generation of both natural and flat-top sampled PAM signals. You will verify how the frequency

More information

Exercise 2-6. Target Bearing Estimation EXERCISE OBJECTIVE

Exercise 2-6. Target Bearing Estimation EXERCISE OBJECTIVE Exercise 2-6 EXERCISE OBJECTIVE When you have completed this exercise, you will be able to evaluate the position of the target relative to a selected beam using the A-scope display. You will be able to

More information

Part VI: Requirements for Integrated Services Digital Network Terminal Equipment

Part VI: Requirements for Integrated Services Digital Network Terminal Equipment Issue 9, Amendment 1 September 2012 Spectrum Management and Telecommunications Compliance Specification for Terminal Equipment, Terminal Systems, Network Protection Devices, Connection Arrangements and

More information

Chop away input offsets with TSZ121/TSZ122/TSZ124. Main components Single very high accuracy (5 μv) zero drift micropower 5 V operational amplifier

Chop away input offsets with TSZ121/TSZ122/TSZ124. Main components Single very high accuracy (5 μv) zero drift micropower 5 V operational amplifier DT0015 Design tip Chop away input offsets with TSZ121/TSZ122/TSZ124 By Preet Sibia Main components TSZ121 TSZ122 TSZ124 Single very high accuracy (5 μv) zero drift micropower 5 V operational amplifier

More information

Exercise 10. Transformers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to transformers

Exercise 10. Transformers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to transformers Exercise 10 Transformers EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the basic operating principles of transformers, as well as with the different ratios of transformers:

More information

Line Signalling Fundamentals

Line Signalling Fundamentals Line Signalling Fundamentals Introduction This document refers to the types of signalling provided by and large by the PRX in its various forms across the range of delivered systems. Some of the concepts

More information

XMU+ Environmental, Safety and Specifications

XMU+ Environmental, Safety and Specifications XMU+ Environmental, Safety and Specifications Physical Unit Dimensions: Rack Width: Rack Space: Shipping Dimensions: Unit Maximum Weight: Shipping Maximum Weight: Power and Thermal Power Consumption: Heat

More information

EE 210 Lab Exercise #5: OP-AMPS I

EE 210 Lab Exercise #5: OP-AMPS I EE 210 Lab Exercise #5: OP-AMPS I ITEMS REQUIRED EE210 crate, DMM, EE210 parts kit, T-connector, 50Ω terminator, Breadboard Lab report due at the ASSIGNMENT beginning of the next lab period Data and results

More information

Using the V5.x Integrator

Using the V5.x Integrator Using the V5.x Integrator This document explains how to produce the Bode plots for an electromagnetic guitar pickup using the V5.x Integrator. Equipment: Test coil 50-100 turns of 26 AWG coated copper

More information

Simple Circuits Experiment

Simple Circuits Experiment Physics 8.02T 1 Fall 2001 Simple Circuits Experiment Introduction Our world is filled with devices that contain electrical circuits in which various voltage sources cause currents to flow. We use radios,

More information

MGE TM Galaxy TM , 60 Hz kva

MGE TM Galaxy TM , 60 Hz kva Home Alarms Online Trend Statistics Rectifier Battery Inverter Bypass AC Bypass Output Set up Normal AC Q4S Load protected QBP QF 0 Hour 50 Min. 5 kva 00% 0% 00% 0 50% Load equipment 0 80% 50% Remote vision

More information

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope EET 150 Introduction to EET Lab Activity 8 Function Generator Introduction Required Parts, Software and Equipment Parts Figure 1 Component /Value Quantity Resistor 10 kω, ¼ Watt, 5% Tolerance 1 Resistor

More information

V-136RTHF 36 ZONE TALKBACK INTERCOM/ PAGE CONTROL UNIT

V-136RTHF 36 ZONE TALKBACK INTERCOM/ PAGE CONTROL UNIT VSP-V-13RTHF Issue V-13RTHF 3 ZONE TALKBACK INTERCOM/ PAGE CONTROL UNIT GENERAL The V-13RTHF is a single-path dial select microcomputer controlled intercom and page control unit used with a 1A2 key system

More information

Keysight Technologies Differences in Application Between Power Dividers and Power Splitters. Application Note

Keysight Technologies Differences in Application Between Power Dividers and Power Splitters. Application Note Keysight Technologies Differences in Application Between Dividers and Splitters Application Note 02 Keysight Differences in Application Between Dividers and Splitters Application Note Introduction dividers

More information

Part V: Requirements and Test Methods for Magnetic Output From Handset Telephones for Hearing Aid Coupling and for Receive Volume Control

Part V: Requirements and Test Methods for Magnetic Output From Handset Telephones for Hearing Aid Coupling and for Receive Volume Control Issue 9, Amendment 2 January 2017 Spectrum Management and Telecommunications Compliance Specification for Terminal Equipment, Terminal Systems, Network Protection Devices, Connection Arrangements and Hearing

More information

Voltage Compensation of AC Transmission Lines Using a STATCOM

Voltage Compensation of AC Transmission Lines Using a STATCOM Exercise 1 Voltage Compensation of AC Transmission Lines Using a STATCOM EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operating principles of STATCOMs used for

More information

A local 3.5 mm network jack allows a convenient way to connect an installation or diagnostic tool to the network without disconnecting any wires.

A local 3.5 mm network jack allows a convenient way to connect an installation or diagnostic tool to the network without disconnecting any wires. FEATURES - Extends wiring distance of FTT-10 LonWorks Networks. - Up to 5 repeaters can be daisy chained together to create a multi-segment repeater of up to 10 channels. - Low cost alternative to routers

More information

Sonoma State University Department of Engineering Science Spring 2017

Sonoma State University Department of Engineering Science Spring 2017 EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 4 Introduction to AC Measurements (I) AC signals, Function Generators and Oscilloscopes Function Generator (AC) Battery

More information

Introduction to oscilloscope. and time dependent circuits

Introduction to oscilloscope. and time dependent circuits Physics 9 Intro to oscilloscope, v.1.0 p. 1 NAME: SECTION DAY/TIME: TA: LAB PARTNER: Introduction to oscilloscope and time dependent circuits Introduction In this lab, you ll learn the basics of how to

More information

Soldering a P7500 to a Nexus DDR Component Interposer

Soldering a P7500 to a Nexus DDR Component Interposer Soldering a P7500 to a Nexus DDR Component Interposer Introduction This document shows an example of how to solder P7500 tips to the oscilloscope version of a Nexus DDR Component Interposer board. The

More information

OUTLINE OF AUTOMATIC STEP BY STEP SYSTEM. The Telephone Dial 3. Subscribers' Calling Equipment 11. Typical Numbering Scheme 14

OUTLINE OF AUTOMATIC STEP BY STEP SYSTEM. The Telephone Dial 3. Subscribers' Calling Equipment 11. Typical Numbering Scheme 14 P.O. ENGINEERING DEPARTMENT EDUCATIONAL PAMPHLET - DRAFT SERIES TELEPHONES 3/1 OUTLINE OF AUTOMATIC STEP BY STEP SYSTEM CONTENTS Page Introduction 1 The Telephone Dial 3 The Selector 4 Switching Arrangements

More information

NI sbrio-9632/9642 Verification Procedure

NI sbrio-9632/9642 Verification Procedure NI sbrio-9632/9642 Verification Procedure Conventions This document contains information about verifying the National Instruments sbrio-9632/9642. This document does not contain information about programming

More information

Wilcom MODEL T136BSBZW CIRCUIT TEST SET. Operating Instructions

Wilcom MODEL T136BSBZW CIRCUIT TEST SET. Operating Instructions Wilcom MODEL T136BSBZW CIRCUIT TEST SET Operating Instructions T136BSB Current Test Set Operating Instructions 811-230-007 February 2007 Copyright (c) 2007 Wilcom All Rights reserved Wilcom reserves the

More information

Techniques to Achieve Oscilloscope Bandwidths of Greater Than 16 GHz

Techniques to Achieve Oscilloscope Bandwidths of Greater Than 16 GHz Techniques to Achieve Oscilloscope Bandwidths of Greater Than 16 GHz Application Note Infiniium s 32 GHz of bandwidth versus techniques other vendors use to achieve greater than 16 GHz Banner specifications

More information

18-3 Circuit Analogies, and Kirchoff s Rules

18-3 Circuit Analogies, and Kirchoff s Rules 18-3 Circuit Analogies, and Kirchoff s Rules Analogies can help us to understand circuits, because an analogous system helps us build a model of the system we are interested in. For instance, there are

More information

Version 9.3. SmartPTT Enterprise. Release Notes

Version 9.3. SmartPTT Enterprise. Release Notes Version 9.3 June 2018 New Features 2 New Features Backhaul Repeater Chains supports the Backhaul Repeater Chains (BRC) feature in digital conventional radio systems. Both legacy IP Site Connect and IP

More information

Model: TP380 User Manual

Model: TP380 User Manual Model: TP380 User Manual 1 UHF RADIO TRANSCEIVER MODEL: TP380 USER MANUAL INTRODUCTION Thank you for selecting the Oregon Scientific TP380 as your product of choice. This product is a portable, easy-to-use

More information

ENCORE 200 VHF Bass Wireless Microphone System

ENCORE 200 VHF Bass Wireless Microphone System ENCORE 200 VHF Bass Wireless Microphone System Nady Wireless Systems are type accepted under FCC rules parts 90, 74 and 15. The device complies with RSS-210 of Industry & Science Canada. Operation is subject

More information

Speed Feedback and Current Control in PWM DC Motor Drives

Speed Feedback and Current Control in PWM DC Motor Drives Exercise 3 Speed Feedback and Current Control in PWM DC Motor Drives EXERCISE OBJECTIVE When you have completed this exercise, you will know how to improve the regulation of speed in PWM dc motor drives.

More information

AN2170 APPLICATION NOTE MOSFET Device Effects on Phase Node Ringing in VRM Power Converters INTRODUCTION

AN2170 APPLICATION NOTE MOSFET Device Effects on Phase Node Ringing in VRM Power Converters INTRODUCTION AN2170 APPLICATION NOTE MOSFET Device Effects on Phase Node Ringing in VRM Power Converters INTRODUCTION The growth in production volume of industrial equipment (e.g., power DC-DC converters devoted to

More information

InfiniiMax III probing system

InfiniiMax III probing system InfiniiMax III probing system Data Sheet World s highest speed and highest performing probe system Full 30 GHz bandwidth to the probe tip Industry s lowest probe and scope system noise Industry s highest

More information

Date Period Name. For each description on the left, write the letter of the matching item.

Date Period Name. For each description on the left, write the letter of the matching item. Date Period Name CHAPTER 23 Study Guide Series and Parallel Circuits Vocabulary Review For each description on the left, write the letter of the matching item. Section 23.1 1. a circuit in which all current

More information

Keysight Technologies Precise Current Profile Measurements of Bluetooth Low Energy Devices using the CX3300. Application Brief

Keysight Technologies Precise Current Profile Measurements of Bluetooth Low Energy Devices using the CX3300. Application Brief Keysight Technologies Precise Current Profile Measurements of Bluetooth Low Energy Devices using the CX3300 Application Brief Introduction New information technology, the Internet of Things (IoT) is changing

More information

Educator s Oscilloscope Training Kit for Agilent InfiniiVision X-Series Oscilloscopes

Educator s Oscilloscope Training Kit for Agilent InfiniiVision X-Series Oscilloscopes Educator s Oscilloscope Training Kit for Agilent InfiniiVision X-Series Oscilloscopes Data Sheet Oscilloscope training tools created specifically for electrical engineering and physics undergraduate students

More information

T+ and T+ PRO Electrical Tester

T+ and T+ PRO Electrical Tester T+ and T+ PRO Electrical Tester Instruction Sheet Introduction The Fluke T+ and T+ PRO Electrical Testers (the Tester ) have the following features: AC and dc voltage measurement, 12 V to 600 V, with or

More information

Subscriber loop. Claude Rigault ENST FCN, 29/09/2002 Claude Rigault, ENST 1

Subscriber loop. Claude Rigault ENST FCN, 29/09/2002 Claude Rigault, ENST 1 Subscriber loop Claude Rigault ENST claude.rigault@enst.fr FCN, 29/09/2002 Claude Rigault, ENST 1 FCN, 29/09/2002 Claude Rigault, ENST 2 2-wire / 4-wire Transformation FCN, 29/09/2002 Claude Rigault, ENST

More information

CPCO Series DC-AC Current Probe, Clamp On, 160mm, ±1000A ±2000A ±4000A ±8000A ±12000A, ±16000A

CPCO Series DC-AC Current Probe, Clamp On, 160mm, ±1000A ±2000A ±4000A ±8000A ±12000A, ±16000A The CPCO Series (160mm aperture) Current Probes are Clamp On current sensors capable of measuring ac and dc currents. The Current Probe splits along a diameter allowing easy installation to existing cables

More information

TekConnect Adapters TCA75 TCA-BNC TCA-SMA TCA-N TCA-292MM TCA292D Datasheet

TekConnect Adapters TCA75 TCA-BNC TCA-SMA TCA-N TCA-292MM TCA292D Datasheet Adapters TCA75 TCA-BNC TCA-SMA TCA-N TCA-292MM TCA292D Datasheet TCA-SMA -to-sma DC to 18 GHz (instrument dependent) TCA-292MM -to-2.92 mm DC to 25 GHz (instrument dependent) SMA compatible TCA-292D -to-2.92

More information

N2790A 100 MHz, N2791A 25 MHz and N2891A 70 MHz High-voltage Differential Probes

N2790A 100 MHz, N2791A 25 MHz and N2891A 70 MHz High-voltage Differential Probes N2790A 100 MHz, N2791A 25 MHz and N2891A 70 MHz High-voltage Differential Probes Data Sheet Oscilloscope users often need to make floating measurements where neither point of the measurement is at earth

More information

+ A Supply B. C Load D

+ A Supply B. C Load D 17 E7 E7.1 OHM'S LAW AND RESISTANCE NETWORKS OBJECT The objects of this experiment are to determine the voltage-current relationship for a resistor and to verify the series and parallel resistance formulae.

More information

The Communiqué Digital Telephone Station

The Communiqué Digital Telephone Station The Communiqué Digital Telephone Station Press the Security* and 1 Automation* keys to access your security system and any home automation features, respectively (optional: see below). Press and hold the

More information

New Current-Sense Amplifiers Aid Measurement and Control

New Current-Sense Amplifiers Aid Measurement and Control AMPLIFIER AND COMPARATOR CIRCUITS BATTERY MANAGEMENT CIRCUIT PROTECTION Mar 13, 2000 New Current-Sense Amplifiers Aid Measurement and Control This application note details the use of high-side current

More information

Exercise 3-2. Effects of Attenuation on the VSWR EXERCISE OBJECTIVES

Exercise 3-2. Effects of Attenuation on the VSWR EXERCISE OBJECTIVES Exercise 3-2 Effects of Attenuation on the VSWR EXERCISE OBJECTIVES Upon completion of this exercise, you will know what the attenuation constant is and how to measure it. You will be able to define important

More information