Minimum Antenna Elevation for Specific Fraction of SC6 Limits Version 1.0 Standard May 7, 2009

Size: px
Start display at page:

Download "Minimum Antenna Elevation for Specific Fraction of SC6 Limits Version 1.0 Standard May 7, 2009"

Transcription

1 Specific Fraction of SC6 Limits Version 1.0 Standard May 7, 2009 RF engineering team Ian Hung DRAFT

2 TABLE OF CONTENTS 1 INTRODUCTION Purpose Scope Intended Audience ANALYSIS Calculation of Power Densities and Exposure Limits Calculation Constants and Assumptions CONCLUSION... 7 APPENDIX A... 9 A.1 Hotspot (for 6deg Downtilt)... 9 A.2 Hotspot (for 12deg downtilt) DRAFT 11/12/ /11

3 1 INTRODUCTION 1.1 Purpose The purpose of this study was to determine the minimum height of the cellular antenna radiation centre above the rooftop surface where the resulting RF exposure is within a specific fraction of the limits set by Industry Canada s SC6 guidelines. 1.2 Scope This study serves to rapidly identify the antenna height where the resulting RF power density is within some fraction of the SC6 limits. This document is not a safety guideline but serve merely to state those findings based on calculations outlined in the Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz as published by authority of the Minister of Health, Canada. 1.3 Intended Audience This document is intended for those individuals that direct cellular antenna placement and configuration particularly upon building rooftops in Canada. This document was written under the context of XXXXX thus antenna selection and operating frequency are unique to this study. DRAFT 11/12/ /11

4 2 ANALYSIS 2.1 Calculation of Power Densities and Exposure Limits The approach to determine the power density output by the antenna at a certain point upon the rooftop is to first find the distance of which the far-field begins. For areas that lie within the near-field, the near-field calculations are used which assume the cylindrical modified HPBW Method 1. For areas that lie within the far-field, the far-field calculations are used according to the Free Space Method. In both the near and far-field regions, the horizontal and vertical antenna pattern discrimination is summed and asserted against the isotropic radiated power of the antenna. The cumulative power density due to all transmitting elements on the rooftop at each position on the rooftop is summed. The determination of when the far field begins (for antennas that are physically large compared to the wavelength at which they operate) is defined by the equation in Figure 1. Figure 1: Equation to calculate the distance to the far field The near field equation to determine RF power density is Figure 2 and is based upon the Modified Half Power Beamwidth (HPBW) model in Figure 3. 1 Outlined under Section 4.2 of the RaPD-Calc: Radio Frequency Power Density Calculation Tool with reference to Industry Canada s report on A Study on Electric Field Intensity Distribution in the Near-Field Region of PCS Base Station Antenna Installations. DRAFT 11/12/ /11

5 Figure 2: Equation to calculate the power density within the near field Figure 3: Modified Half Power Beamwidth (HPBW) model Conversely, the far field calculation to determine RF power density is shown in Figure 4. Figure 4: Equation to calculate the power density within the far field DRAFT 11/12/ /11

6 An error window is included in the calculation to account for differences between the theoretical model and reality such as exact building orientation, antenna azimuths, etc. A reflection factor of 60% (where RF=1.6) is included to account for such effect of radio waves reflecting off penthouse walls, etc 2. For additional information and detailed description of the formulas, refer to the Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz and RaPD-Calc: Radio Frequency Power Density Calculation Tool. 2.2 Calculation Constants and Assumptions The exposure limits for persons not classed as RF and Microwave Exposed Workers (Including the General Public) is chosen to be the upper limit and are outlined under Section 2.2 of the Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz. The exposure to the public is potentially 24 hours a day for 7 days a week, compared with 8 hours a day, 5 days a week for RF and microwave exposed workers. For the operating frequency of XXXXX which corresponds to the downlink frequency range of XXXXMHz the maximum power density for non-rf workers (general public) is defined as 10 W/m^2. Other assumptions are as follows: The primary antenna pattern used throughout the study is the XXXXXX (Dual Polarized, XXXXXX, 65deg, 18.4dBi, 1.3m, VET, 0-10deg) along with its electrical downtilt patterns as supplied by XXXXXX. One (1) antenna (transmitting element) is used for calculation. The antenna radiation centre is chosen to be the reference point for all relevant calculations. Three (3) variations of the output power from the BTS are used for calculation that are: 20W, 40W, and 80W. The maximum EiRP is respectively 1230W, 2460W, and 4920W from the antenna (transmitting element). The maximum power is assumed to be always transmitted and not simply the pilot power for WCDMA technology. Two (2) downtilt variations are used for calculation that are 6 deg (electrical) and 12 deg (10 deg electrical + 2 deg mechanical). 2 Consistent with measurements performed by Industry Canada and FCC as specified under Section 4.5 of RaPD- Calc: Radio Frequency Power Density Calculation Tool DRAFT 11/12/ /11

7 3 CONCLUSION The minimum cellular antenna radiation centre [d] above the roof surface is as follows: Table 1: Minimum Cellular Antenna Radiation Centre [d] above Rooftop Surface 6deg Downtilt) Percentage of Maximum Allowable Power Density EiRP 90% 50% 10% 1230W BTS) d = Xm d = Xm d = Xm 2460W BTS) d = Xm d = Xm d = Xm 4920W BTS) d = Xm d = Xm d = Xm Table 2: Minimum Cellular Antenna Radiation Centre [d] above Rooftop Surface (@ 12deg Downtilt) Percentage of Maximum Allowable Power Density EiRP 90% 50% 10% 1230W BTS) d = Xm d = Xm d = Xm 2460W BTS) d = Xm d = Xm d = Xm 4920W BTS) d = Xm d = Xm d = Xm For instance, for one (1) antenna with EiRP 2460W with downtilt of 12deg, the minimum radiation centre above the rooftop surface to achieve less than 50% of the maximum allowable power density throughout the rooftop is Xm. The figure below is a visual representation of this scenario. Figure 5: Antenna Radiation Centre [d] above the Rooftop Surface Please note the following conditions in the interpretation of the results: DRAFT 11/12/ /11

8 The calculations assume the maximum exposure levels of the general public and are referenced Xm above the rooftop surface. The power density levels are subject to a single antenna (transmitting element) and thus does not account for any pre-existing power densities due to other antennas from the surrounding RF environment; thus, prudence should be exercised in judgement. Although the minimum antenna radiation centre [d] should ensure that the resulting power density is some percentage of the maximum allowable limits throughout an infinite sized rooftop surface, the actual hotspot may occur beyond the dimensions of the actual rooftop (please refer to Appendix A.1 and A.2 accordingly). Please refer to Appendix A.3 to see the implications towards the XXXXX Greenfield Project. DRAFT 11/12/ /11

9 Appendix A A.1 Hotspot (for 6deg Downtilt) Table 3: Corresponding Hotspot Location for 6deg D/T Percentage of Maximum Allowable Power Density EiRP 90% 50% 10% 1230W BTS) d=3.3m, r=16m to 17m d=3.4m, r=12m to 26m d=4.4m, r=14m to 15m 2460W BTS) d=3.4m, r=around 16m d=3.5m, r=12m to 32m d=5.2m, r=around 15m 4920W BTS) d=3.5m, r=13m to 24m d=4.0m, r=11m to 40m d=6.4m, r=37m to 38m Legend: 90% > Maximum Power Density > 50% 50% > Maximum Power Density > 10% 10% > Maximum Power Density Ex) For one (1) antenna with downtilt of 6deg and EiRP of 4920W and d=3.5m, the hotspot (less than 90% and greater than 50% of the maximum allowable power density = orange area) extends 13m to 24m away from the antenna. DRAFT 11/12/ /11

10 A.2 Hotspot (for 12deg downtilt) Table 4: Corresponding Hotspot Location for 12deg D/T Percentage of Maximum Allowable Power Density EiRP 90% 50% 10% 1230W BTS) d=3.9m, r=15m to 16m d=4.0m, r=14m to 23m d=5.9m, r=24m to 25m 2460W BTS) d=4.0m, r=15m to 20m d=4.5m, r=13m to 27m d=7.5m, r=30m to 32m 4920W BTS) d=4.6m, r=18m to 24m d=5.5m, r=14m to 33m d=9.7m, r=38m to 41m Legend: 90% > Maximum Power Density > 50% 50% > Maximum Power Density > 10% 10% > Maximum Power Density Ex) For one (1) antenna with downtilt of 12deg and EiRP of 2460W and d=4.5m, the hotspot (less than 50% and greater than 10% of the maximum allowable power density = yellow area) extends 13m to 27m away from the antenna. DRAFT 11/12/ /11

11 End of Document

Calculated Radio Frequency Emissions Report. Cotuit Relo MA 414 Main Street, Cotuit, MA 02635

Calculated Radio Frequency Emissions Report. Cotuit Relo MA 414 Main Street, Cotuit, MA 02635 C Squared Systems, LLC 65 Dartmouth Drive Auburn, NH 03032 (603) 644-2800 support@csquaredsystems.com Calculated Radio Frequency Emissions Report Cotuit Relo MA 414 Main Street, Cotuit, MA 02635 July 14,

More information

Safety Code 6 Analysis Freedom Mobile 3G & LTE Network. Radio frequency exposure for uncontrolled and controlled environment.

Safety Code 6 Analysis Freedom Mobile 3G & LTE Network. Radio frequency exposure for uncontrolled and controlled environment. Safety Code 6 Analysis Freedom Mobile 3G & LTE Network Radio frequency exposure for uncontrolled and controlled environment Freedom Mobile 207 Queen's Quay West, Suite 710 Toronto, ON M5J 1A7 3655 Wesbrook

More information

Safety Code 6 Compliance Analysis of NLA031. Study conducted by Eastlink, Radio Frequency Engineering Department

Safety Code 6 Compliance Analysis of NLA031. Study conducted by Eastlink, Radio Frequency Engineering Department Safety Code 6 Compliance Analysis of NLA031 Study conducted by Eastlink, Radio Frequency Engineering Department Oct 2016 Contents Description of site... 2 Summary... 4 Simulation and Software... 4 Definitions...

More information

Safety Code 6 (SC6) Measurement Procedures (Uncontrolled Environment)

Safety Code 6 (SC6) Measurement Procedures (Uncontrolled Environment) February 2011 Spectrum Management and Telecommunications Technical Note Safety Code 6 (SC6) Measurement Procedures (Uncontrolled Environment) Aussi disponible en français NT-329 Contents 1.0 Purpose...1

More information

NON-IONIZING ELECTROMAGNETIC EXPOSURE ANALYSIS & ENGINEERING CERTIFICATION

NON-IONIZING ELECTROMAGNETIC EXPOSURE ANALYSIS & ENGINEERING CERTIFICATION NON-IONIZING ELECTROMAGNETIC EXPOSURE ANALYSIS & ENGINEERING CERTIFICATION SITE NAME: SEA Dutch Cup SITE ADDRESS: 1102 E Main Street Sultan, WA 98294 DATE: June 2, 2017 PREPARED BY: B. J. THOMAS, P.E.

More information

FIRE FIGHTERS GUIDANCE NOTE # 3-4

FIRE FIGHTERS GUIDANCE NOTE # 3-4 FIRE FIGHTERS GUIDANCE NOTE # 3-4 ISSUE: RADIOFREQUENCY (RF) AWARENESS Consistent with the general duty clause 25(2)(h) of the Occupational Health and Safety Act (OHSA), employers are required to take

More information

RF EMISSIONS COMPLIANCE REPORT. Verizon Wireless. Report Status: Verizon Wireless is Compliant

RF EMISSIONS COMPLIANCE REPORT. Verizon Wireless. Report Status: Verizon Wireless is Compliant RF EMISSIONS COMPLIANCE REPORT Verizon Wireless Site: Site ID: 199 Address: TBD 8/12/2015 Report Status: Verizon Wireless is Compliant Prepared By: Sitesafe, Inc. 200 North Glebe Road, Suite 1000 Arlington,

More information

CALCULATING RADIOFREQUENCY FIELD STRENGTH SAFETY CODE 6 SITE VALIDATION

CALCULATING RADIOFREQUENCY FIELD STRENGTH SAFETY CODE 6 SITE VALIDATION CALCULATING RADIOFREQUENCY FIELD STRENGTH SAFETY CODE 6 SITE VALIDATION FOR SITE: W2352 Study conducted by: RF Designer: Henry Phan, P.Eng Henry Phan, P.Eng Report Date: August 19, 2013 Department: Radio

More information

Verizon Wireless Proposed Base Station (Site No Berkeley Bekins ) 2721 Shattuck Avenue Berkeley, California

Verizon Wireless Proposed Base Station (Site No Berkeley Bekins ) 2721 Shattuck Avenue Berkeley, California Statement of Hammett & Edison, Inc., Consulting Engineers The firm of Hammett & Edison, Inc., Consulting Engineers, has been retained on behalf of Verizon Wireless, a personal wireless telecommunications

More information

Royal Street Communications, LLC Proposed Base Station (Site No. LA0366A) 315 4th Avenue Venice, California

Royal Street Communications, LLC Proposed Base Station (Site No. LA0366A) 315 4th Avenue Venice, California Statement of Hammett & Edison, Inc., Consulting Engineers The firm of Hammett & Edison, Inc., Consulting Engineers, has been retained on behalf of Royal Street Communications, LLC, a personal wireless

More information

FEDERAL COMMUNICATIONS COMMISSION (FCC) COMPLIANCE STUDY ON TELECOMMUNICATION FACILITY

FEDERAL COMMUNICATIONS COMMISSION (FCC) COMPLIANCE STUDY ON TELECOMMUNICATION FACILITY FEDERAL COMMUNICATIONS COMMISSION (FCC) COMPLIANCE STUDY ON TELECOMMUNICATION FACILITY Prepared for: Site No.: CA-SAC112 EAST ARDEN 5107 FAIR OAKS BOULEVARD CARMICHAEL, CA 95608 SEPTEMBER 26/07, REV. 0

More information

ELECTROMAGNETIC ENERGY (EME) EXPOSURE REPORT

ELECTROMAGNETIC ENERGY (EME) EXPOSURE REPORT ELECTROMAGNETIC ENERGY (EME) EXPOSURE REPORT Site Name: Site ID: USID: FA Location: Marin Avenue CCL04554 101927 10113497 Site Type: Location: Latitude (NAD83): NAD83): Longitude (NAD83): Report Completed:

More information

Verizon Wireless Proposed Base Station (Site No Palos Verdes ) 1506 Camino Verde Walnut Creek, California

Verizon Wireless Proposed Base Station (Site No Palos Verdes ) 1506 Camino Verde Walnut Creek, California Attachment 6 Statement of Hammett & Edison, Inc., Consulting Engineers The firm of Hammett & Edison, Inc., Consulting Engineers, has been retained on behalf of Verizon Wireless, a personal wireless telecommunications

More information

Guidelines for the Protection of the General Public in Compliance with Safety Code 6

Guidelines for the Protection of the General Public in Compliance with Safety Code 6 Issue 1 October 2005 Spectrum Management and Telecommunications Guideline Guidelines for the Protection of the General Public in Compliance with Safety Code 6 Aussi disponible en français LD-02 Preface

More information

MAXIMUM PERMISSIBLE EXPOSURE STUDY

MAXIMUM PERMISSIBLE EXPOSURE STUDY MAXIMUM PERMISSIBLE EXPOSURE STUDY THEORETICAL REPORT Site Number: VW-MA-0057 Site Name: Wellfleet 6 Latitude: 41.89696667 Longitude: -69.984375 Address: 724 Route 6, Wellfleet, MA 02667 Conclusion: The

More information

ITU-T Study Group 5. EMF Environmental Characterization

ITU-T Study Group 5. EMF Environmental Characterization International Telecommunication Union EMF Environmental Characterization Jeffrey Boksiner Senior Consultant, Telcordia Technologies, Inc Workshop on: EMC, safety and EMF effects in telecommunications o

More information

RADIOFREQUENCY ELECTROMAGNETIC FIELDS

RADIOFREQUENCY ELECTROMAGNETIC FIELDS CHAPTER 19. RADIOFREQUENCY ELECTROMAGNETIC FIELDS 19.1 INTRODUCTION 19.1.1 CONTEXT The proposed buildings of the World Trade Center Memorial and Redevelopment Plan (Proposed Action) are being designed

More information

ITU-T K.70. Mitigation techniques to limit human exposure to EMFs in the vicinity of radiocommunication stations

ITU-T K.70. Mitigation techniques to limit human exposure to EMFs in the vicinity of radiocommunication stations International Telecommunication Union ITU-T K.70 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (06/2007) SERIES K: PROTECTION AGAINST INTERFERENCE Mitigation techniques to limit human exposure to EMFs

More information

ITU-T K.70. Mitigation techniques to limit human exposure to EMFs in the vicinity of radiocommunication stations

ITU-T K.70. Mitigation techniques to limit human exposure to EMFs in the vicinity of radiocommunication stations I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T K.70 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (01/2018) SERIES K: PROTECTION AGAINST INTERFERENCE Mitigation techniques

More information

Guidelines for the Measurement of Radio Frequency Fields at Frequencies From 3 khz to 300 GHz

Guidelines for the Measurement of Radio Frequency Fields at Frequencies From 3 khz to 300 GHz Issue 3 March 205 Spectrum Management and Telecommunications Guideline Guidelines for the Measurement of Radio Frequency Fields at Frequencies From 3 khz to 300 GHz Aussi disponible en français - LD-0

More information

Verizon Wireless Proposed Base Station (Site No South Goleta ) 4500 Hollister Avenue Santa Barbara, California

Verizon Wireless Proposed Base Station (Site No South Goleta ) 4500 Hollister Avenue Santa Barbara, California Statement of Hammett & Edison, Inc., Consulting Engineers The firm of Hammett & Edison, Inc., Consulting Engineers, has been retained on behalf of Verizon Wireless, a personal wireless telecommunications

More information

AT&T Mobility Proposed Base Station (Site No. CN4779A) 1101 Keaveny Court Walnut Creek, California

AT&T Mobility Proposed Base Station (Site No. CN4779A) 1101 Keaveny Court Walnut Creek, California Statement of Hammett & Edison, Inc., Consulting Engineers The firm of Hammett & Edison, Inc., Consulting Engineers, has been retained on behalf of AT&T Mobility, a personal wireless telecommunications

More information

Verizon Wireless Proposed Base Station (Site No Lake Cachuma ) 2680 Highway 154 Santa Barbara County, California

Verizon Wireless Proposed Base Station (Site No Lake Cachuma ) 2680 Highway 154 Santa Barbara County, California Statement of Hammett & Edison, Inc., Consulting Engineers The firm of Hammett & Edison, Inc., Consulting Engineers, has been retained on behalf of Verizon Wireless, a personal wireless telecommunications

More information

2200 Noll Drive Lancaster, PA Latitude: N 40º (NAD 83) Longitude: W 76º (NAD 83) 362 AMSL

2200 Noll Drive Lancaster, PA Latitude: N 40º (NAD 83) Longitude: W 76º (NAD 83) 362 AMSL April 27, 2017 James M. Strong McNees Wallace & Nurick LLC 100 Pine Street, P.O. Box 1166 Harrisburg, PA 17108-1166 Subject: Electromagnetic Exposure Analysis WHEATLAND 2200 Noll Drive Lancaster, PA 17603

More information

Vertical or horizontal antenna for limited space

Vertical or horizontal antenna for limited space Vertical or horizontal antenna for limited space If you have very limited space for a DX antenna, you may consider vertical, because it has low angle of radiation. But vertical polarization involves high

More information

Technical Requirements for Fixed Line-of-Sight Radio Systems Operating in the Band MHz

Technical Requirements for Fixed Line-of-Sight Radio Systems Operating in the Band MHz Issue 6 December 2006 Spectrum Management and Telecommunications Standard Radio System Plan Technical Requirements for Fixed Line-of-Sight Radio Systems Operating in the Band 7725-8275 MHz Aussi disponible

More information

ELECTROMAGNETIC ENERGY (EME) EXPOSURE REPORT

ELECTROMAGNETIC ENERGY (EME) EXPOSURE REPORT ELECTROMAGNETIC ENERGY (EME) EXPOSURE REPORT Site Name: Site ID: USID: FA Location: Scott and Coyote Creek CVL01624 47719 10102020 Site Type: Location: Latitude (NAD83): NAD83): Longitude (NAD83): Report

More information

SAFETYTRAINING INFORMATION Your TYT ELECTRONICS CO.,LTD radio generates RF electromagnetic energy during transmit mode. This radio is designed for and

SAFETYTRAINING INFORMATION Your TYT ELECTRONICS CO.,LTD radio generates RF electromagnetic energy during transmit mode. This radio is designed for and SAFETYTRAINING INFORMATION Your TYT ELECTRONICS CO.,LTD radio generates RF electromagnetic energy during transmit mode. This radio is designed for and classified as Occupational Use Only, meaning it must

More information

Exercises on preparing frequency assignment notices to be notified to the BR (Region 2)

Exercises on preparing frequency assignment notices to be notified to the BR (Region 2) Exercises on preparing frequency assignment notices to be notified to the BR (Region 2) Fixed and Mobile Service (FXM) Introduction The goal of these exercises is to familiarize with the most common notice

More information

Technical Requirements for Fixed Line-of-Sight Radio Systems Operating in the Band MHz

Technical Requirements for Fixed Line-of-Sight Radio Systems Operating in the Band MHz Issue 5 December 2006 Spectrum Management and Telecommunications Standard Radio System Plan Technical Requirements for Fixed Line-of-Sight Radio Systems Operating in the Band 5925-6425 MHz Aussi disponible

More information

REFERENCE GUIDE External Antennas Guide 1

REFERENCE GUIDE External Antennas Guide 1 REFERENCE GUIDE External s Guide 1 Xirrus External s Guide Overview To optimize the overall performance of a Xirrus WLAN in an outdoor deployment it is important to understand how to maximize coverage

More information

Verizon Wireless Site ID Lime Site Name Lime Site Compliance Report

Verizon Wireless Site ID Lime Site Name Lime Site Compliance Report 200 North Glebe Road, Suite 1000, Arlington, VA 22203-3728 703.276.1100 703.276.1169 fax info@sitesafe.com www.sitesafe.com Verizon Wireless Site ID Lime Site Name Lime Site Compliance Report 680 East

More information

Antenna & Propagation. Antenna Parameters

Antenna & Propagation. Antenna Parameters For updated version, please click on http://ocw.ump.edu.my Antenna & Propagation Antenna Parameters by Nor Hadzfizah Binti Mohd Radi Faculty of Electric & Electronics Engineering hadzfizah@ump.edu.my Chapter

More information

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: WXLRAMV Report No.: LCS E-03 FCC MPE TEST REPORT. 47 CFR FCC Part 2 2.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: WXLRAMV Report No.: LCS E-03 FCC MPE TEST REPORT. 47 CFR FCC Part 2 2. FCC MPE TEST REPORT 47 CFR FCC Part 2 2.1091 Report Reference No....: FCC ID....: Date of Issue....: Testing Laboratory Name...: Address...: Applicant s name...: Address...: Test specification...: LCS1511070542E-03

More information

Technical Requirements for Fixed Line-of-Sight Radio Systems Operating in the Band MHz

Technical Requirements for Fixed Line-of-Sight Radio Systems Operating in the Band MHz Issue 6 December 2006 Spectrum Management and Telecommunications Standard Radio System Plan Technical Requirements for Fixed Line-of-Sight Radio Systems Aussi disponible en français - PNRH-306,4 Preface

More information

Technical Requirements for Fixed Line-of-Sight Radio Systems Operating in the Band MHz

Technical Requirements for Fixed Line-of-Sight Radio Systems Operating in the Band MHz Issue May 2006 Spectrum Management and Telecommunications Standard Radio System Plan Technical Requirements for Fixed Line-of-Sight Radio Systems Operating in the Band 712-772 Aussi disponible en français

More information

Practical Considerations for Radiated Immunities Measurement using ETS-Lindgren EMC Probes

Practical Considerations for Radiated Immunities Measurement using ETS-Lindgren EMC Probes Practical Considerations for Radiated Immunities Measurement using ETS-Lindgren EMC Probes Detectors/Modulated Field ETS-Lindgren EMC probes (HI-6022/6122, HI-6005/6105, and HI-6053/6153) use diode detectors

More information

Overview of the Notification workshop on Fixed and Mobile Services General guidelines for Fixed and Mobile Services Reference documents for

Overview of the Notification workshop on Fixed and Mobile Services General guidelines for Fixed and Mobile Services Reference documents for 1 Overview of the Notification workshop on Fixed and Mobile Services General guidelines for Fixed and Mobile Services Reference documents for notification The main features of TerRaNotices Exercises 2

More information

SIGFOX END- PRODUCT RADIATED TEST PLAN FOR SIGFOX READY TM CERTIFICATION

SIGFOX END- PRODUCT RADIATED TEST PLAN FOR SIGFOX READY TM CERTIFICATION October 5 th 2017 SIGFOX END- PRODUCT RADIATED TEST PLAN FOR SIGFOX READY TM CERTIFICATION Public use Revision History Revision Number Date Author Change description 0.1 August 15 th, 2017 B.Ray Initial

More information

Chapter 4 The RF Link

Chapter 4 The RF Link Chapter 4 The RF Link The fundamental elements of the communications satellite Radio Frequency (RF) or free space link are introduced. Basic transmission parameters, such as Antenna gain, Beamwidth, Free-space

More information

SAR REPORT. TEST STANDARDS: FCC Part 15 Subpart C Intentional Radiator. ARRIS Model Spectrum 110A Set Top Box With Bluetooth (DSS) and RF4CE (DTS)

SAR REPORT. TEST STANDARDS: FCC Part 15 Subpart C Intentional Radiator. ARRIS Model Spectrum 110A Set Top Box With Bluetooth (DSS) and RF4CE (DTS) BEC INCORPORATED SAR REPORT TEST STANDARDS: FCC Part 15 Subpart C Intentional Radiator ARRIS Model Spectrum 110A Set Top Box With Bluetooth (DSS) and RF4CE (DTS) REPORT BEC-1839-08 CUSTOMER: ARRIS Group

More information

Model: M /800 MHz Mobile Radio

Model: M /800 MHz Mobile Radio Engineering and Testing for EMC and Safety Compliance Accredited Under NVLAP Lab Code 200061-0 RF Maximum Permissible Exposure (MPE) Report for Controlled and Uncontrolled Environments M/A-COM, Inc. 221

More information

Range Considerations for RF Networks

Range Considerations for RF Networks TI Technology Days 2010 Range Considerations for RF Networks Richard Wallace Abstract The antenna can be one of the most daunting components of wireless designs. Most information available relates to large

More information

RADIO FREQUENCY NIER REPORT

RADIO FREQUENCY NIER REPORT RADIO FREQUENCY NIER REPORT City of Albany Cellular Sites Prepared for: City of Albany Prepared August 26, 2013 by: Peter Gruchawka, President Accord Communications (707) 833-5027 Accord Communications

More information

Radio Frequency Exposure Test Report

Radio Frequency Exposure Test Report Radio Frequency Exposure EN 62311 January 2008 Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0Hz 300GHz) (IEC 62311:2007, modified)

More information

Modeling Electromagnetic Radiation on Lookout Mountain, Colorado

Modeling Electromagnetic Radiation on Lookout Mountain, Colorado Modeling Electromagnetic Radiation on Lookout Mountain, Colorado 1. Introduction 1.1. Goal of Research This Capstone project has been initiated in an attempt to model the Electromagnetic Radiation (EMR)

More information

REFERENCE GUIDE External Antennas Guide 1

REFERENCE GUIDE External Antennas Guide 1 REFERENCE GUIDE External s Guide 1 Xirrus External s Guide Overview To optimize the overall performance of a Xirrus WLAN in an outdoor deployment it is important to understand how to maximize coverage

More information

Radio Frequency Emissions Analysis Report Sprint Wireless Water Tank Facility

Radio Frequency Emissions Analysis Report Sprint Wireless Water Tank Facility Radio Frequency Emissions Analysis Report Sprint Wireless Water Tank Facility Site ID: BS3XC490 Site Name: Cedar St. Water Tank Address: 396 Cedar Street, Ashland, MA 0171 Latitude: 4.35300 Longitude:

More information

Measurements of Exposures Around Vodafone New Zealand Limited Cellsites from June 2012 to May 2013

Measurements of Exposures Around Vodafone New Zealand Limited Cellsites from June 2012 to May 2013 Measurements of Exposures Around Vodafone New Zealand Limited Cellsites from June 2012 to May 2013 This report was prepared for: Vodafone New Zealand Limited Private Bag 92161 AUCKLAND By M Dirksen Reviewed

More information

Regulatory Authority of Bermuda report on

Regulatory Authority of Bermuda report on Regulatory Authority of Bermuda report on Bermuda Electric Light Company Smart Meter Maximum Permissible Exposure 14 June 2018 This report reflects the electromagnetic radio frequency Maximum Permissible

More information

advancing information transport systems

advancing information transport systems BICSInews advancing information transport systems January/February 2007 PRESIDENT S MESSAGE 3 EXECUTIVE DIRECTOR MESSAGE 4 BICSI UPDATE 41-42 COURSE SCHEDULE 43-44 STANDARDS REPORT 45-46 Volume 28, Number

More information

RECOMMENDATION ITU-R F *

RECOMMENDATION ITU-R F * Rec. ITU-R F.699-6 1 RECOMMENATION ITU-R F.699-6 * Reference radiation patterns for fixed wireless system antennas for use in coordination studies and interference assessment in the frequency range from

More information

Exercise 1-4. The Radar Equation EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS

Exercise 1-4. The Radar Equation EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS Exercise 1-4 The Radar Equation EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the different parameters in the radar equation, and with the interaction between these

More information

Noise and Propagation mechanisms

Noise and Propagation mechanisms 2 Noise and Propagation mechanisms Noise Johnson-Nyquist noise Physical review 1928 V rms2 = 4kTBR k : Bolzmann s constant T : absolute temperature B : bandwidth R : Resistance P=4kTB 1 1 Why is this a

More information

APPLICATION SPECIFICATION

APPLICATION SPECIFICATION 2.4/5GHZ ALANCE ANTENNA(34.9MM*9MM) 1.0 SCOPE This specification describes the antenna application and surrounding. The information in this document is for reference and benchmark purposes only. The user

More information

ELECTROMAGNETIC FIELD (EMF) STRENGTH MEASUREMENTS SITE: ROHRERSTOWN ELEMENTARY SCHOOL OCTOBER 16, 2017

ELECTROMAGNETIC FIELD (EMF) STRENGTH MEASUREMENTS SITE: ROHRERSTOWN ELEMENTARY SCHOOL OCTOBER 16, 2017 ELECTROMAGNETIC FIELD (EMF) STRENGTH MEASUREMENTS SITE: ROHRERSTOWN ELEMENTARY SCHOOL OCTOBER 16, 2017 Rohrerstown Elementary School Hempfield School District 2200 Noll Drive Lancaster, PA 17603 Millennium

More information

Power Handling Considerations in a Compact Range

Power Handling Considerations in a Compact Range Power Handling Considerations in a Compact Range Marion Baggett & Dr. Doren Hess MI Technologies Suwanee, Georgia USA mbaggett@mitechnologies.com Abstract More complex antennas with higher transmit power

More information

Institute of Electrical and Electronics Engineers (IEEE) CHARACTERISTICS OF IEEE SYSTEMS IN MHz

Institute of Electrical and Electronics Engineers (IEEE) CHARACTERISTICS OF IEEE SYSTEMS IN MHz As submitted to ITU-R IEEE L802.16-04/42r3 INTERNATIONAL TELECOMMUNICATION UNION RADIOCOMMUNICATION STUDY GROUPS Document 21 December 2004 English only Received: Institute of Electrical and Electronics

More information

RF Exposure Evaluation Declaration

RF Exposure Evaluation Declaration RF Exposure Evaluation Declaration Product Name : 1, AC1600 WLAN Telefon DSL Router 2, AC1200 WLAN Telefon DSL Router 3, AC1600 Wireless Gigabit VoIP VDSL/ADSL Modem Router Model No. : Archer VR600v; Archer

More information

Before the Federal Communications Commission Washington, D.C

Before the Federal Communications Commission Washington, D.C Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Proposed Changes in the Commission s ) ET Docket No. 03-137 Rules Regarding Human Exposure to ) Radiofrequency Electronic

More information

Product Specifications

Product Specifications VHLPX4-10W-4GR 4 ft ValuLine High Performance Low Profile Antenna, dual-polarized, 10.0 10.7 GHz, PDR flange, gray antenna, gray radome CHARACTERISTICS General Specifications Antenna Type Diameter, Nominal

More information

BASICS OF ANTENNAS Lecture Note 1

BASICS OF ANTENNAS Lecture Note 1 BASICS OF ANTENNAS Lecture Note 1 INTRODUCTION Antennas are devices that are capable of launching RF (radio frequency) energy into space and detect it as well. How well an antenna is able to launch RF

More information

ARLINGTON COUNTY, VIRGINIA. County Board Agenda Item Meeting of September 15, 2012

ARLINGTON COUNTY, VIRGINIA. County Board Agenda Item Meeting of September 15, 2012 ARLINGTON COUNTY, VIRGINIA County Board Agenda Item Meeting of September 15, 2012 DATE: September 5, 2012 SUBJECT: U-3343-12-1 USE PERMIT to install a public utilities/telecommunications facility for Cricket

More information

Downtilt: How to set it

Downtilt: How to set it : How to set it 2017 KP Performance Antennas, Inc. All Rights Reserved. Page 1 As operators expand their fixed-wireless networks from a single to multiple base stations, mitigating interference between

More information

Systems characteristics of automotive radars operating in the frequency band GHz for intelligent transport systems applications

Systems characteristics of automotive radars operating in the frequency band GHz for intelligent transport systems applications Recommendation ITU-R M.257-1 (1/218) Systems characteristics of automotive s operating in the frequency band 76-81 GHz for intelligent transport systems applications M Series Mobile, radiodetermination,

More information

Technical Note 2. Standards-compliant test of non-ionizing electromagnetic radiation on radar equipment

Technical Note 2. Standards-compliant test of non-ionizing electromagnetic radiation on radar equipment Technical Note 2 Standards-compliant test of non-ionizing electromagnetic radiation on radar equipment Technical Note: Standards-compliant test of non-ionizing electromagnetic radiation on radar equipment

More information

Radio Frequency Electromagnetic Energy (RF-EME) Compliance Report

Radio Frequency Electromagnetic Energy (RF-EME) Compliance Report Page 1 of 36 Radio Frequency Electromagnetic Energy (RF-EME) Compliance Report Site No. FN03XC065 Huntmount Medical Center 2999 Regent Street Berkeley, California 94705 Alameda County 37.855900; -122.256000

More information

Radio Frequency Electromagnetic Energy (RF-EME) Compliance Report

Radio Frequency Electromagnetic Energy (RF-EME) Compliance Report Page 1 of 16 Radio Frequency Electromagnetic Energy (RF-EME) Compliance Report Ashby & Adeline 2004 Emerson Street Berkeley, California 94704 Santa Clara County 37.854095; -122.268552 NAD83 Rooftop May

More information

Report On. RF Exposure Assessment of the Sepura plc SRG3900 with AQHB Antenna. FCC ID: XX6SRG3900UW Industry Canada ID: 8739A-SRG3900UW

Report On. RF Exposure Assessment of the Sepura plc SRG3900 with AQHB Antenna. FCC ID: XX6SRG3900UW Industry Canada ID: 8739A-SRG3900UW Report On RF Exposure Assessment of the Sepura plc SRG3900 with AQHB Antenna FCC ID: XX6SRG3900UW Industry Canada ID: 8739A-SRG3900UW Document 75908189 Report 04 Issue 2 March 2010 TUV Product Service

More information

Full-Dimension MIMO Arrays with Large Spacings Between Elements. Xavier Artiga Researcher Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)

Full-Dimension MIMO Arrays with Large Spacings Between Elements. Xavier Artiga Researcher Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) Full-Dimension MIMO Arrays with Large Spacings Between Elements Xavier Artiga Researcher Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) APS/URSI 2015, 22/07/2015 1 Outline Introduction to Massive

More information

White Paper. 850 MHz & 900 MHz Co-Existence. 850 MHz Out-Of-Band Emissions Problem xxxx-xxxreva

White Paper. 850 MHz & 900 MHz Co-Existence. 850 MHz Out-Of-Band Emissions Problem xxxx-xxxreva White Paper 850 MHz & 900 MHz Co-Existence 850 MHz Out-Of-Band Emissions Problem 2016 xxxx-xxxreva White Paper 850 MHz & 900 MHz Coexistence - 850 MHz Out-of-Band Emissions Problem Table of Contents Introduction

More information

4GHz / 6GHz Radiation Measurement System

4GHz / 6GHz Radiation Measurement System 4GHz / 6GHz Radiation Measurement System The MegiQ Radiation Measurement System (RMS) is a compact test system that performs 3-axis radiation pattern measurement in non-anechoic spaces. With a frequency

More information

RF Exposure Evaluation Declaration

RF Exposure Evaluation Declaration RF Exposure Evaluation Declaration Product Name : 300Mbps Wi-Fi Range Extender Model No. : TL-WA855RE Applicant : TP-Link Technologies Co., Ltd. Address : Building 24(floors1,3,4,5) and 28(floors1-4) Central

More information

White Paper 850 MHz & 900 MHz Co-Existence 900 MHz Receiver Blocking Problem

White Paper 850 MHz & 900 MHz Co-Existence 900 MHz Receiver Blocking Problem White Paper 850 MHz & 900 MHz Co-Existence 900 MHz Receiver Blocking Problem Table of Contents Introduction and Background 3 Assumptions 3 Receiver Blocking Problem 6 Conclusion 8 2 1. Introduction and

More information

Mobile Phone Base-Station Audit

Mobile Phone Base-Station Audit Mobile Phone Base-Station Audit Audit site: Millenium Way Greenwich London SE0 (no photo) The Office of Communications (Ofcom) is responsible for management of the civil radio spectrum in the UK. Following

More information

Antennas: Problems and exercises: Answers

Antennas: Problems and exercises: Answers adio echnology Metropolia/A. Koivumäki Antennas: Problems and exercises: Answers 1. he maximum transmit power of a.4 GHz WLAN base station is 13 dbm and the gain of the transmit antenna is 3.5 dbi. Find

More information

November 24, 2010xx. Introduction

November 24, 2010xx. Introduction Path Analysis XXXXXXXXX Ref Number: XXXXXXX Introduction This report is an analysis of the proposed XXXXXXXXX network between XXXXXXX and XXXXXXX. The primary aim was to investigate the frequencies and

More information

Low-power shared access to spectrum for mobile broadband Modelling parameters and assumptions Real Wireless Real Wireless Ltd.

Low-power shared access to spectrum for mobile broadband Modelling parameters and assumptions Real Wireless Real Wireless Ltd. Low-power shared access to spectrum for mobile broadband Modelling parameters and assumptions Real Wireless 2011 Real Wireless Ltd. Device parameters LTE UE Max Transmit Power dbm 23 Antenna Gain dbi 0

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 Lecture 2 Today: (1) Frequency Reuse, (2) Handoff Reading for today s lecture: 3.2-3.5 Reading for next lecture: Rap 3.6 HW 1 will

More information

RF-EXPOSURE ASSESSMENT REPORT

RF-EXPOSURE ASSESSMENT REPORT RF-EXPOSURE ASSESSMENT REPORT EN 62311 RF-Exposure evaluation of electronic equipment Report Reference No.... : G0M-1206-2043-TEU311E-V01 Testing Laboratory... : Address... : Storkower Str. 38c 15526 Reichenwalde

More information

GUIDELINES With elements of technical solution depending on the nature of radiocommunication service

GUIDELINES With elements of technical solution depending on the nature of radiocommunication service GUIDELINES With elements of technical solution depending on the nature of radiocommunication service Technical solution within the application form for the issuance of an individual licence for the use

More information

Radio Frequency Exposure Test Report

Radio Frequency Exposure Test Report Radio Frequency Exposure EN 62311 January 2008 Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0Hz 300GHz) (IEC 62311:2007, modified)

More information

RF EME ANALYSIS REPORT TELSTRA CORPORATION LIMITED WIFI BASE CUBE

RF EME ANALYSIS REPORT TELSTRA CORPORATION LIMITED WIFI BASE CUBE RF EME ANALYSIS REPORT TELSTRA CORPORATION LIMITED WIFI BASE CUBE October2014 Prepared by PO Box 680 CLAREMONT WA 6910 08 9381 7199 (telephone) 08 9381 7166 (facsimile) www.t-r-s.com.au James Ward RF EME

More information

EMF Test Report: Ericsson Radio 2205 B46

EMF Test Report: Ericsson Radio 2205 B46 1 (7) Rapport utfärdad av ackrediterat provningslaboratorium Test report issued by an Accredited Testing aboratory Ackred. Nr 1761 Provning ISO/IEC 17025 EMF Test Report: Ericsson Radio 2205 Document number:

More information

Mobile Phone Base-Station Audit

Mobile Phone Base-Station Audit Mobile Phone Base-Station Audit Audit site: Bradford Road Pudsey LS28 7DQ (no photo) The Office of Communications (Ofcom) is responsible for management of the civil radio spectrum in the UK. Following

More information

Chapter 2. Fundamental Properties of Antennas. ECE 5318/6352 Antenna Engineering Dr. Stuart Long

Chapter 2. Fundamental Properties of Antennas. ECE 5318/6352 Antenna Engineering Dr. Stuart Long Chapter Fundamental Properties of Antennas ECE 5318/635 Antenna Engineering Dr. Stuart Long 1 IEEE Standards Definition of Terms for Antennas IEEE Standard 145-1983 IEEE Transactions on Antennas and Propagation

More information

ENGINEERING TEST REPORT # C LSR Job #: C-2411 Compliance Testing of: RM186-SM

ENGINEERING TEST REPORT # C LSR Job #: C-2411 Compliance Testing of: RM186-SM W66 N220 Commerce Court Cedarburg, WI 53012 USA Phone: 262.375.4400 Fax: 262.375.4248 www.lsr.com ENGINEERING TEST REPORT # 316062C LSR Job #: C-2411 Compliance Testing of: RM186-SM Test Date(s): 3-28-16

More information

Product Compliance Assessments of Low Power Radio Base Stations with Respect to Whole-Body Radiofrequency Exposure Limits

Product Compliance Assessments of Low Power Radio Base Stations with Respect to Whole-Body Radiofrequency Exposure Limits Product Compliance Assessments of Low Power Radio Base Stations with Respect to Whole-Body Radiofrequency Exposure Limits Björn Thors, Lovisa Nord, Davide Colombi, and Christer Törnevik 1 Ericsson Research,

More information

Technical Requirements for Fixed Line-of-Sight Radio Systems Operating in the Band GHz

Technical Requirements for Fixed Line-of-Sight Radio Systems Operating in the Band GHz Issue 4 March 2018 Spectrum Management and Telecommunications Standard Radio System Plan Technical Requirements for Fixed Line-of-Sight Radio Systems Operating in the Band 10.7-11.7 GHz Aussi disponible

More information

L-Band and X-Band Antenna Design and Development for NeXtRAD

L-Band and X-Band Antenna Design and Development for NeXtRAD L-Band and X-Band Antenna Design and Development for NeXtRAD S. T. Paine, P. Cheng, D. W. O Hagan, M. R. Inggs, H. D. Griffiths* Department of Electrical Engineering Radar Remote Sensing Group University

More information

Methodology for Analysis of LMR Antenna Systems

Methodology for Analysis of LMR Antenna Systems Methodology for Analysis of LMR Antenna Systems Steve Ellingson June 30, 2010 Contents 1 Introduction 2 2 System Model 2 2.1 Receive System Model................................... 2 2.2 Calculation of

More information

Health Issues. Introduction. Ionizing vs. Non-Ionizing Radiation. Health Issues 18.1

Health Issues. Introduction. Ionizing vs. Non-Ionizing Radiation. Health Issues 18.1 Health Issues 18.1 Health Issues Introduction Let s face it - radio waves are mysterious things. Especially when referred to as electromagnetic radiation the concept makes many people nervous. In this

More information

LMS4000 & NCL MHz Radio Propagation

LMS4000 & NCL MHz Radio Propagation LMS4000 & NCL1900 900-MHz Radio Propagation This application note is an update to the previous LMS3000/LMS3100 900 MHz Radio Propagation note. It provides general guidelines to estimate CCU3000 & NCL1900

More information

RF FIELD SURVEY REPORT

RF FIELD SURVEY REPORT RF FIELD SURVEY REPORT MANLY NATIONAL BUILDING 22 CENTRAL AVE, MANLY, NSW RFNSA #: 2095004 DATE OF SURVEY: 18TH NOVEMBER 2016 REPORT VERSION: R1 Accredited for compliance with ISO/IEC 17025 The results

More information

Fundamentals of Antennas. Prof. Ely Levine

Fundamentals of Antennas. Prof. Ely Levine Fundamentals of Antennas Prof. Ely Levine levineel@zahav.net.il 1 Chapter 3 Wire Antennas 2 Types of Antennas 3 Isotropic Antenna Isotropic radiator is the simplest antenna mathematically Radiates all

More information

Radio Frequency (RF) Fields Signs and Access Control

Radio Frequency (RF) Fields Signs and Access Control Issue 1 March 2013 Spectrum Management and Telecommunications Client Procedures Circular Radio Frequency (RF) Fields Signs and Access Control Aussi disponible en français Preface Comments and suggestions

More information

Antenna Design Seminar

Antenna Design Seminar Antenna Design Seminar What we are going to cover This seminar will cover the design concepts of a variety of broadcast antennas that relates to the design of TV and FM antennas. We will first look at

More information

Estimation of Peak Power Density in the Vicinity of Cellular Base Stations, FM, UHF and WiMAX Antennas

Estimation of Peak Power Density in the Vicinity of Cellular Base Stations, FM, UHF and WiMAX Antennas International Journal of Engineering & Technology IJET-IJENS Vol: 11 No: 0 58 Estimation of in the Vicinity of Cellular Base Stations, FM, UHF and WiMAX Antennas Bexhet Kamo 1, Rozeta Miho 1, Vladi Kolici

More information

Simulation of Electromagnetic Radiation Levels for some Radiocommunication Systems

Simulation of Electromagnetic Radiation Levels for some Radiocommunication Systems Simulation of Electromagnetic Radiation Levels for some Radiocommunication Systems RAFAEL HERRADO, FLORETIO JIMEEZ, LIDIA MUÑOZ, JUA AGUILERA Departamento de Ingeniería Audiovisual y Comunicaciones Universidad

More information

Guidelines for the Submission of Applications to Provide Mobile-Satellite Service in Canada

Guidelines for the Submission of Applications to Provide Mobile-Satellite Service in Canada Issue 5 May 2014 Spectrum Management and Telecommunications Client Procedures Circular Guidelines for the Submission of Applications to Provide Mobile-Satellite Service in Canada Aussi disponible en français

More information