RLDRAM 3. MT44K32M18 2 Meg x 18 x 16 Banks MT44K16M36 1 Meg x 36 x 16 Banks. Features. 576Mb: x18, x36 RLDRAM 3. Features.

Size: px
Start display at page:

Download "RLDRAM 3. MT44K32M18 2 Meg x 18 x 16 Banks MT44K16M36 1 Meg x 36 x 16 Banks. Features. 576Mb: x18, x36 RLDRAM 3. Features."

Transcription

1 RLDRAM 3 MT44K32M8 2 Meg x 8 x 6 Banks MT44K6M36 Meg x 36 x 6 Banks 576Mb: x8, x36 RLDRAM 3 Features Features 66 MHz DDR operation 233 Mb/s/ball data rate 76.8 Gb/s peak bandwidth x36 at 66 MHz clock frequency Organization 32 Meg x 8, and 6 Meg x 36 common I/O CIO 6 banks.2v center-terminated push/pull I/O 2.5V V EXT,.35V V DD,.2V V DDQ I/O Reduced cycle time t RC MIN = 8-2ns SDR addressing Programmable READ/WRITE latency RL/WL and burst length Data mask for WRITE commands Differential input clocks CK, CK# Free-running differential input data clocks DKx, DKx# and output data clocks QKx, QKx# On-die DLL generates CK edge-aligned data and differential output data clock signals 64ms refresh 28K refresh per 64ms 68-ball FBGA package 4Ω or 6Ω matched impedance outputs Integrated on-die termination ODT Single or multibank writes Extended operating range 2 66 MHz READ training register Multiplexed and non-multiplexed addressing capabilities Mirror function Output driver and ODT calibration JTAG interface IEEE Options Marking Clock cycle and t RC timing.93ns and t RC MIN = 8ns -93E RL ns and t RC MIN = ns -93 RL ns and t RC MIN = 8ns -7E RL ns and t RC MIN = ns -7 RL ns and t RC MIN = 8ns -25F RL3-6.25ns and t RC MIN = ns -25E RL3-6.25ns and t RC MIN = 2ns RL Configuration 32 Meg x 8 32M8 6 Meg x 36 6M36 Operating temperature Commercial T C = to +95 C None Industrial T C = 4 C to +95 C IT Package 68-ball FBGA PA 2 68-ball FBGA Pb-free RB Revision :A Notes:. Not all options listed can be combined to define an offered product. Use the part catalog search on for available offerings. 2. Consult factory. PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 2 Micron Technology, Inc. All rights reserved. Products and specifications discussed herein are subject to change by Micron without notice.

2 576Mb: x8, x36 RLDRAM 3 Features Figure : 576Mb RLDRAM 3 Part Numbers Example Part Number: MT44K6M36PA-93E MT44K Configuration Package Speed Temp - Configuration 32 Meg x 8 32M8 6 Meg x 36 6M36 Package 68-ball FBGA 68-ball FBGA Pb-free PA RB Temperature Commercial None Industrial IT Speed Grade -93E t CK =.93ns 8ns t RC -93 t CK =.93ns ns t RC -7E t CK =.7ns 8ns t RC -7 t CK =.7ns ns t RC -25F t CK =.25ns 8ns t RC -25E t CK =.25ns ns t RC -25 t CK =.25ns 2ns t RC BGA Part Marking Decoder Due to space limitations, BGA-packaged components have an abbreviated part marking that is different from the part number. Micron s BGA Part Marking Decoder is available on Micron s Web site at PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 2 2 Micron Technology, Inc. All rights reserved.

3 576Mb: x8, x36 RLDRAM 3 Features Contents General Description... 8 General Notes... 8 State Diagram... 9 Functional Block Diagrams... Ball Assignments and Descriptions... 2 Package Dimensions... 6 Electrical Characteristics I DD Specifications... 7 Electrical Specifications Absolute Ratings and I/O Capacitance... 2 Absolute Maximum Ratings... 2 Input/Output Capacitance... 2 AC and DC Operating Conditions AC Overshoot/Undershoot Specifications Slew Rate Definitions for Single-Ended Input Signals Slew Rate Definitions for Differential Input Signals ODT Characteristics... 3 ODT Resistors... 3 ODT Sensitivity Output Driver Impedance Output Driver Sensitivity Output Characteristics and Operating Conditions Reference Output Load Slew Rate Definitions for Single-Ended Output Signals... 4 Slew Rate Definitions for Differential Output Signals... 4 Speed Bin Tables AC Electrical Characteristics Temperature and Thermal Impedance Characteristics Command and Address Setup, Hold, and Derating... 5 Data Setup, Hold, and Derating Commands MODE REGISTER SET MRS Command Mode Register MR t RC Data Latency DLL Enable/Disable Address Multiplexing Mode Register MR Output Drive Impedance DQ On-Die Termination ODT DLL Reset ZQ Calibration ZQ Calibration Long... 7 ZQ Calibration Short... 7 AUTO REFRESH Protocol... 7 Burst Length BL... 7 Mode Register 2 MR READ Training Register RTR WRITE Protocol WRITE Command Multibank WRITE READ Command PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 3 2 Micron Technology, Inc. All rights reserved.

4 576Mb: x8, x36 RLDRAM 3 Features AUTO REFRESH Command INITIALIZATION Operation... 8 WRITE Operation READ Operation AUTO REFRESH Operation... 9 Multiplexed Address Mode Data Latency in Multiplexed Address Mode REFRESH Command in Multiplexed Address Mode Mirror Function... 2 RESET Operation... 2 IEEE 49. Serial Boundary Scan JTAG... 3 Disabling the JTAG Feature... 3 Test Access Port TAP... 3 TAP Controller... 4 Performing a TAP RESET... 6 TAP Registers... 6 TAP Instruction Set... 7 PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 4 2 Micron Technology, Inc. All rights reserved.

5 576Mb: x8, x36 RLDRAM 3 Features List of Figures Figure : 576Mb RLDRAM 3 Part Numbers... 2 Figure 2: Simplified State Diagram... 9 Figure 3: 32 Meg x 8 Functional Block Diagram... Figure 4: 6 Meg x 36 Functional Block Diagram... Figure 5: 68-Ball FBGA... 6 Figure 6: Single-Ended Input Signal Figure 7: Overshoot Figure 8: Undershoot Figure 9: V IX for Differential Signals Figure : Single-Ended Requirements for Differential Signals Figure : Definition of Differential AC Swing and t DVAC Figure 2: Nominal Slew Rate Definition for Single-Ended Input Signals Figure 3: Nominal Differential Input Slew Rate Definition for CK, CK#, DKx, and DKx# Figure 4: ODT Levels and I-V Characteristics... 3 Figure 5: Output Driver Figure 6: DQ Output Signal Figure 7: Differential Output Signal Figure 8: Reference Output Load for AC Timing and Output Slew Rate Figure 9: Nominal Slew Rate Definition for Single-Ended Output Signals... 4 Figure 2: Nominal Differential Output Slew Rate Definition for QKx, QKx#... 4 Figure 2: Example Temperature Test Point Location... 5 Figure 22: Nominal Slew Rate and t VAC for t IS Command and Address - Clock Figure 23: Nominal Slew Rate for t IH Command and Address - Clock Figure 24: Tangent Line for t IS Command and Address - Clock Figure 25: Tangent Line for t IH Command and Address - Clock Figure 26: Nominal Slew Rate and t VAC for t DS DQ - Strobe Figure 27: Nominal Slew Rate for t DH DQ - Strobe... 6 Figure 28: Tangent Line for t DS DQ - Strobe... 6 Figure 29: Tangent Line for t DH DQ - Strobe Figure 3: MRS Command Protocol Figure 3: MR Definition for Non-Multiplexed Address Mode Figure 32: MR Definition for Non-Multiplexed Address Mode Figure 33: ZQ Calibration Timing ZQCL and ZQCS... 7 Figure 34: Read Burst Lengths Figure 35: MR2 Definition for Non-Multiplexed Address Mode Figure 36: READ Training Function - Back-to-Back Readout Figure 37: WRITE Command Figure 38: READ Command Figure 39: Bank Address-Controlled AUTO REFRESH Command Figure 4: Multibank AUTO REFRESH Command Figure 4: Power-Up/Initialization Sequence... 8 Figure 42: WRITE Burst Figure 43: Consecutive WRITE Bursts Figure 44: WRITE-to-READ Figure 45: WRITE - DM Operation Figure 46: Consecutive Quad Bank WRITE Bursts Figure 47: Interleaved READ and Quad Bank WRITE Bursts Figure 48: Basic READ Burst Figure 49: Consecutive READ Bursts BL = Figure 5: Consecutive READ Bursts BL = PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 5 2 Micron Technology, Inc. All rights reserved.

6 576Mb: x8, x36 RLDRAM 3 Features Figure 5: READ-to-WRITE BL = Figure 52: Read Data Valid Window Figure 53: Bank Address-Controlled AUTO REFRESH Cycle... 9 Figure 54: Multibank AUTO REFRESH Cycle... 9 Figure 55: READ Burst with ODT... 9 Figure 56: READ-NOP-READ with ODT Figure 57: Command Description in Multiplexed Address Mode Figure 58: Power-Up/Initialization Sequence in Multiplexed Address Mode Figure 59: MR Definition for Multiplexed Address Mode Figure 6: MR Definition for Multiplexed Address Mode Figure 6: MR2 Definition for Multiplexed Address Mode Figure 62: Bank Address-Controlled AUTO REFRESH Operation with Multiplexed Addressing Figure 63: Multibank AUTO REFRESH Operation with Multiplexed Addressing Figure 64: Consecutive WRITE Bursts with Multiplexed Addressing Figure 65: WRITE-to-READ with Multiplexed Addressing... Figure 66: Consecutive READ Bursts with Multiplexed Addressing... Figure 67: READ-to-WRITE with Multiplexed Addressing... Figure 68: TAP Controller State Diagram... 5 Figure 69: TAP Controller Functional Block Diagram... 5 Figure 7: JTAG Operation - Loading Instruction Code and Shifting Out Data... 8 Figure 7: TAP Timing... 9 PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 6 2 Micron Technology, Inc. All rights reserved.

7 576Mb: x8, x36 RLDRAM 3 Features List of Tables Table : 32 Meg x 8 Ball Assignments 68-Ball FBGA Top View... 2 Table 2: 6 Meg x 36 Ball Assignments 68-Ball FBGA Top View... 3 Table 3: Ball Descriptions... 4 Table 4: I DD Operating Conditions and Maximum Limits... 7 Table 5: Absolute Maximum Ratings... 2 Table 6: Input/Output Capacitance... 2 Table 7: DC Electrical Characteristics and Operating Conditions Table 8: Input AC Logic Levels Table 9: Control and Address Balls Table : Clock, Data, Strobe, and Mask Balls Table : Differential Input Operating Conditions CK, CK# and DKx, DKx# Table 2: Allowed Time Before Ringback t DVAC for CK, CK#, DKx, and DKx# Table 3: Single-Ended Input Slew Rate Definition Table 4: Differential Input Slew Rate Definition Table 5: ODT DC Electrical Characteristics... 3 Table 6: R TT Effective Impedances... 3 Table 7: ODT Sensitivity Definition Table 8: ODT Temperature and Voltage Sensitivity Table 9: Driver Pull-Up and Pull-Down Impedance Calculations Table 2: Output Driver Sensitivity Definition Table 2: Output Driver Voltage and Temperature Sensitivity Table 22: Single-Ended Output Driver Characteristics Table 23: Differential Output Driver Characteristics Table 24: Single-Ended Output Slew Rate Definition... 4 Table 25: Differential Output Slew Rate Definition... 4 Table 26: RL3 233/866 Speed Bins Table 27: RL3 6 Speed Bins Table 28: AC Electrical Characteristics Table 29: Temperature Limits Table 3: Thermal Impedance Table 3: Command and Address Setup and Hold Values Referenced at V/ns AC/DC-Based... 5 Table 32: Derating Values for t IS/ t IH AC5/DC-Based Table 33: Minimum Required Time t VAC Above V IHAC or Below V ILAC for Valid Transition Table 34: Data Setup and Hold Values at V/ns DKx, DKx# at 2V/ns AC/DC-Based Table 35: Derating Values for t DS/ t DH AC5/DC-Based Table 36: Minimum Required Time t VAC Above V IHAC or Below V ILAC for Valid Transition Table 37: Command Descriptions Table 38: Command Table Table 39: t RC_MRS values Table 4: Address Widths of Different Burst Lengths... 7 Table 4: Address Mapping in Multiplexed Address Mode Table 42: 32 Meg x 8 Ball Assignments with MF Ball Tied HIGH... 2 Table 43: TAP Input AC Logic Levels... 9 Table 44: TAP AC Electrical Characteristics... 9 Table 45: TAP DC Electrical Characteristics and Operating Conditions... Table 46: Identification Register Definitions... Table 47: Scan Register Sizes... Table 48: Instruction Codes... Table 49: Boundary Scan Exit... PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 7 2 Micron Technology, Inc. All rights reserved.

8 General Description 576Mb: x8, x36 RLDRAM 3 General Description The Micron RLDRAM 3 is a high-speed memory device designed for high-bandwidth data storage telecommunications, networking, cache applications, etc. The chip s 6- bank architecture is optimized for sustainable high-speed operation. The DDR I/O interface transfers two data bits per clock cycle at the I/O balls. Output data is referenced to the READ strobes. Commands, addresses, and control signals are also registered at every positive edge of the differential input clock, while input data is registered at both positive and negative edges of the input data strobes. Read and write accesses to the RL3 device are burst-oriented. The burst length BL is programmable to 2, 4, or 8 by a setting in the mode register. The device is supplied with.35v for the core and.2v for the output drivers. The 2.5V supply is used for an internal supply. Bank-scheduled refresh is supported with the row address generated internally. The 68-ball FBGA package is used to enable ultra-high-speed data transfer rates. General Notes The functionality and the timing specifications discussed in this data sheet are for the DLL enable mode of operation. Any functionality not specifically stated is considered undefined, illegal, and not supported, and can result in unknown operation. Nominal conditions are assumed for specifications not defined within the figures shown in this data sheet. Throughout this data sheet, the terms "RLDRAM," "DRAM, and "RLDRAM 3" are all used interchangeably and refer to the RLDRAM 3 SDRAM device. References to DQ, DK, QK, DM, and QVLD are to be interpeted as each group collectively, unless specifically stated otherwise. This includes true and complement signals of differential signals. Non-multiplexed operation is assumed if not specified as multiplexed. A X36 Device supplies four QK/QK# sets. One per 9 DQs. If a user only wants to use two QK/QK# sets, this is allowed. The user needs to use QK/QK# and QK/QK#. QK/QK# will control DQ[8:] & DQ[26:8]. QK/QK# will control DQ[7:9] & DQ[35:27]. The QK to DQ timing parameter to be used would be t QKQ2, t QKQ3. The unused QK/QK# pins should be left floating. PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 8 2 Micron Technology, Inc. All rights reserved.

9 576Mb: x8, x36 RLDRAM 3 State Diagram State Diagram Figure 2: Simplified State Diagram Initialization sequence NOP WRITE READ RESET# MRS AREF Automatic sequence Command sequence PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 9 2 Micron Technology, Inc. All rights reserved.

10 PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 2 Micron Technology, Inc. All rights reserved. Functional Block Diagrams Figure 3: 32 Meg x 8 Functional Block Diagram RZQ CK CK# CS# REF# WE# MF RESET# A[9:] BA[3:] TCK TMS TDI ZQ 24 Command decode Address register Mode register JTAG Logic and Boundary Scan Register ODT control Control logic 24 Notes: ZQCL, ZQCS Refresh counter Rowaddress MUX 7 3 Bank control logic Columnaddress counter/ latch ZQ CAL Bank rowaddress latch and decoder ZQ CAL Bank Bank Bank memory array 892 x 32 x 8 x 8 2 SENSE AMPLIFIERS Sense amplifiers 892 I/O gating DQM mask logic 32 Column decoder Bank 5 Bank READ logic n n WRITE FIFO and drivers CLK in 8 8 DQ latch Input logic ODT control 8 QK/QK# generator ODT control 8 4 ODT control. Example for BL = 2; column address will be reduced with an increase in burst length = length of burst x 2^ number of column addresses to WRITE FIFO and READ logic ZQ CAL 4 RCVRS CK/CK# DLL READ Drivers V DDQ/2 R TT V DDQ/2 R TT V DDQ/2 R TT QVLD QK/QK#,QK/QK# DQ[7:] DK/DK#, DK/DK# DM[:] TDO 576Mb: x8, x36 RLDRAM 3 Functional Block Diagrams

11 PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 2 Micron Technology, Inc. All rights reserved. Functional Block Diagrams Figure 4: 6 Meg x 36 Functional Block Diagram RZQ CK CK# CS# REF# WE# MF RESET# A[8:] TCK TMS TDI ZQ 23 Command decode Address register Mode register JTAG Logic and Boundary Scan Register ODT control Control logic 23 Notes: ZQCL, ZQCS Refresh counter Rowaddress MUX 6 3 Bank control logic Columnaddress counter/ latch ZQ CAL Bank rowaddress latch and decoder ZQ CAL Bank Bank Bank memory array 892 x 32 x 4 x 36 2 SENSE AMPLIFIERS Sense amplifiers 892 I/O gating DQM mask logic 32 Column decoder Bank 5 Bank READ logic n n WRITE FIFO and drivers CLK in DQ latch Input logic ODT control 36 QK/QK# generator ODT control ODT control. Example for BL = 2; column address will be reduced with an increase in burst length = length of burst x 2^ number of column addresses to WRITE FIFO and READ logic ZQ CAL 8 CK/CK# DLL READ Drivers VDDQ/2 R TT RCVRS V DDQ/2 R TT VDDQ/2 R TT QVLD[:] QK/QK#, QK/QK# QK2/QK2#, QK3/QK3# DQ[35:] DK/DK#, DK/DK# DM[:] TDO 576Mb: x8, x36 RLDRAM 3 Functional Block Diagrams

12 576Mb: x8, x36 RLDRAM 3 Ball Assignments and Descriptions Ball Assignments and Descriptions Table : 32 Meg x 8 Ball Assignments 68-Ball FBGA Top View A V SS V DD NF V DDQ NF V REF DQ7 V DDQ DQ8 V DD V SS RESET# B V EXT V SS NF V SSQ NF V DDQ DM V DDQ DQ5 V SSQ DQ6 V SS V EXT C V DD NF V DDQ NF V SSQ NF DK# DQ2 V SSQ DQ3 V DDQ DQ4 V DD D A V SSQ NF V DDQ NF V SSQ DK V SSQ QK V DDQ DQ V SSQ A3 E V SS A V SSQ NF V DDQ NF MF QK# V DDQ DQ V SSQ CS# V SS F A7 NF CS/A2 V DD A2 A WE# ZQ REF# A3 A4 V DD A5 A9 G V 2 SSA2 A5 A6 V SS BA V SS CK# V SS BA V SS A8 A8 V 3 SS RFU H A9 V DD A4 A6 V DD BA3 CK BA2 V DD A7 A2 V DD A J V DDQ NF V SSQ NF V DDQ NF V SS QK# V DDQ DQ9 V SSQ QVLD V DDQ K NF V SSQ NF V DDQ NF V SSQ DK V SSQ QK V DDQ DQ V SSQ DQ L V DD NF V DDQ NF V SSQ NF DK# DQ2 V SSQ DQ3 V DDQ DQ4 V DD M V EXT V SS NF V SSQ NF V DDQ DM V DDQ DQ5 V SSQ DQ6 V SS V EXT N V SS TCK V DD TDO V DDQ NF V REF DQ7 V DDQ TDI V DD TMS V SS Notes:. F2 is an NF ball for both the X8 & X36 576Mb devices, but is also the Location of CS to support the Gb x8 DDP device. This same ball has been designated as the location of A2 for the future 2Gb monolithic device. F2 is Internally connected so it can mirror the A5 address signal when MF is asserted HIGH and has parasitic characteristics of an address pin. 2. G is a VSS ball for the 576Mb device, but has been designated as the location of A2 for the future X8 2Gb monolithic device. 3. G3 is a VSS ball for both X8 & X36 576Mb devices, but has been reserved for future use RFU on the Gb & 2Gb monolithic devices and will have parasitic characteristics of an address. 4. NF balls for the x8 configuration are internally connected and have parasitic characteristics of an I/O. Balls may be connected to V SSQ. 5. MF is assumed to be tied LOW for this ball assignment. PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 2 2 Micron Technology, Inc. All rights reserved.

13 576Mb: x8, x36 RLDRAM 3 Ball Assignments and Descriptions Table 2: 6 Meg x 36 Ball Assignments 68-Ball FBGA Top View A V SS V DD DQ26 V DDQ DQ25 V REF DQ7 V DDQ DQ8 V DD V SS RESET# B V EXT V SS DQ24 V SSQ DQ23 V DDQ DM V DDQ DQ5 V SSQ DQ6 V SS V EXT C V DD DQ22 V DDQ DQ2 V SSQ DQ2 DK# DQ2 V SSQ DQ3 V DDQ DQ4 V DD D A V SSQ DQ8 V DDQ QK2 V SSQ DK V SSQ QK V DDQ DQ V SSQ A3 E V SS A V SSQ DQ9 V DDQ QK2# MF QK# V DDQ DQ V SSQ CS# V SS F A7 NF CS/A2 V DD A2 A WE# ZQ REF# A3 A4 V DD A5 A9 G V 2 SSNF A5 A6 V SS BA V SS CK# V SS BA V SS A8 A8 V 3 SS RFU H NF 4 A9 V DD A4 A6 V DD BA3 CK BA2 V DD A7 A2 V DD A J V DDQ QVLD V SSQ DQ27 V DDQ QK3# V SS QK# V DDQ DQ9 V SSQ QVLD V DDQ K DQ29 V SSQ DQ28 V DDQ QK3 V SSQ DK V SSQ QK V DDQ DQ V SSQ DQ L V DD DQ32 V DDQ DQ3 V SSQ DQ3 DK# DQ2 V SSQ DQ3 V DDQ DQ4 V DD M V EXT V SS DQ34 V SSQ DQ33 V DDQ DM V DDQ DQ5 V SSQ DQ6 V SS V EXT N V SS TCK V DD TDO V DDQ DQ35 V REF DQ7 V DDQ TDI V DD TMS V SS Notes:. F2 is an NF ball for both the X8 & X36 576Mb devices, but is also the Location of CS to support the Gb x8 DDP device. This same ball has been designated as the location of A2 for the future 2Gb monolithic device. F2 is Internally connected so it can mirror the A5 address signal when MF is asserted HIGH and has parasitic characteristics of an address pin. 2. G is a VSS ball for this 576Mb device, but will be an NF ball for the future X36 2Gb monolithic device. The NF ball A2 for X8 2Gb device will have parasitic characteristics of an address. 3. G3 is a VSS ball for both X8 & X36 576Mb devices, but has been reserved for future use RFU on the Gb & 2Gb monolithic devices and will have parasitic characteristics of an address. 4. NF ball for x36 configuration is internally connected and has parasitic characteristics of an address A9 for x8 configuration. Ball may be connected to V SSQ. 5. MF is assumed to be tied LOW for this ball assignment. PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 3 2 Micron Technology, Inc. All rights reserved.

14 576Mb: x8, x36 RLDRAM 3 Ball Assignments and Descriptions Table 3: Ball Descriptions Symbol Type Description A[9:] Input Address inputs: A[9:] define the row and column addresses for READ and WRITE operations. During a MODE REGISTER SET, the address inputs define the register settings along with BA[3:]. They are sampled at the rising edge of CK. BA[3:] Input Bank address inputs: Select the internal bank to which a command is being applied. CK/CK# Input Input clock: CK and CK# are differential input clocks. Addresses and commands are latched on the rising edge of CK. CS# Input Chip select: CS# enables the command decoder when LOW and disables it when HIGH. When the command decoder is disabled, new commands are ignored, but internal operations continue. DQ[35:] I/O Data input: The DQ signals form the 36-bit data bus. During READ commands, the data is referenced to both edges of QK. During WRITE commands, the data is sampled at both edges of DK. DKx, DKx# Input Input data clock: DKx and DKx# are differential input data clocks. All input data is referenced to both edges of DKx. For the x36 device, DQ[8:] and DQ[26:8] are referenced to DK and DK#, and DQ[7:9] and DQ[35:27] are referenced to DK and DK#. For the x8 device, DQ[8:] are referenced to DK and DK#, and DQ[7:9] are referenced to DK and DK#. DKx and DKx# are free-running signals and must always be supplied to the device. DM[:] Input Input data mask: DM is the input mask signal for WRITE data. Input data is masked when DM is sampled HIGH. DM is used to mask the lower byte for the x8 device and DQ[8:] and DQ[26:8] for the x36 device. DM is used to mask the upper byte for the x8 device and DQ[7:9] and DQ[35:27] for the x36 device. Tie DM[:] to V SS if not used. TCK Input IEEE 49. clock input: This ball must be tied to V SS if the JTAG function is not used. TMS, TDI Input IEEE 49. test inputs: These balls may be left as no connects if the JTAG function is not used. WE#, REF# Input Command inputs: Sampled at the positive edge of CK, WE# and REF# together with CS# define the command to be executed. RESET# Input Reset: RESET# is an active LOW CMOS input referenced to V SS. RESET# assertion and deassertion are asynchronous. RESET# is a CMOS input defined with DC HIGH.8 x V DD and DC LOW.2 x V DDQ. ZQ Input External impedance: This signal is used to tune the device s output impedance and ODT. RZQ needs to be 24Ω, where RZQ is a resistor from this signal to ground. QKx, QKx# Output Output data clocks: QK and QK# are opposite-polarity output data clocks. They are free-running signals and during READ commands are edge-aligned with the DQs. For the x36 device, QK, QK# align with DQ[8:]; QK, QK# align with DQ[7:9]; QK2, QK2# align with DQ[26:8]; QK3, QK3# align with DQ[35:27]. For the x8 device, QK, QK# align with DQ[8:]; QK, QK# align with DQ[7:9]. QVLDx Output Data valid: The QVLD ball indicates that valid output data will be available on the subsequent rising clock edge. There is a single QVLD ball for the x8 device and two, QVLD and QVLD, for the x36 device. QVLD aligns with DQ[7:]; QVLD aligns with DQ[35:8]. MF Input Mirror function: The mirror function ball is a DC input used to create mirrored ballouts for simple dual-loaded clamshell mounting. If the ball is tied to V SS, the address and command balls are in their true layout. If the ball is tied to V DDQ, they are in the complement location. MF must be tied HIGH or LOW and cannot be left floating. MF is a CMOS input defined with DC HIGH.8 x V DD and DC LOW.2 x V DDQ. PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 4 2 Micron Technology, Inc. All rights reserved.

15 576Mb: x8, x36 RLDRAM 3 Ball Assignments and Descriptions Table 3: Ball Descriptions Continued Symbol Type Description TDO Output IEEE 49. test output: JTAG output. This ball may be left as no connect if the JTAG function is not used. V DD Supply Power supply:.35v nominal. See Table 7 page 22 for range. V DDQ Supply DQ power supply:.2v nominal. Isolated on the device for improved noise immunity. See Table 7 page 22 for range. V EXT Supply Power supply: 2.5V nominal. See Table 7 page 22 for range. V REF Supply Input reference voltage: V DDQ /2 nominal. Provides a reference voltage for the input buffers. V SS Supply Ground. V SSQ Supply DQ ground: Isolated on the device for improved noise immunity. NC No connect: These balls are not connected to the DRAM. NF No function: These balls are connected to the DRAM, but provide no functionality. PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 5 2 Micron Technology, Inc. All rights reserved.

16 576Mb: x8, x36 RLDRAM 3 Package Dimensions Package Dimensions Figure 5: 68-Ball FBGA Seating plane A.2 A 68X Ø.55 Dimensions apply to solder balls postreflow on Ø.4 NSMD ball pads Ball A ID Ball A ID A B C 3.5 ±. 2 CTR TYP D E F G H J K L M N TYP 2 CTR 3.5 ±.. ±..325 MIN Note:. All dimensions are in millimeters. PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 6 2 Micron Technology, Inc. All rights reserved.

17 PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 7 2 Micron Technology, Inc. All rights reserved. Electrical Characteristics I DD Specifications Table 4: I DD Operating Conditions and Maximum Limits Notes 6 apply to the entire table Description Condition Symbol -93E -93-7E -7-25F -25E -25 Units Notes Standby current Clock active standby current Operational current: BL2 Operational current: BL4 Operational current: BL8 Burst refresh current t CK = idle; All banks idle; No inputs toggling CS# = ; No commands; Bank address incremented and half address/ data change once every four clock cycles BL = 2; Sequential bank access; Bank transitions once every t RC; Half address transitions once every t RC; Read followed by write sequence; Continuous data during WRITE commands BL = 4; Sequential bank access; Bank transitions once every t RC; Half address transitions once every t RC; Read followed by write sequence; Continuous data during WRITE commands BL = 8; Sequential bank access; Bank transitions once every t RC; Half address transitions once every t RC; Read followed by write sequence; Continuous data during WRITE commands Sixteen bank cyclic refresh using Bank Address Control AREF protocol; Command bus remains in refresh for all sixteen banks; DQs are High-Z and at V DDQ /2; Addresses are at V DDQ /2 I SB V DD x ma 7 I SB V DD x I SB V EXT I SB2 V DD x ma I SB2 V DD x I SB2 V EXT I DD V DD x ma I DD V DD x I DD V EXT I DD2 V DD x ma I DD2 V DD x I DD2 V EXT I DD3 V DD x ma I DD3 V DD x36 NA NA NA NA N/A NA NA I DD3 V EXT I REF V DD x ma I REF V DD x I REF V EXT Mb: x8, x36 RLDRAM 3 Electrical Characteristics I DD Specifications

18 PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 8 2 Micron Technology, Inc. All rights reserved. Table 4: I DD Operating Conditions and Maximum Limits Continued Notes 6 apply to the entire table Description Condition Symbol -93E -93-7E -7-25F -25E -25 Units Notes Distributed refresh current Multibank refresh current: 4 bank refresh Operating burst write current : BL2 Operating burst write current : BL4 Operating burst write current :BL8 Multibank write current: Dual bank write Multibank write current: Quad bank write Single bank refresh using Bank Address Control AREF protocol; Sequential bank access every.489μs; DQs are High-Z and at V DDQ /2; Addresses are at V DDQ /2 Quad bank refresh using Multibank AREF protocol; BL = 4; Cyclic bank access; Subject to t SAW and t MMD specifications; DQs are High-Z and at V DDQ /2; Bank addresses are at V DDQ /2 BL = 2; Cyclic bank access; Half of address bits change every clock cycle; Continuous data; Measurement is taken during continuous WRITE BL = 4; Cyclic bank access; Half of address bits change every two clock cycles; Continuous data; Measurement is taken during continuous WRITE BL = 8; Cyclic bank access; Half of address bits change every four clock cycles; Continuous data; Measurement is taken during continuous WRITE BL = 4; Cyclic bank access using Dual Bank WRITE; Half of address bits change every two clock cycles; Continuous data; Measurement is taken during continuous WRITE BL = 4; Cyclic bank access using Quad Bank WRITE; Half of address bits change every two clock cycles; Continuous data; Measurement is taken during continuous WRITE; Subject to t SAW specification I REF2 V DD x ma I REF2 V DD x I REF2 V EXT I MBREF4 V DD x ma I MBREF4 V DD x I MBREF4 V EXT I DD2W V DD x ma I DD2W V DD x I DD2W V EXT I DD4W V DD x ma I DD4W V DD x I DD4W V EXT I DD8W V DD x ma I DD8W V DD x36 NA NA NA NA NA NA NA I DD8W V EXT I DBWR V DD x ma I DBWR V DD x I DBWR V EXT I QBWR V DD x ma I QBWR V DD x I QBWR V EXT Mb: x8, x36 RLDRAM 3 Electrical Characteristics I DD Specifications

19 PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 9 2 Micron Technology, Inc. All rights reserved. Table 4: I DD Operating Conditions and Maximum Limits Continued Notes 6 apply to the entire table Description Condition Symbol -93E -93-7E -7-25F -25E -25 Units Notes Operating burst read current example Operating burst read current example Operating burst read current example BL = 2; Cyclic bank access; Half of address bits change every clock cycle; Continuous data; Measurement is taken during continuous READ BL = 4; Cyclic bank access; Half of address bits change every two clock cycles; Continuous data; Measurement is taken during continuous READ BL = 8; Cyclic bank access; Half of address bits change every four clock cycles; Continuous data; Measurement is taken during continuous READ I DD2R V DD x ma I DD2R V DD x I DD2R V EXT I DD4R V DD x ma I DD4R V DD x I DD4R V EXT I DD8R V DD x ma I DD8R V DD x36 NA NA NA NA NA NA NA I DD8R V EXT Mb: x8, x36 RLDRAM 3 Electrical Characteristics I DD Specifications

20 576Mb: x8, x36 RLDRAM 3 Electrical Characteristics I DD Specifications Notes:. I DD specifications are tested after the device is properly initialized. C T C +95 C; +.28V V DD +.42V,+.4V V DDQ +.26V,+2.38V V EXT +2.63V,V REF = V DDQ /2. 2. I DD mesurements use t CK MIN, t RC MIN, and minimum data latency RL and WL. 3. Input slew rate is V/ns for single ended signals and 2V/ns for differential signals. 4. Definitions for I DD conditions: LOW is defined as V IN V ILACMAX. HIGH is defined as V IN V IHACMIN. Continuous data is defined as half the DQ signals changing between HIGH and LOW every half clock cycle twice per clock. Continuous address is defined as half the address signals changing between HIGH and LOW every clock cycle once per clock. Sequential bank access is defined as the bank address incrementing by one every t RC. Cyclic bank access is defined as the bank address incrementing by one for each command access. For BL = 2 this is every clock, for BL = 4 this is every other clock, and for BL = 8 this is every fourth clock. 5. CS# is HIGH unless a READ, WRITE, AREF, or MRS command is registered. CS# never transitions more than once per clock cycle. 6. I DD parameters are specified with ODT disabled. 7. Upon exiting standby current conditions, at least one NOP command must be issued with stable clock prior to issuing any other valid command. PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 2 2 Micron Technology, Inc. All rights reserved.

21 Electrical Specifications Absolute Ratings and I/O Capacitance Absolute Maximum Ratings Table 5: Absolute Maximum Ratings Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may adversely affect reliability. Symbol Parameter Min Max Units V DD V DD supply voltage relative to V SS V V DDQ Voltage on V DDQ supply relative to V SS.4.66 V V IN,V OUT Voltage on any ball relative to V SS.4.66 V V EXT Voltage on V EXT supply relative to V SS V Input/Output Capacitance 576Mb: x8, x36 RLDRAM 3 Electrical Specifications Absolute Ratings and I/O Capacitance Table 6: Input/Output Capacitance Notes and 2 apply to entire table Capacitance Parameters Symbol RL3-233 RL3-866 RL3-6 Min Max Min Max Min Max CK/CK# C CK pf ΔC: CK to CK# C DCK pf Single-ended I/O: DQ, DM C IO pf 3 Input strobe: DK/DK# C IO pf Output strobe: QK/QK#, QVLD C IO pf ΔC: DK to DK# C DDK pf ΔC: QK to QK# C DQK pf ΔC: DQ to QK or DQ to DK C DIO pf 4 Inputs CMD, ADDR C I pf 5 ΔC: CMD_ADDR to CK C DI_CMD_ADDR pf 6 JTAG balls C JTAG pf 7 RESET#, MF balls C I pf Units Notes Notes:. +.28V V DD +.42V, +.4V V DDQ.26V, +2.38V V EXT +2.63V, V REF = V SS, f = MHz, T C = 25 C, V OUTDC =.5 V DDQ, V OUT peak-to-peak =.V. 2. Capacitance is not tested on ZQ ball. 3. DM input is grouped with the I/O balls, because they are matched in loading. 4. C DIO = C IODQ -.5 C IO [QK] + C IO [QK#]. 5. Includes CS#, REF#, WE#, A[9:], and BA[3:]. 6. C DI_CMD_ADDR = C I CMD_ADDR -.5 C CK [CK] + C CK [CK#]. 7. JTAG balls are tested at 5 MHz. PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 2 2 Micron Technology, Inc. All rights reserved.

22 576Mb: x8, x36 RLDRAM 3 AC and DC Operating Conditions AC and DC Operating Conditions Table 7: DC Electrical Characteristics and Operating Conditions Note applies to the entire table; Unless otherwise noted: C T C +95 C; +.28V V DD +.42V Description Symbol Min Max Units Notes Supply voltage V EXT V Supply voltage V DD V Isolated output buffer supply V DDQ.4.26 V Reference voltage V REF.49 V DDQ.5 V DDQ V 2, 3 Input HIGH logic voltage V IHDC V REF +. V DDQ V Input LOW logic voltage V ILDC V SS V REF -. V Input leakage current: Any input V V IN V DD, V REF ball V V IN.V All other balls not under test = V Reference voltage current All other balls not under test = V I LI 2 2 µa I REF 5 5 µa Notes:. All voltages referenced to V SS GND. 2. The nominal value of V REF is expected to be.5 V DDQ of the transmitting device. V REF is expected to track variations in V DDQ. 3. Peak-to-peak noise non-common mode on V REF may not exceed ±2% of the DC value. DC values are determined to be less than 2 MHz. Peak-to-peak AC noise on V REF should not exceed ±2% of V REFDC. Thus, from V DDQ /2, V REF is allowed ±2% V DDQ /2 for DC error and an additional ±2% V DDQ /2 for AC noise. The measurement is to be taken at the nearest V REF bypass capacitor. Table 8: Input AC Logic Levels Notes -3 apply to entire table; Unless otherwise noted: C T C +95 C; +.28V V DD +.42V Description Symbol Min Max Units Input HIGH logic voltage V IHAC V REF +.5 V Input LOW logic voltage V ILAC V REF -.5 V Notes:. All voltages referenced to V SS GND. 2. The receiver will effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as the signal does not ring back above/below the DC input LOW/HIGH level. 3. Single-ended input slew rate = V/ns; maximum input voltage swing under test is 9mV peak-to-peak. PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 22 2 Micron Technology, Inc. All rights reserved.

23 576Mb: x8, x36 RLDRAM 3 AC and DC Operating Conditions Figure 6: Single-Ended Input Signal.6V V IL and V IH levels with ringback V DDQ +.4V narrow pulse width.2v V DDQ Minimum V IL and V IH levels.75v V IHAC.75V V IHAC.7V V IHDC.7V V IHDC.624V.62V.6V.588V.576V.624V.62V.6V.588V.576V V REF + AC noise V REF + DC error V REF - DC error V REF - AC noise.5v V ILDC.5V V ILDC.45V V ILAC.45V V ILAC.V V SS.4V V SS -.4V narrow pulse width PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 23 2 Micron Technology, Inc. All rights reserved.

24 576Mb: x8, x36 RLDRAM 3 AC and DC Operating Conditions AC Overshoot/Undershoot Specifications Table 9: Control and Address Balls Parameter RL3-233 RL3-866 RL3-6 Maximum peak amplitude allowed for overshoot area.4v.4v.4v Maximum peak amplitude allowed for undershoot area.4v.4v.4v Maximum overshoot area above V DDQ.25 Vns.28 Vns.33 Vns Maximum undershoot area below V SS /V SSQ.25 Vns.28 Vns.33 Vns Table : Clock, Data, Strobe, and Mask Balls Parameter RL3-233 RL3-866 RL3-6 Maximum peak amplitude allowed for overshoot area.4v.4v.4v Maximum peak amplitude allowed for undershoot area.4v.4v.4v Maximum overshoot area above V DDQ. Vns. Vns.3 Vns Maximum undershoot area below V SS /V SSQ. Vns. Vns.3 Vns Figure 7: Overshoot Volts V Maximum amplitude Overshoot area V DDQ Time ns Figure 8: Undershoot V SS /V SSQ Volts V Maximum amplitude Time ns Undershoot area PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 24 2 Micron Technology, Inc. All rights reserved.

25 576Mb: x8, x36 RLDRAM 3 AC and DC Operating Conditions Table : Differential Input Operating Conditions CK, CK# and DKx, DKx# Notes and 2 apply to entire table Parameter/Condition Symbol Min Max Units Notes Differential input voltage logic HIGH slew V IH,diff_slew +2 n/a mv 3 Differential input voltage logic LOW slew V IL,diff_slew n/a -2 mv 3 Differential input voltage logic HIGH V IH,diffAC 2 V IHAC - V REF V DDQ mv 4 Differential input voltage logic LOW V IL,diffAC V SSQ 2 V ILAC - V REF mv 5 Differential input crossing voltage relative to V DD /2 V IX V REFDC - 5 V REFDC + 5 mv 6 Single-ended HIGH level V SEH V IHAC V DDQ mv 4 Single-ended LOW level V SEL V SSQ V ILAC mv 5 Notes:. CK/CK# and DKx/DKx# are referenced to V DDQ and V SSQ. 2. Differential input slew rate = 2 V/ns. 3. Defines slew rate reference points, relative to input crossing voltages. 4. Maximum limit is relative to single-ended signals; overshoot specifications are applicable. 5. Minimum limit is relative to single-ended signals; undershoot specifications are applicable. 6. The typical value of V IX is expected to be about.5 V DDQ of the transmitting device and V IX is expected to track variations in V DDQ. V IX indicates the voltage at which differential input signals must cross. Figure 9: V IX for Differential Signals V DDQ V DDQ CK#, DKx# CK#, DKx# X V IX V IX V DDQ /2 X X V DDQ /2 V IX X V IX CK, DKx CK, DKx V SSQ V SSQ PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 25 2 Micron Technology, Inc. All rights reserved.

26 Figure : Single-Ended Requirements for Differential Signals 576Mb: x8, x36 RLDRAM 3 AC and DC Operating Conditions V DDQ V SEH,min V DDQ /2 V SEH CK or DKx V SEL,max V SS V SEL Figure : Definition of Differential AC Swing and t DVAC t DVAC V IH,diffACmin V IH,diff_slew,min. CK - CK# DKx - DKx# V IL,diff_slew,max V IL,diffACmax half cycle t DVAC PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 26 2 Micron Technology, Inc. All rights reserved.

27 576Mb: x8, x36 RLDRAM 3 AC and DC Operating Conditions Table 2: Allowed Time Before Ringback t DVAC for CK, CK#, DKx, and DKx# Slew Rate V/ns MIN t DVAC ps at V IH /V IL,diffAC > <. 5 Slew Rate Definitions for Single-Ended Input Signals Setup t IS and t DS nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V REF and the first crossing of V IHACmin. Setup t IS and t DS nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V REF and the first crossing of V ILACmax. Hold t IH and t DH nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V ILDCmax and the first crossing of V REF. Hold t IH and t DH nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V IHDCmin and the first crossing of V REF see Figure 2 page 28. Table 3: Single-Ended Input Slew Rate Definition Input Slew Rates Linear Signals Measured Input Edge From To Calculation Setup Rising V REF V IHACmin [V IHACmin - V REF ]/ΔTRS Falling V REF V ILACmax [V REF - V ILACmax ]/ΔTFS Hold Rising V ILDCmax V REF [V REF - V ILDCmax ]/ΔTRH Falling V IHDCmin V REF [V IHDCmin - V REF ]/ΔTFH PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 27 2 Micron Technology, Inc. All rights reserved.

28 576Mb: x8, x36 RLDRAM 3 AC and DC Operating Conditions Figure 2: Nominal Slew Rate Definition for Single-Ended Input Signals ΔTRS Setup V IHACmin Single-ended input voltage DQ, CMD, ADDR V IHDCmin V REF V ILDCmax V ILACmax ΔTFS ΔTRH Hold V IHACmin Single-ended input voltage DQ, CMD, ADDR V IHDCmin V REF V ILDCmax V ILACmax ΔTFH PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 28 2 Micron Technology, Inc. All rights reserved.

29 Slew Rate Definitions for Differential Input Signals 576Mb: x8, x36 RLDRAM 3 AC and DC Operating Conditions Input slew rate for differential signals CK, CK# and DKx, DKx# are defined and measured as shown in the following two tables. The nominal slew rate for a rising signal is defined as the slew rate between V IL,diff,max and V IH,diff,min. The nominal slew rate for a falling signal is defined as the slew rate between V IH,diff,min and V IL,diff,max. Table 4: Differential Input Slew Rate Definition Differential Input Slew Rates Linear Signals Measured Input Edge From To CK and DK reference Calculation Rising V IL,diff_slew,max V IH,diff_slew,min [V IH,diff_slew,min - V IL,diff_slew,max ]/ΔTR diff Falling V IH,diff_slew,min V IL,diff_slew,max [V IH,diff_slew,min - V IL,diff_slew,max ]/ΔTF diff Figure 3: Nominal Differential Input Slew Rate Definition for CK, CK#, DKx, and DKx# ΔTR diff Differential input voltage CK, CK#; DKx, DKx# V IH,diff_slew,min V IL,diff_slew,max ΔTF diff PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 29 2 Micron Technology, Inc. All rights reserved.

30 576Mb: x8, x36 RLDRAM 3 ODT Characteristics ODT Characteristics Figure 4: ODT Levels and I-V Characteristics ODT effective resistance, R TT, is defined by MR[4:2]. ODT is applied to the DQ, DM, and DKx, DKx# balls. The individual pull-up and pull-down resistors R TTPU and R TTPD are defined as follows: R TTPU =V DDQ - V OUT / I OUT, under the condition that R TTPD is turned off R TTPD = V OUT / I OUT, under the condition that R TTPU is turned off Chip in termination mode I PU ODT V DDQ To other circuitry such as RCV,... R TTPU R TTPD I PD I OUT = I PD - I PU DQ I OUT VOUT V SSQ Table 5: ODT DC Electrical Characteristics Parameter/Condition Symbol Min Nom Max Units Notes R TT effective impedance from V ILAC to V IHAC R TT_EFF See Table 6 page 3., 2 Deviation of V M with respect to V DDQ /2 ΔVm % 3 Notes:. Tolerance limits are applicable after proper ZQ calibration has been performed at a stable temperature and voltage. Refer to ODT Sensitivity page 32 if either the temperature or voltage changes after calibration. 2. Measurement definition for R TT : Apply V IHAC to ball under test and measure current I[V IHAC ], then apply V ILAC to ball under test and measure current I[V ILAC ]: R TT = V IHAC - V ILAC I[V IHAC ] - I[V ILAC ] 3. Measure voltage V M at the tested ball with no load: 2 VM ΔVM = - V DDQ ODT Resistors The on-die termination resistance is selected by MR[4:2]. The following table provides an overview of the ODT DC electrical characteristics. The values provided are not speci- PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 3 2 Micron Technology, Inc. All rights reserved.

31 Table 6: R TT Effective Impedances fication requirements; however, they can be used as design guidelines to indicate what R TT is targeted to provide: R TT 2Ω is made up of R TT2PD24 and R TT2PU24. R TT 6Ω is made up of R TT6PD2 and R TT6PU2. R TT 4Ω is made up of R TT4PD8 and R TT4PU8. R TT Resistor V OUT Min Nom Max Units 2Ω R TT2PD24.2 x V DDQ.6.. RZQ/ 2Ω.5 x V DDQ.9.. RZQ/.8 x V DDQ.9..4 RZQ/ R TT2PU24.2 x V DDQ.9..4 RZQ/.5 x V DDQ.9.. RZQ/.8 x V DDQ.6.. RZQ/ V ILAC to.9..6 RZQ/2 V IHAC 6Ω R TT6PD2.2 x V DDQ.6.. RZQ/2 6Ω.5 x V DDQ.9.. RZQ/2.8 x V DDQ.9..4 RZQ/2 R TT6PU2.2 x V DDQ.9..4 RZQ/2.5 x V DDQ.9.. RZQ/2.8 x V DDQ.6.. RZQ/2 V ILAC to.9..6 RZQ/4 V IHAC 4Ω R TT4PD8.2 x V DDQ.6.. RZQ/3 4Ω 576Mb: x8, x36 RLDRAM 3 ODT Characteristics.5 x V DDQ.9.. RZQ/3.8 x V DDQ.9..4 RZQ/3 R TT4PU8.2 x V DDQ.9..4 RZQ/3.5 x V DDQ.9.. RZQ/3.8 x V DDQ.6.. RZQ/3 V ILAC to.9..6 RZQ/6 V IHAC PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 3 2 Micron Technology, Inc. All rights reserved.

32 576Mb: x8, x36 RLDRAM 3 ODT Characteristics ODT Sensitivity If either temperature or voltage changes after I/O calibration, then the tolerance limits listed in Table 5 page 3 and Table 6 page 3 can be expected to widen according to Table 7 page 32 and Table 8 page 32. Table 7: ODT Sensitivity Definition Symbol Min Max Units R TT.9 - dr TT dt DT - dr TT dv DV.6 + dr TT dt DT + dr TT dv DV RZQ/2,4,6 Note:. DT = T - T@ calibration, DV = V DDQ - V calibration or V DD - V calibration. Table 8: ODT Temperature and Voltage Sensitivity Change Min Max Units dr TT dt.5 %/ C dr TT dv.5 %/mv PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 32 2 Micron Technology, Inc. All rights reserved.

33 Output Driver Impedance Figure 5: Output Driver The output driver impedance is selected by MR[:] during initialization. The selected value is able to maintain the tight tolerances specified if proper ZQ calibration is performed. Output specifications refer to the default output driver unless specifically stated otherwise. A functional representation of the output buffer is shown below. The output driver impedance R ON is defined by the value of the external reference resistor RZQ as follows: R ON,x = RZQ/y with RZQ = 24Ω ±%; x = 4Ω or 6Ω with y = 6 or 4, respectively The individual pull-up and pull-down resistors R ONPU and R ONPD are defined as follows: R ONPU = V DDQ - V OUT / I OUT, when R ONPD is turned off R ONPD = V OUT / I OUT, when R ONPU is turned off Chip in drive mode Output Driver 576Mb: x8, x36 RLDRAM 3 Output Driver Impedance I PU V DDQ To other circuitry such as RCV,... R ONPU R ONPD I OUT DQ V OUT I PD V SSQ PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 33 2 Micron Technology, Inc. All rights reserved.

34 576Mb: x8, x36 RLDRAM 3 Output Driver Impedance Table 9: Driver Pull-Up and Pull-Down Impedance Calculations R ON Min Nom Max Units RZQ/6 = 24Ω ±%/ Ω RZQ/4 = 24Ω ±%/ Ω Driver V OUT Min Nom Max Units 4Ω pull-down.2 V DDQ Ω.5 V DDQ Ω.8 V DDQ Ω 4Ω pull-up.2 V DDQ Ω.5 V DDQ Ω.8 V DDQ Ω 6Ω pull-down.2 V DDQ Ω.5 V DDQ Ω.8 V DDQ Ω 6Ω pull-up.2 V DDQ Ω.5 V DDQ Ω.8 V DDQ Ω PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 34 2 Micron Technology, Inc. All rights reserved.

35 Output Driver Sensitivity Table 2: Output Driver Sensitivity Definition 576Mb: x8, x36 RLDRAM 3 Output Driver Impedance If either the temperature or the voltage changes after ZQ calibration, then the tolerance limits listed in Table 9 page 34 can be expected to widen according to Table 2 page 35 and Table 2 page 35. Symbol Min Max Units R V DDQ.6 - dr ON dth DT - dr ON dvh DV. + dr ON dth DT + dr ON dvh DV RZQ/6, 4 R V DDQ.9 - dr ON dtm DT - dr ON dvm DV. + dr ON dtm DT + dr ON dvm DV RZQ/6, 4 R V DDQ.9 - dr ON dtl DT - dr ON dvl DV.4 + dr ON dtl DT + dr ON dvl D RZQ/6, 4 R V DDQ.9 - dr ON dth DT - dr ON dvh DV.4 + dr ON dth DT + dr ON dvh DV RZQ/6, 4 R V DDQ.9 - dr ON dtm DT - dr ON dvm DV. + dr ON dtm DT + dr ON dvm DV RZQ/6, 4 R V DDQ.6 - dr ON dtl DT - dr ON dvl DV. + dr ON dtl DT + dr ON dvl DV RZQ/6, 4 Note:. DT = T - T@ calibration, DV = V DDQ - V calibration or V DD - V calibration. Table 2: Output Driver Voltage and Temperature Sensitivity Change Min Max Unit dr ON dtm.5 %/ C dr ON dvm.5 %/mv dr ON dtl.5 %/ C dr ON dvl.5 %/mv dr ON dth.5 %/ C dr ON dvh.5 %/mv PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 35 2 Micron Technology, Inc. All rights reserved.

36 Output Characteristics and Operating Conditions 576Mb: x8, x36 RLDRAM 3 Output Characteristics and Operating Conditions Table 22: Single-Ended Output Driver Characteristics Note and 2 apply to entire table Parameter/Condition Symbol Min Max Units Notes Output leakage current; DQ are disabled; Any output ball V V OUT V DDQ ; ODT is disabled; All other balls not under test = V Output slew rate: Single-ended; For rising and falling edges, measures between V OLAC = V REF -. V DDQ and V OHAC = V REF +. V DDQ I OZ 5 5 µa SRQ SE V/ns 4, 5 Single-ended DC high-level output voltage V OHDC.8 V DDQ V 6 Single-ended DC mid-point level output voltage V OMDC.5 V DDQ V 6 Single-ended DC low-level output voltage V OLDC.2 V DDQ V 6 Single-ended AC high-level output voltage V OHAC V TT +. V DDQ V 7, 8, 9 Single-ended AC low-level output voltage V OLAC V TT -. V DDQ V 7, 8, 9 Impedance delta between pull-up and pull-down for DQ and QVLD MM PUPD % 3 Test load for AC timing and output slew rates Output to V TT V DDQ /2 via 25Ω resistor 9 Notes:. All voltages are referenced to V SS. 2. RZQ is 24Ω ±% and is applicable after proper ZQ calibration has been performed at a stable temperature and voltage. 3. Measurement definition for mismatch between pull-up and pull-down MM PUPD. Measure both R ONPU and R ONPD at.5 V DDQ : Ron PU - Ron PD MM PUPD = x Ron NOM 4. The 6 V/ns maximum is applicable for a single DQ signal when it is switching either from HIGH to LOW or LOW to HIGH while the remaining DQ signals in the same byte lane are either all static or switching the opposite direction. For all other DQ signal switching combinations, the maximum limit of 6 V/ns is reduced to 5 V/ns. 5. See Table 24 page 4 for output slew rate. 6. See the Driver Pull-Up and Pull-Down Impedance Calculations table for IV curve linearity. Do not use AC test load. 7. V TT = V DDQ /2 8. See Figure 6 page 38 for an example of a single-ended output signal. 9. See Figure 8 page 39 for the test load configuration. PDF: 95aef mb_rldram3.pdf - Rev. D 3/3 EN 36 2 Micron Technology, Inc. All rights reserved.

RLDRAM 3. MT44K64M18 4 Meg x 18 x 16 Banks MT44K32M36 2 Meg x 36 x 16 Banks. Features Gb: x18, x36 RLDRAM 3. Features

RLDRAM 3. MT44K64M18 4 Meg x 18 x 16 Banks MT44K32M36 2 Meg x 36 x 16 Banks. Features Gb: x18, x36 RLDRAM 3. Features RLDRAM 3 MT44K64M8 4 Meg x 8 x 6 Banks MT44K32M36 2 Meg x 36 x 6 Banks.25Gb: x8, x36 RLDRAM 3 Features Features 2 MHz DDR operation (24 Mb/s/ball data rate) 86.4Gb/s peak bandwidth (x36 at 2 MHz clock

More information

CIO RLDRAM 2. MT49H64M9 64 Meg x 9 x 8 Banks MT49H32M18 32 Meg x 18 x 8 Banks MT49H16M36 16 Meg x 36 x 8 Banks. Features

CIO RLDRAM 2. MT49H64M9 64 Meg x 9 x 8 Banks MT49H32M18 32 Meg x 18 x 8 Banks MT49H16M36 16 Meg x 36 x 8 Banks. Features CIO RLDRAM 2 MT49H64M9 64 Meg x 9 x 8 Banks MT49H32M8 32 Meg x 8 x 8 Banks MT49H6M36 6 Meg x 36 x 8 Banks 576Mb: x9 x8 x36 CIO RLDRAM 2 Features Features 533 MHz DDR operation.67 Gb/s/pin data rate 38.4

More information

1.35V DDR3L SDRAM. MT41K1G4 128 Meg x 4 x 8 banks MT41K512M8 64 Meg x 8 x 8 banks MT41K256M16 32 Meg x 16 x 8 banks. Description

1.35V DDR3L SDRAM. MT41K1G4 128 Meg x 4 x 8 banks MT41K512M8 64 Meg x 8 x 8 banks MT41K256M16 32 Meg x 16 x 8 banks. Description 1.35R3L SDRAM MT41K1G4 128 Meg x 4 x 8 banks MT41K512M8 64 Meg x 8 x 8 banks MT41K256M16 32 Meg x 16 x 8 banks 4Gb: x4, x8, x16 DDR3L SDRAM Description Description DDR3L SDRAM 1.35V is a low voltage version

More information

1.35V DDR3L-RS SDRAM. MT41K256M8 32 Meg x 8 x 8 banks MT41K128M16 16 Meg x 16 x 8 banks. Description. 2Gb: x8, x16 DDR3L-RS SDRAM.

1.35V DDR3L-RS SDRAM. MT41K256M8 32 Meg x 8 x 8 banks MT41K128M16 16 Meg x 16 x 8 banks. Description. 2Gb: x8, x16 DDR3L-RS SDRAM. .35R3L-RS SDRAM MT4K256M8 32 Meg x 8 x 8 banks MT4K28M6 6 Meg x 6 x 8 banks 2Gb: x8, x6 DDR3L-RS SDRAM Description Description DDR3L-RS SDRAM.35V is a low current self refresh version, via a TCSR feature,

More information

Ball Assignments and Descriptions Ball Assignments and Descriptions Figure 1: 63-Ball FBGA x4, x8 Ball Assignments (Top View) A B V

Ball Assignments and Descriptions Ball Assignments and Descriptions Figure 1: 63-Ball FBGA x4, x8 Ball Assignments (Top View) A B V TwinDie DDR2 SDRAM MT47H1G4 64 Meg x 4 x 8 Banks x 2 Ranks MT47H512M8 32 Meg x 8 x 8 Banks x 2 Ranks 4Gb: x4, x8 TwinDie DDR2 SDRAM Features Features Uses 2Gb Micron die Two ranks (includes dual CS#, ODT,

More information

TwinDie 1.35V DDR3L SDRAM

TwinDie 1.35V DDR3L SDRAM TwinDie 1.35R3L SDRAM MT41K2G4 128 Meg x 4 x 8 Banks x 2 Ranks MT41K1G8 64 Meg x 8 x 8 Banks x 2 Ranks 8Gb: x4, x8 TwinDie DDR3L SDRAM Description Description The 8Gb (TwinDie ) DDR3L SDRAM (1.35V) uses

More information

TwinDie 1.35V DDR3L SDRAM

TwinDie 1.35V DDR3L SDRAM TwinDie 1.35R3L SDRAM MT41K2G4 128 Meg x 4 x 8 Banks x 2 Ranks MT41K1G8 64 Meg x 8 x 8 Banks x 2 Ranks 8Gb: x4, x8 TwinDie DDR3L SDRAM Description Description The 8Gb (TwinDie ) DDR3L SDRAM (1.35V) uses

More information

1.35V DDR3L-RS SDRAM. MT41K256M8 32 Meg x 8 x 8 banks MT41K128M16 16 Meg x 16 x 8 banks. Description. 2Gb: x8, x16 DDR3L-RS SDRAM.

1.35V DDR3L-RS SDRAM. MT41K256M8 32 Meg x 8 x 8 banks MT41K128M16 16 Meg x 16 x 8 banks. Description. 2Gb: x8, x16 DDR3L-RS SDRAM. .35R3L-RS SDRAM MT4K256M8 32 Meg x 8 x 8 banks MT4K28M6 6 Meg x 6 x 8 banks 2Gb: x8, x6 DDR3L-RS SDRAM Description Description DDR3L-RS SDRAM.35V is a low current self refresh version, via a TCSR feature,

More information

DDR3 SDRAM. MT41J512M4 64 Meg x 4 x 8 Banks MT41J256M8 32 Meg x 8 x 8 Banks MT41J128M16 16 Meg x 16 x 8 Banks. Features. 2Gb: x4, x8, x16 DDR3 SDRAM

DDR3 SDRAM. MT41J512M4 64 Meg x 4 x 8 Banks MT41J256M8 32 Meg x 8 x 8 Banks MT41J128M16 16 Meg x 16 x 8 Banks. Features. 2Gb: x4, x8, x16 DDR3 SDRAM DDR3 SDRAM MT41J512M4 64 Meg x 4 x 8 Banks MT41J256M8 32 Meg x 8 x 8 Banks MT41J128M16 16 Meg x 16 x 8 Banks 2Gb: x4, x8, x16 DDR3 SDRAM Features Features V DD = V DDQ = 1.5V ±0.075V 1.5V center-terminated

More information

Options 1. Note: Micron Technology, Inc. reserves the right to change products or specifications without notice. 4Gb_DDR3_SDRAM.pdf - Rev.

Options 1. Note: Micron Technology, Inc. reserves the right to change products or specifications without notice. 4Gb_DDR3_SDRAM.pdf - Rev. DDR3 SDRAM MT41J1G4 128 Meg x 4 x 8 banks MT41J512M8 64 Meg x 8 x 8 banks MT41J256M16 32 Meg x 16 x 8 banks 4Gb: x4, x8, x16 DDR3 SDRAM Features Features V DD = V DDQ = 1.5V ±0.075V 1.5V center-terminated

More information

Automotive DDR3 SDRAM

Automotive DDR3 SDRAM Automotive DDR3 SDRAM MT41J128M8 16 Meg x 8 x 8 banks MT41J64M16 8 Meg x 16 x 8 banks 1Gb: x8, x16 Automotive DDR3 SDRAM Features Features Industrial and automotive temperature compliant V DD = V DDQ =

More information

Automotive DDR3L SDRAM

Automotive DDR3L SDRAM Automotive DDR3L SDRAM MT41K128M8 16 Meg x 8 x 8 banks MT41K64M16 8 Meg x 16 x 8 banks 1Gb: x8, x16 Automotive DDR3L SDRAM Description Description The 1.35V DDR3L SDRAM device is a low-voltage version

More information

DDR3L SDRAM. MT41K512M4 64 Meg x 4 x 8 banks MT41K256M8 32 Meg x 8 x 8 banks MT41K128M16 16 Meg x 16 x 8 banks. Description

DDR3L SDRAM. MT41K512M4 64 Meg x 4 x 8 banks MT41K256M8 32 Meg x 8 x 8 banks MT41K128M16 16 Meg x 16 x 8 banks. Description DDR3L SDRAM MT41K512M4 64 Meg x 4 x 8 banks MT41K256M8 32 Meg x 8 x 8 banks MT41K128M16 16 Meg x 16 x 8 banks 2Gb: x4, x8, x16 DDR3L SDRAM Description Description The 1.35V DDR3L SDRAM device is a low-voltage

More information

Note: Parameter 512 Meg x Meg x 16 Configuration 64 Meg x 8 x 8 banks 32 Meg x 16 x 8 banks Refresh count 8K 8K

Note: Parameter 512 Meg x Meg x 16 Configuration 64 Meg x 8 x 8 banks 32 Meg x 16 x 8 banks Refresh count 8K 8K Description DDR3L-RS SDRAM EDJ4208EFBG-L 64 Meg x 8 x 8 banks EDJ4216EFBG-L 32 Meg x 16 x 8 banks Description The 1.35V DDR3L-RS SDRAM device is a low-voltage version of the DDR3 1.5V SDRAM. Refer to the

More information

8Gb: x4, x8, x16 DDR3L SDRAM Description

8Gb: x4, x8, x16 DDR3L SDRAM Description DDR3L SDRAM MT41K2G4 256 Meg x 4 x 8 banks MT41K1G8 128 Meg x 8 x 8 banks MT41K512M16 64 Meg x 16 x 8 banks 8Gb: x4, x8, x16 DDR3L SDRAM Description Description DDR3L 1.35V SDRAM is a low voltage version

More information

DDR2 SDRAM. MT47H512M4 64 Meg x 4 x 8 banks MT47H256M8 32 Meg x 8 x 8 banks MT47H128M16 16 Meg x 16 x 8 banks. Features. 2Gb: x4, x8, x16 DDR2 SDRAM

DDR2 SDRAM. MT47H512M4 64 Meg x 4 x 8 banks MT47H256M8 32 Meg x 8 x 8 banks MT47H128M16 16 Meg x 16 x 8 banks. Features. 2Gb: x4, x8, x16 DDR2 SDRAM DDR2 SDRAM MT47H52M4 64 Meg x 4 x 8 banks MT47H256M8 32 Meg x 8 x 8 banks MT47H28M6 6 Meg x 6 x 8 banks Features Features V DD =.8V ±.V, V DDQ =.8V ±.V JEDEC-standard.8V I/O (SSTL_8-compatible) Differential

More information

DDR2 SDRAM UDIMM MT8HTF6464AZ 512MB MT8HTF12864AZ 1GB MT8HTF25664AZ 2GB. Features. 512MB, 1GB, 2GB (x64, SR) 240-Pin DDR2 SDRAM UDIMM.

DDR2 SDRAM UDIMM MT8HTF6464AZ 512MB MT8HTF12864AZ 1GB MT8HTF25664AZ 2GB. Features. 512MB, 1GB, 2GB (x64, SR) 240-Pin DDR2 SDRAM UDIMM. DDR2 SDRAM UDIMM MT8HTF6464AZ 512MB MT8HTF12864AZ 1GB MT8HTF25664AZ 2GB 512MB, 1GB, 2GB (x64, SR) 240-Pin DDR2 SDRAM UDIMM Features Features 240-pin, unbuffered dual in-line memory module Fast data transfer

More information

DDR2 SDRAM. MT47H512M4 64 Meg x 4 x 8 banks MT47H256M8 32 Meg x 8 x 8 banks MT47H128M16 16 Meg x 16 x 8 banks. Features. 2Gb: x4, x8, x16 DDR2 SDRAM

DDR2 SDRAM. MT47H512M4 64 Meg x 4 x 8 banks MT47H256M8 32 Meg x 8 x 8 banks MT47H128M16 16 Meg x 16 x 8 banks. Features. 2Gb: x4, x8, x16 DDR2 SDRAM DDR2 SDRAM MT47H52M4 64 Meg x 4 x 8 banks MT47H256M8 32 Meg x 8 x 8 banks MT47H28M6 6 Meg x 6 x 8 banks 2Gb: x4, x8, x6 DDR2 SDRAM Features Features V DD =.8V ±.V, V DDQ =.8V ±.V JEDEC-standard.8V I/O

More information

DDR3L SDRAM. MT41K1G4 128 Meg x 4 x 8 banks MT41K512M8 64 Meg x 8 x 8 banks MT41K256M16 32 Meg x 16 x 8 banks. Description

DDR3L SDRAM. MT41K1G4 128 Meg x 4 x 8 banks MT41K512M8 64 Meg x 8 x 8 banks MT41K256M16 32 Meg x 16 x 8 banks. Description DDR3L SDRAM MT41K1G4 128 Meg x 4 x 8 banks MT41K512M8 64 Meg x 8 x 8 banks MT41K256M16 32 Meg x 16 x 8 banks 4Gb: x4, x8, x16 DDR3L SDRAM Description Description DDR3L SDRAM 1.35V is a low voltage version

More information

Revision History 8Gb: x4, x8, x16 DDR3L SDRAM AS4C2GM4D3L 256 Meg x 4 x 8 banks* AS4C1G8MD3L 128 Meg x 8 x 8 banks AS4C512M16D3L 64 Meg x 16 x 8 banks

Revision History 8Gb: x4, x8, x16 DDR3L SDRAM AS4C2GM4D3L 256 Meg x 4 x 8 banks* AS4C1G8MD3L 128 Meg x 8 x 8 banks AS4C512M16D3L 64 Meg x 16 x 8 banks Description Revision History 8Gb: x4, x8, x16 DDR3L SDRAM AS4C2GM4D3L 256 Meg x 4 x 8 banks* AS4C1G8MD3L 128 Meg x 8 x 8 banks AS4C512M16D3L 64 Meg x 16 x 8 banks Revision Details Date Rev 1.0 Preliminary

More information

DDR2 SDRAM. MT47H256M4 32 Meg x 4 x 8 banks MT47H128M8 16 Meg x 8 x 8 banks MT47H64M16 8 Meg x 16 x 8 banks. Features

DDR2 SDRAM. MT47H256M4 32 Meg x 4 x 8 banks MT47H128M8 16 Meg x 8 x 8 banks MT47H64M16 8 Meg x 16 x 8 banks. Features DDR2 SDRAM MT47H256M4 32 Meg x 4 x 8 banks MT47H28M8 6 Meg x 8 x 8 banks MT47H64M6 8 Meg x 6 x 8 banks Features V DD =.8V ±.V, V DDQ =.8V ±.V JEDEC-standard.8V I/O (SSTL_8-compatible) Differential data

More information

Options 1. Notes: Data Rate (MT/s) -187E E n/a n/a n/a 55

Options 1. Notes: Data Rate (MT/s) -187E E n/a n/a n/a 55 DDR2 SDRAM MT47H28M4 32 Meg x 4 x 4 banks MT47H64M8 6 Meg x 8 x 4 banks MT47H32M6 8 Meg x 6 x 4 banks Features V DD =.8V ±.V, V DDQ =.8V ±.V JEDEC-standard.8V I/O (SSTL_8-compatible) Differential data

More information

DDR3L SDRAM. MT41K256M4 32 Meg x 4 x 8 banks MT41K128M8 16 Meg x 8 x 8 banks MT41K64M16 8 Meg x 16 x 8 banks. Description

DDR3L SDRAM. MT41K256M4 32 Meg x 4 x 8 banks MT41K128M8 16 Meg x 8 x 8 banks MT41K64M16 8 Meg x 16 x 8 banks. Description DDR3L SDRAM MT41K256M4 32 Meg x 4 x 8 banks MT41K128M8 16 Meg x 8 x 8 banks MT41K64M16 8 Meg x 16 x 8 banks Description The 1.35V DDR3L SDRAM device is a low-voltage version of the 1.5V DDR3 SDRAM device.

More information

Automotive DDR3L SDRAM

Automotive DDR3L SDRAM Automotive DDR3L SDRAM MT41K128M8 16 Meg x 8 x 8 banks MT41K64M16 8 Meg x 16 x 8 banks 1Gb: x8, x16 Automotive DDR3L SDRAM Description Description The 1.35V DDR3L SDRAM device is a low-voltage version

More information

Double Data Rate (DDR) SDRAM MT46V64M4 16 Meg x 4 x 4 banks MT46V32M8 8 Meg x 8 x 4 banks MT46V16M16 4 Meg x 16 x 4 banks

Double Data Rate (DDR) SDRAM MT46V64M4 16 Meg x 4 x 4 banks MT46V32M8 8 Meg x 8 x 4 banks MT46V16M16 4 Meg x 16 x 4 banks Double Data Rate DDR SDRAM MT46V64M4 16 Meg x 4 x 4 banks MT46V32M8 8 Meg x 8 x 4 banks MT46V16M16 4 Meg x 16 x 4 banks 256Mb: x4, x8, x16 DDR SDRAM Features Features VDD = +2.5V ±0.2V, VD = +2.5V ±0.2V

More information

DDR3L SDRAM. MT41K1G4 128 Meg x 4 x 8 banks MT41K512M8 64 Meg x 8 x 8 banks MT41K256M16 32 Meg x 16 x 8 banks. Description

DDR3L SDRAM. MT41K1G4 128 Meg x 4 x 8 banks MT41K512M8 64 Meg x 8 x 8 banks MT41K256M16 32 Meg x 16 x 8 banks. Description DDR3L SDRAM MT41K1G4 128 Meg x 4 x 8 banks MT41K512M8 64 Meg x 8 x 8 banks MT41K256M16 32 Meg x 16 x 8 banks 4Gb: x4, x8, x16 DDR3L SDRAM Description Description DDR3L SDRAM 1.35V is a low voltage version

More information

1.35V Automotive DDR3L SDRAM

1.35V Automotive DDR3L SDRAM 1.35V Automotive DDR3L SDRAM MT41K256M8 32 Meg x 8 x 8 banks MT41K128M16 16 Meg x 16 x 8 banks 2Gb: x8, x16 Automotive DDR3L SDRAM Description Description The 1.35V DDR3L SDRAM device is a low-voltage

More information

Double Data Rate (DDR) SDRAM

Double Data Rate (DDR) SDRAM Double Data Rate DDR SDRAM MT46V32M4 8 Meg x 4 x 4 Banks MT46V6M8 4 Meg x 8 x 4 Banks MT46V8M6 2 Meg x 6 x 4 Banks For the latest data sheet revisions, please refer to the Micron Web site: www.micron.com/sdram

More information

Key Timing Parameters CL = CAS (READ) latency; minimum clock CL = 2 (-75E, -75Z), CL = 2.5 (-6, -6T, -75), and CL = 3 (-5B).

Key Timing Parameters CL = CAS (READ) latency; minimum clock CL = 2 (-75E, -75Z), CL = 2.5 (-6, -6T, -75), and CL = 3 (-5B). Double Data Rate DDR SDRAM MT46V32M4 8 Meg x 4 x 4 banks MT46V6M8 4 Meg x 8 x 4 banks MT46V8M6 2 Meg x 6 x 4 banks For the latest data sheet revisions, please refer to the Micron Web site: www.micron.com/ddr2

More information

Double Data Rate (DDR) SDRAM MT46V64M4 16 Meg x 4 x 4 banks MT46V32M8 8 Meg x 8 x 4 banks MT46V16M16 4 Meg x 16 x 4 banks

Double Data Rate (DDR) SDRAM MT46V64M4 16 Meg x 4 x 4 banks MT46V32M8 8 Meg x 8 x 4 banks MT46V16M16 4 Meg x 16 x 4 banks Double Data Rate DDR SDRAM MT46V64M4 6 Meg x 4 x 4 banks MT46V32M8 8 Meg x 8 x 4 banks MT46V6M6 4 Meg x 6 x 4 banks 256Mb: x4, x8, x6 DDR SDRAM Features Features V DD = 2.5V ±.2V; V D = 2.5V ±.2V V DD

More information

Automotive LPDDR SDRAM

Automotive LPDDR SDRAM Automotive LPDDR SDRAM MT46H28M6LF 32 Meg x 6 x 4 Banks MT46H64M32LF 6 Meg x 32 x 4 Banks MT46H28M32L2 6 Meg x 32 x 4 Banks x 2 MT46H256M32L4 32 Meg x 6 x 4 Banks x 4 2Gb: x6, x32 Automotive LPDDR SDRAM

More information

Mobile Low-Power DDR SDRAM

Mobile Low-Power DDR SDRAM Mobile Low-Power DDR SDRAM MT46H28M6LF 32 Meg x 6 x 4 Banks MT46H64M32LF 6 Meg x 32 x 4 Banks MT46H28M32L2 6 Meg x 32 x 4 Banks x 2 MT46H256M32L4 32 Meg x 6 x 4 Banks x 4 MT46H256M32R4 32 Meg x 6 x 4 Banks

More information

DDR2 SDRAM. MT47H256M4 32 Meg x 4 x 8 banks MT47H128M8 16 Meg x 8 x 8 banks MT47H64M16 8 Meg x 16 x 8 banks. Features. 1Gb: x4, x8, x16 DDR2 SDRAM

DDR2 SDRAM. MT47H256M4 32 Meg x 4 x 8 banks MT47H128M8 16 Meg x 8 x 8 banks MT47H64M16 8 Meg x 16 x 8 banks. Features. 1Gb: x4, x8, x16 DDR2 SDRAM Gb: x4, x8, x6 DDR2 SDRAM Features DDR2 SDRAM MT47H256M4 32 Meg x 4 x 8 banks MT47H28M8 6 Meg x 8 x 8 banks MT47H64M6 8 Meg x 6 x 8 banks Features V DD = +.8V ±.V, V DDQ = +.8V ±.V JEDEC-standard.8V I/O

More information

Automotive LPDDR SDRAM

Automotive LPDDR SDRAM Automotive LPDDR SDRAM MT46H28M6LF 32 Meg x 6 x 4 Banks MT46H64M32LF 6 Meg x 32 x 4 Banks MT46H28M32L2 6 Meg x 32 x 4 Banks x 2 MT46H256M32L4 32 Meg x 6 x 4 Banks x 4 MT46H256M32R4-32 Meg x 6 x 4 Banks

More information

DDR2 SDRAM. MT47H256M4 32 Meg x 4 x 8 banks MT47H128M8 16 Meg x 8 x 8 banks MT47H64M16 8 Meg x 16 x 8 banks. Features

DDR2 SDRAM. MT47H256M4 32 Meg x 4 x 8 banks MT47H128M8 16 Meg x 8 x 8 banks MT47H64M16 8 Meg x 16 x 8 banks. Features DDR2 SDRAM MT47H256M4 32 Meg x 4 x 8 banks MT47H28M8 6 Meg x 8 x 8 banks MT47H64M6 8 Meg x 6 x 8 banks Features V DD =.8V ±.V, V DDQ =.8V ±.V JEDEC-standard.8V I/O (SSTL_8-compatible) Differential data

More information

Mobile Low-Power DDR SDRAM

Mobile Low-Power DDR SDRAM Mobile Low-Power DDR SDRAM MT46H64M6LF 6 Meg x 6 x 4 Banks MT46H32M32LF 8 Meg x 32 x 4 Banks Gb: x6, x32 Mobile LPDDR SDRAM Features Features V DD /V DDQ =.7.95V Bidirectional data strobe per byte of data

More information

72-Mbit QDR II SRAM 4-Word Burst Architecture

72-Mbit QDR II SRAM 4-Word Burst Architecture 72-Mbit QDR II SRAM 4-Word Burst Architecture Features Separate Independent Read and Write Data Ports Supports concurrent transactions 333 MHz Clock for High Bandwidth 4-word Burst for Reducing Address

More information

Mobile Low-Power DDR SDRAM

Mobile Low-Power DDR SDRAM Mobile Low-Power DDR SDRAM MT46H64M6LF 6 Meg x 6 x 4 banks MT46H32M32LF 8 Meg x 32 x 4 banks Gb: x6, x32 Mobile LPDDR SDRAM Features Features V DD /V DDQ =.7.95V Bidirectional data strobe per byte of data

More information

IS49NLC96400A/IS49NLC18320A/IS49NLC36160A. 64Mbx9, 32Mbx18, 16Mbx36 Common I/O RLDRAM 2 Memory. OPTIONS Package: FEBURARY 2017 FEATURES

IS49NLC96400A/IS49NLC18320A/IS49NLC36160A. 64Mbx9, 32Mbx18, 16Mbx36 Common I/O RLDRAM 2 Memory. OPTIONS Package: FEBURARY 2017 FEATURES 64Mbx9, 32Mbx8, 6Mbx36 Common I/O RLDRAM 2 Memory FEBURARY 27 FEATURES 533MHz DDR operation (.67 Gb/s/pin data rate) 38.4Gb/s peak bandwidth (x36 at 533 MHz clock frequency) Reduced cycle time (5ns at

More information

Note: Data Rate (MT/s) CL = 3 CL = 4 CL = 5 CL = 6. t RCD (ns) t RP (ns) t RC (ns) t RFC (ns)

Note: Data Rate (MT/s) CL = 3 CL = 4 CL = 5 CL = 6. t RCD (ns) t RP (ns) t RC (ns) t RFC (ns) TwinDie DDR2 SDRAM MT47H512M4 32 Meg x 4 x 8 Banks x 2 Ranks MT47H256M8 16 Meg x 8 x 8 Banks x 2 Ranks 2Gb: x4, x8 TwinDie DDR2 SDRAM Features Features Uses two 1Gb Micron die Two ranks (includes dual

More information

Options 1. Note: CL = 3 CL = 4 CL = E n/a 55-5E n/a 55

Options 1. Note: CL = 3 CL = 4 CL = E n/a 55-5E n/a 55 Features DDR2 SDRAM MT47H64M4 6 Meg x 4 x 4 banks MT47H32M8 8 Meg x 8 x 4 banks MT47H6M6 4 Meg x 6 x 4 banks Features V DD = +.8V ±.V, V DDQ = +.8V ±.V JEDEC-standard.8V I/O (SSTL_8-compatible) Differential

More information

TwinDie 1.2V DDR4 SDRAM

TwinDie 1.2V DDR4 SDRAM TwinDie 1.2V DDR4 SDRAM MT40A4G4 128 Meg x 4 x 16 Banks x 2 Ranks MT40A2G8 64 Meg x 8 x 16 Banks x 2 Ranks 16Gb: x4, x8 TwinDie DDR4 SDRAM Description Description The 16Gb (TwinDie ) DDR4 SDRAM uses Micron

More information

72-Mbit QDR II SRAM Four-Word Burst Architecture

72-Mbit QDR II SRAM Four-Word Burst Architecture 72-Mbit QDR II SRAM Four-Word Burst Architecture 72-Mbit QDR II SRAM Four-Word Burst Architecture Features Separate independent read and write data ports Supports concurrent transactions 333 MHz clock

More information

Auto refresh and self refresh refresh cycles / 64ms. Part No. Clock Frequency Power Organization Interface Package. Normal. 4Banks x 1Mbits x16

Auto refresh and self refresh refresh cycles / 64ms. Part No. Clock Frequency Power Organization Interface Package. Normal. 4Banks x 1Mbits x16 4 Banks x 1M x 16Bit Synchronous DRAM DESCRIPTION The Hynix HY57V641620HG is a 67,108,864-bit CMOS Synchronous DRAM, ideally suited for the main memory applications which require large memory density and

More information

Sep, 2016 HXB15H2G800BF. 2Gbit DDR3 SDRAM EU RoHS Compliant Products. Data Sheet. Rev. A

Sep, 2016 HXB15H2G800BF. 2Gbit DDR3 SDRAM EU RoHS Compliant Products. Data Sheet. Rev. A Sep, 2016 EU RoHS Compliant Products Data Sheet Rev. A Revision History Date Revision Subjects (major changes since last revision) 2016/09 A Initial Release We Listen to Your Comments Any information within

More information

Automotive DDR2 SDRAM

Automotive DDR2 SDRAM Automotive DDR2 SDRAM MT47H28M8 6 Meg x 8 x 8 banks MT47H64M6 8 Meg x 6 x 8 banks Gb: x8, x6 Automotive DDR2 SDRAM Features Features Industrial and automotive temperature compliant V DD =.8V ±.V, V DDQ

More information

DOUBLE DATA RATE (DDR) SDRAM

DOUBLE DATA RATE (DDR) SDRAM UBLE DATA RATE Features VDD = +2.5V ±.2V, VD = +2.5V ±.2V VDD = +2.6V ±.V, VD = +2.6V ±.V DDR4 Bidirectional data strobe transmitted/ received with data, i.e., source-synchronous data capture x6 has two

More information

Automotive DDR2 SDRAM

Automotive DDR2 SDRAM Automotive DDR2 SDRAM MT47H28M8 6 Meg x 8 x 8 banks MT47H64M6 8 Meg x 6 x 8 banks Gb: x8, x6 Automotive DDR2 SDRAM Features Features V DD =.8V ±.V, V DDQ =.8V ±.V JEDEC-standard.8V I/O (SSTL_8-compatible)

More information

DTM GB Pin 2Rx4 Registered ECC LV DDR3 DIMM

DTM GB Pin 2Rx4 Registered ECC LV DDR3 DIMM Features 240-pin JEDEC-compliant DIMM, 133.35 mm wide by 30 mm high Operating Voltage: VDD = VDDQ = +1.35V (1.283V to 1.45V) Backward-compatible to VDD = VDDQ = +1.5V ±0.075V On-board I 2 C temperature

More information

DDR2 SDRAM AVR (128M X 16 ) AVR (256M X 8 ) AVR (512M X 4 )

DDR2 SDRAM AVR (128M X 16 ) AVR (256M X 8 ) AVR (512M X 4 ) Revision :A Note:. Not all options listed can be combined to define an offered product. Use the Part Catalog Search on www.micron.com for product offerings and availability. Marking DDR2 SDRAM AVR2628

More information

HYB39S256[4/8/16]00FT(L) HYB39S256[4/8/16]00FE(L) HYB39S256[4/8/16]00FF(L)

HYB39S256[4/8/16]00FT(L) HYB39S256[4/8/16]00FE(L) HYB39S256[4/8/16]00FF(L) September 2006 HYB39S256[4/8/16]00FT(L) HYB39S256[4/8/16]00FE(L) HYB39S256[4/8/16]00FF(L) SDRAM Internet Data Sheet Rev. 1.21 HYB39S256[4/8/16]00FT(L), HYB39S256[4/8/16]00FE(L), HYB39S256[4/8/16]00FF(L)

More information

Automotive Mobile LPDDR2 SDRAM

Automotive Mobile LPDDR2 SDRAM Automotive Mobile LPDDR2 SDRAM MT42L32M16D1, MT42L32M32D2, MT42L16M32D1 Features Features Ultra low-voltage core and I/O power supplies V DD2 = 1.14 1.30V V DDCA /V DDQ = 1.14 1.30V V DD1 = 1.70 1.95V

More information

gddr3l SDRAM Graphics Addendum

gddr3l SDRAM Graphics Addendum gddr3l SDRAM Graphics Addendum MT41K128M16 16 Meg x 16 x 8 Banks 2Gb: x16 gddr3l SDRAM Graphics Addendum Features Features V DD = V DDQ = 1.35V (1.283 1.45V) or V DD = V DDQ = 1.5V (1.425 1.575V) Differential

More information

Auto refresh and self refresh refresh cycles / 64ms. Part No. Clock Frequency Power Organization Interface Package. Normal. 4Banks x 2Mbits x16

Auto refresh and self refresh refresh cycles / 64ms. Part No. Clock Frequency Power Organization Interface Package. Normal. 4Banks x 2Mbits x16 4 Banks x 2M x 16bits Synchronous DRAM DESCRIPTION The Hynix HY57V281620A is a 134,217,728bit CMOS Synchronous DRAM, ideally suited for the Mobile applications which require low power consumption and extended

More information

HYB39S128400F[E/T](L) HYB39S128800F[E/T](L) HYB39S128160F[E/T](L)

HYB39S128400F[E/T](L) HYB39S128800F[E/T](L) HYB39S128160F[E/T](L) October 2006 HYB39S128400F[E/T](L) HYB39S128800F[E/T](L) HYB39S128160F[E/T](L) Green Product SDRAM Internet Data Sheet Rev. 1.20 HYB39S128400F[E/T](L), HYB39S128800F[E/T](L), HYB39S128160F[E/T](L) Revision

More information

SSTVN bit 1:2 SSTL_2 registered buffer for DDR

SSTVN bit 1:2 SSTL_2 registered buffer for DDR INTEGRATED CIRCUITS 2004 Jul 15 Philips Semiconductors FEATURES Stub-series terminated logic for 2.5 V V DD (SSTL_2) Designed for PC1600 PC2700 (at 2.5 V) and PC3200 (at 2.6 V) applications Pin and function

More information

Automotive LPDDR2 SDRAM

Automotive LPDDR2 SDRAM Automotive LPDDR2 SDRAM EDB1332BD, EDB1316BD, EDB2432B4 1Gb: x16, x32 Automotive LPDDR2 SDRAM Features Features Ultra low-voltage core and I/O power supplies V DD2 = 1.14 1.30V V DDCA /V DDQ = 1.14 1.30V

More information

Mobile LPDDR3 SDRAM EDF8164A1MA, EDFA164A1MA. Features. 8Gb, 16Gb: 253-Ball, Dual-Channel Mobile LPDDR3 SDRAM. Features

Mobile LPDDR3 SDRAM EDF8164A1MA, EDFA164A1MA. Features. 8Gb, 16Gb: 253-Ball, Dual-Channel Mobile LPDDR3 SDRAM. Features Mobile LPDDR3 SDRAM EDF8164A1MA, EDFA164A1MA 8Gb, 16Gb: 253-Ball, Dual-Channel Mobile LPDDR3 SDRAM Features Features Ultra-low-voltage core and I/O power supplies Frequency range 800/933 MHz (data rate:

More information

gddr3 SDRAM Graphics Addendum

gddr3 SDRAM Graphics Addendum gddr3 SDRAM Graphics Addendum MT41J256M16 32 Meg x 16 x 8 Banks 4Gb: x16 gddr3 SDRAM Graphics Addendum Features Features V DD = V DDQ = +1.5V (1.425 1.575V) V DD = V DDQ = +1.35V (1.283 1.45V) capable

More information

gddr3l SDRAM Graphics Addendum

gddr3l SDRAM Graphics Addendum gddr3l SDRAM Graphics Addendum MT41K256M16 32 Meg x 16 x 8 Banks 4Gb: x16 gddr3l SDRAM Graphics Addendum Features Features V DD = V DDQ = +1.35V (1.283 1.45V) or V DD = V DDQ = +1.5V (1.425 1.575V) Differential

More information

SSTV V 13-bit to 26-bit SSTL_2 registered buffer for stacked DDR DIMM

SSTV V 13-bit to 26-bit SSTL_2 registered buffer for stacked DDR DIMM INTEGRATED CIRCUITS 2000 Dec 01 File under Integrated Circuits ICL03 2002 Feb 19 FEATURES Stub-series terminated logic for 2.5 V (SSTL_2) Optimized for stacked DDR (Double Data Rate) SDRAM applications

More information

ICSSSTV DDR 24-Bit to 48-Bit Registered Buffer. Integrated Circuit Systems, Inc. Pin Configuration. Truth Table 1.

ICSSSTV DDR 24-Bit to 48-Bit Registered Buffer. Integrated Circuit Systems, Inc. Pin Configuration. Truth Table 1. Integrated Circuit Systems, Inc. ICSSSTV32852 DDR 24-Bit to 48-Bit Registered Buffer Recommended Application: DDR Memory Modules Provides complete DDR DIMM logic solution with ICS93V857 or ICS95V857 SSTL_2

More information

Features Table : Key Timing Parameters Speed Grade Data Rate (MT/s) CL = 3 CL = 4 CL = 5 CL = 6 CL = 7 t RC (ns) -87E E

Features Table : Key Timing Parameters Speed Grade Data Rate (MT/s) CL = 3 CL = 4 CL = 5 CL = 6 CL = 7 t RC (ns) -87E E Features DDR2 SDRAM MT47H256M4 32 Meg x 4 x 8 banks MT47H28M8 6 Meg x 8 x 8 banks MT47H64M6 8 Meg x 6 x 8 banks Features Vdd = +.8V ±.V, VddQ = +.8V ±.V JEDEC-standard.8V I/O (SSTL_8-compatible) Differential

More information

Automotive DDR SDRAM MT46V32M8 8 Meg x 8 x 4 banks MT46V16M16 4 Meg x 16 x 4 banks

Automotive DDR SDRAM MT46V32M8 8 Meg x 8 x 4 banks MT46V16M16 4 Meg x 16 x 4 banks Automotive DDR SDRAM MT46V32M8 8 Meg x 8 x 4 banks MT46V16M16 4 Meg x 16 x 4 banks 256Mb: x8, x16 Automotive DDR SDRAM Features Features V DD = 2.5V ±.2V, V D = 2.5V ±.2V V DD = 2.6V ±.1V, V D = 2.6V ±.1V

More information

IS61QDPB24M18A/A1/A2 IS61QDPB22M36A/A1/A2. 4Mx18, 2Mx36 72Mb QUADP (Burst 2) Synchronous SRAM (2.5 CYCLE READ LATENCY)

IS61QDPB24M18A/A1/A2 IS61QDPB22M36A/A1/A2. 4Mx18, 2Mx36 72Mb QUADP (Burst 2) Synchronous SRAM (2.5 CYCLE READ LATENCY) 4Mx18, 2Mx36 72Mb QUADP (Burst 2) Synchronous SRAM (2.5 CYCLE READ LATENCY) FEATURES 2Mx36 and 4Mx18 configuration available. On-chip Delay-Locked Loop (DLL) for wide data valid window. Separate independent

More information

Double Data Rate (DDR) SDRAM MT46V128M4 32 Meg x 4 x 4 banks MT46V64M8 16 Meg x 8 x 4 banks MT46V32M16 8 Meg x 16 x 4 banks

Double Data Rate (DDR) SDRAM MT46V128M4 32 Meg x 4 x 4 banks MT46V64M8 16 Meg x 8 x 4 banks MT46V32M16 8 Meg x 16 x 4 banks Double Data Rate DDR SDRAM MT46V28M4 32 Meg x 4 x 4 banks MT46V64M8 6 Meg x 8 x 4 banks MT46V32M6 8 Meg x 6 x 4 banks 52Mb: x4, x8, x6 DDR SDRAM Features Features V DD = 2.5V ±0.2V, V D = 2.5V ±0.2V V

More information

IS42SM32160C IS42RM32160C

IS42SM32160C IS42RM32160C 16Mx32 512Mb Mobile Synchronous DRAM NOVEMBER 2010 FEATURES: Fully synchronous; all signals referenced to a positive clock edge Internal bank for hiding row access and precharge Programmable CAS latency:

More information

CY7C2663KV18/CY7C2665KV Mbit QDR II+ SRAM Four-Word Burst Architecture (2.5 Cycle Read Latency) with ODT

CY7C2663KV18/CY7C2665KV Mbit QDR II+ SRAM Four-Word Burst Architecture (2.5 Cycle Read Latency) with ODT 44-Mbit QDR II+ SRAM Four-Word Burst Architecture (2.5 Cycle Read Latency) with ODT 44-Mbit QDR II+ SRAM Four-Word Burst Architecture (2.5 Cycle Read Latency) with ODT Features Separate independent read

More information

2Mx18, 1Mx36 36Mb QUAD (Burst 4) SYNCHRONOUS SRAM

2Mx18, 1Mx36 36Mb QUAD (Burst 4) SYNCHRONOUS SRAM 2Mx18, 1Mx36 36Mb QUAD (Burst 4) SYNCHRONOUS SRAM FEATURES DESCRIPTION APRIL 2016 1Mx36 and 2Mx18 configuration available. On-chip Delay-Locked Loop (DLL) for wide data valid window. Separate independent

More information

IS61QDPB22M18C/C1/C2 IS61QDPB21M36C/C1/C2 2Mx18, 1Mx36 36Mb QUADP (Burst 2) Synchronous SRAM (2.5 CYCLE READ LATENCY)

IS61QDPB22M18C/C1/C2 IS61QDPB21M36C/C1/C2 2Mx18, 1Mx36 36Mb QUADP (Burst 2) Synchronous SRAM (2.5 CYCLE READ LATENCY) IS61QDPB21M36C/C1/C2 2Mx18, 1Mx36 36Mb QUADP (Burst 2) Synchronous SRAM (2.5 CYCLE READ LATENCY) APRIL 2016 FEATURES 1Mx36 and 2Mx18 configuration available. On-chip Delay-Locked Loop (DLL) for wide data

More information

Cover Sheet and Revision Status. 發行人 (Rev.) 變更說明 Jan New issue Hank Lin

Cover Sheet and Revision Status. 發行人 (Rev.) 變更說明 Jan New issue Hank Lin Cover Sheet and Revision Status 版別 DCC 生效日 變更說明 發行人 (Rev.) No (Eff. Date) (Change Description) (Originator) 1.0 20180001 Jan. 02-2018 New issue Hank Lin Content: DDR3 Sync DRAM Features... 1 Key Timing

More information

V58C2256(804/404/164)SC HIGH PERFORMANCE 256 Mbit DDR SDRAM 4 BANKS X 8Mbit X 8 (804) 4 BANKS X 4Mbit X 16 (164) 4 BANKS X 16Mbit X 4 (404)

V58C2256(804/404/164)SC HIGH PERFORMANCE 256 Mbit DDR SDRAM 4 BANKS X 8Mbit X 8 (804) 4 BANKS X 4Mbit X 16 (164) 4 BANKS X 16Mbit X 4 (404) V58C2256804/404/164SC HIGH PERFORMAE 256 Mbit DDR SDRAM 4 BANKS X 8Mbit X 8 804 4 BANKS X 4Mbit X 16 164 4 BANKS X 16Mbit X 4 404 45 5D 5B 5 6 7 DDR440 DDR400 DDR400 DDR400 DDR333 DDR266 Clock Cycle Time

More information

V58C2512(804/404/164)SD HIGH PERFORMANCE 512 Mbit DDR SDRAM 4 BANKS X 16Mbit X 8 (804) 4 BANKS X 32Mbit X 4 (404) 4 BANKS X 8Mbit X 16 (164)

V58C2512(804/404/164)SD HIGH PERFORMANCE 512 Mbit DDR SDRAM 4 BANKS X 16Mbit X 8 (804) 4 BANKS X 32Mbit X 4 (404) 4 BANKS X 8Mbit X 16 (164) V58C2512804/404/164SD HIGH PERFORMAE 512 Mbit DDR SDRAM 4 BANKS X 16Mbit X 8 804 4 BANKS X 32Mbit X 4 404 4 BANKS X 8Mbit X 16 164 4 5 6 75 DDR500 DDR400 DDR333 DDR266 Clock Cycle Time t CK2-7.5ns 7.5ns

More information

HY5V56D(L/S)FP. Revision History. No. History Draft Date Remark. 0.1 Defined Target Spec. May Rev. 0.1 / Jan

HY5V56D(L/S)FP. Revision History. No. History Draft Date Remark. 0.1 Defined Target Spec. May Rev. 0.1 / Jan Revision History No. History Draft Date Remark 0.1 Defined Target Spec. May 2003 Rev. 0.1 / Jan. 2005 1 Series 4 Banks x 4M x 16bits Synchronous DRAM DESCRIPTION The HY5V56D(L/S)FP is a 268,435,456bit

More information

Options 1. Note: Data Rate (MT/s) CL = 3 CL = 4 CL = E n/a 55-5E n/a 55

Options 1. Note: Data Rate (MT/s) CL = 3 CL = 4 CL = E n/a 55-5E n/a 55 256Mb: x4, x8, x6 DDR2 SDRAM Features DDR2 SDRAM MT47H64M4 6 Meg x 4 x 4 banks MT47H32M8 8 Meg x 8 x 4 banks MT47H6M6 4 Meg x 6 x 4 banks Features Vdd = +.8V ±.V, VddQ = +.8V ±.V JEDEC-standard.8V I/O

More information

2Mx18, 1Mx36 36Mb QUAD (Burst 4) SYNCHRONOUS SRAM

2Mx18, 1Mx36 36Mb QUAD (Burst 4) SYNCHRONOUS SRAM 2Mx18, 1Mx36 36Mb QUAD (Burst 4) SYNCHRONOUS SRAM FEATURES DESCRIPTION APRIL 2016 1Mx36 and 2Mx18 configuration available. On-chip Delay-Locked Loop (DLL) for wide data valid window. Separate independent

More information

Part No. Clock Frequency Power Organization Interface Package. Normal. 4Banks x 2Mbits x8. Low power

Part No. Clock Frequency Power Organization Interface Package. Normal. 4Banks x 2Mbits x8. Low power 4 Banks x 2M x 8Bit Synchronous DRAM DESCRIPTION The Hyundai HY57V658020A is a 67,108,864-bit CMOS Synchronous DRAM, ideally suited for the main memory applications which require large memory density and

More information

Double Data Rate (DDR) SDRAM MT46V64M4 16 Meg x 4 x 4 banks MT46V32M8 8 Meg x 8 x 4 banks MT46V16M16 4 Meg x 16 x 4 banks

Double Data Rate (DDR) SDRAM MT46V64M4 16 Meg x 4 x 4 banks MT46V32M8 8 Meg x 8 x 4 banks MT46V16M16 4 Meg x 16 x 4 banks Double Data Rate DDR SDRAM MT46V64M4 6 Meg x 4 x 4 banks MT46V32M8 8 Meg x 8 x 4 banks MT46V6M6 4 Meg x 6 x 4 banks 256Mb: x4, x8, x6 DDR SDRAM Features Features VDD = +2.5V ±.2V, VD = +2.5V ±.2V VDD =

More information

512Mb B-die SDRAM Specification

512Mb B-die SDRAM Specification 512Mb B-die SDRAM Specification 54 TSOP-II with Pb-Free (RoHS compliant) Revision 1.1 August 2004 * Samsung Electronics reserves the right to change products or specification without notice. Revision History

More information

Revision History Revision 0.0 (October, 2003) Target spec release Revision 1.0 (November, 2003) Revision 1.0 spec release Revision 1.1 (December, 2003

Revision History Revision 0.0 (October, 2003) Target spec release Revision 1.0 (November, 2003) Revision 1.0 spec release Revision 1.1 (December, 2003 16Mb H-die SDRAM Specification 50 TSOP-II with Pb-Free (RoHS compliant) Revision 1.4 August 2004 Samsung Electronics reserves the right to change products or specification without notice. Revision History

More information

HYB18T1G400AF(L) HYB18T1G800AF(L) HYB18T1G160AF

HYB18T1G400AF(L) HYB18T1G800AF(L) HYB18T1G160AF Internet Data Sheet, Rev. 1.3, May 2006 HYB18T1G400AF(L) HYB18T1G800AF(L) HYB18T1G160AF DDR2 SDRAM RoHS Compliant Memory Products Edition 2006-05 Published by Infineon Technologies AG, St.-Martin-Strasse

More information

Automotive Mobile LPDDR2 SDRAM

Automotive Mobile LPDDR2 SDRAM Automotive Mobile LPDDR2 SDRAM EDB5432BEBH, EDB5432BEPA Features 1 Features 1 Ultra low-voltage core and I/O power supplies V DD2 = 1.14 1.30V V DDCA /V DDQ = 1.14 1.30V V DD1 = 1.70 1.95V Clock frequency

More information

Embedded LPDDR2 SDRAM

Embedded LPDDR2 SDRAM EDB8132B4PB-8D-F Embedded LPDDR2 SDRAM Features Features Ultra-low-voltage core and I/O power supplies Frequency range 400 MHz (data rate: 800 Mb/s/pin) 4n prefetch DDR architecture 8 internal banks for

More information

128Mb F-die SDRAM Specification

128Mb F-die SDRAM Specification 128Mb F-die SDRAM Specification Revision 0.2 November. 2003 * Samsung Electronics reserves the right to change products or specification without notice. Revision History Revision 0.0 (Agust, 2003) - First

More information

256Mb E-die SDRAM Specification

256Mb E-die SDRAM Specification 256Mb E-die SDRAM Specification Revision 1.5 May 2004 * Samsung Electronics reserves the right to change products or specification without notice. Revision History Revision 1.0 (May. 2003) - First release.

More information

HY57V281620HC(L/S)T-S

HY57V281620HC(L/S)T-S 4 Banks x 2M x 16bits Synchronous DRAM DESCRIPTION The Hynix HY57V281620HC(L/S)T is a 134,217,728bit CMOS Synchronous DRAM, ideally suited for the main memory applications which require large memory density

More information

Part No. Clock Frequency Power Organization Interface Package. Normal. Low power

Part No. Clock Frequency Power Organization Interface Package. Normal. Low power 4 Banks x 2M x 8Bit Synchronous DRAM DESCRIPTION The Hynix HY57V64820HG is a 67,108,864-bit CMOS Synchronous DRAM, ideally suited for the main memory applications which require large memory density and

More information

Revision No. History Draft Date Remark. 0.1 Initial Draft Jan Preliminary. 1.0 Final Version Apr. 2007

Revision No. History Draft Date Remark. 0.1 Initial Draft Jan Preliminary. 1.0 Final Version Apr. 2007 64Mb Synchronous DRAM based on 1M x 4Bank x16 I/O Document Title 4Bank x 1M x 16bits Synchronous DRAM Revision History Revision No. History Draft Date Remark 0.1 Initial Draft Jan. 2007 Preliminary 1.0

More information

W9751G8KB 16M 4 BANKS 8 BIT DDR2 SDRAM. Table of Contents- Publication Release Date: Feb. 15, Revision A01

W9751G8KB 16M 4 BANKS 8 BIT DDR2 SDRAM. Table of Contents- Publication Release Date: Feb. 15, Revision A01 Table of Contents- 6M 4 BANKS 8 BIT DDR2 SDRAM. GENERAL DESCRIPTION... 4 2. FEATURES... 4 3. KEY PARAMETERS... 5 4. BALL CONFIGURATION... 6 5. BALL DESCRIPTION... 7 6. BLOCK DIAGRAM... 8 7. FUNCTIONAL

More information

PT480432HG. 1M x 4BANKS x 32BITS SDRAM. Table of Content-

PT480432HG. 1M x 4BANKS x 32BITS SDRAM. Table of Content- 1M x 4BANKS x 32BITS SDRAM Table of Content- 1. GENERAL DESCRIPTION.. 3 2. FEATURES......3 3. PART NUMBER INFORMATION...3 4. PIN CONFIGURATION...4 5. PIN DESCRIPTION...5 6. BLOCK DIAGRAM...6 7. FUNCTIONAL

More information

HY57V561620C(L)T(P)-S

HY57V561620C(L)T(P)-S 4 Banks x 4M x 16Bit Synchronous DRAM DESCRIPTION The HY57V561620C(L)T(P) Series is a 268,435,456bit CMOS Synchronous DRAM, ideally suited for the main memory applications which require large memory density

More information

HY57V561620B(L/S)T 4 Banks x 4M x 16Bit Synchronous DRAM

HY57V561620B(L/S)T 4 Banks x 4M x 16Bit Synchronous DRAM 4 Banks x 4M x 16Bit Synchronous DRAM Doucment Title 4 Bank x 4M x 16Bit Synchronous DRAM Revision History Revision No. History Draft Date Remark 1.4 143MHz Speed Added July 14. 2003 This document is a

More information

Part No. Clock Frequency Power Organization Interface Package. Normal. Low power

Part No. Clock Frequency Power Organization Interface Package. Normal. Low power 4 Banks x 4M x 4Bit Synchronous DRAM DESCRIPTION The Hynix HY57V654020B is a 67,108,864-bit CMOS Synchronous DRAM, ideally suited for the main memory applications which require large memory density and

More information

SDRAM Unbuffered SODIMM. 144pin Unbuffered SODIMM based on 256Mb J-die. 54 TSOP-II/sTSOP II with Lead-Free and Halogen-Free.

SDRAM Unbuffered SODIMM. 144pin Unbuffered SODIMM based on 256Mb J-die. 54 TSOP-II/sTSOP II with Lead-Free and Halogen-Free. Unbuffered SODIMM 144pin Unbuffered SODIMM based on 256Mb J-die 54 TSOP-II/sTSOP II with Lead-Free and Halogen-Free (RoHS compliant) INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,

More information

DDR SDRAM MT46V256M4 64 Meg x 4 x 4 Banks MT46V128M8 32 Meg x 8 x 4 Banks MT46V64M16 16 Meg x 16 x 4 Banks

DDR SDRAM MT46V256M4 64 Meg x 4 x 4 Banks MT46V128M8 32 Meg x 8 x 4 Banks MT46V64M16 16 Meg x 16 x 4 Banks Features DDR SDRAM MT46V256M4 64 Meg x 4 x 4 Banks MT46V28M8 32 Meg x 8 x 4 Banks MT46V64M6 6 Meg x 6 x 4 Banks Features VDD = 2.5V ±.2V, VD = 2.5V ±.2V VDD = 2.6V ±.V, VD = 2.6V ±.V DDR4 Bidirectional

More information

Auto refresh and self refresh refresh cycles / 64ms. Programmable CAS Latency ; 2, 3 Clocks

Auto refresh and self refresh refresh cycles / 64ms. Programmable CAS Latency ; 2, 3 Clocks 4 Banks x 1M x 16Bit Synchronous DRAM DESCRIPTION The Hynix HY57V641620HG is a 67,108,864-bit CMOS Synchronous DRAM, ideally suited for the main memory applications which require large memory density and

More information

128Mb E-die SDRAM Specification

128Mb E-die SDRAM Specification 128Mb E-die SDRAM Specification Revision 1.2 May. 2003 * Samsung Electronics reserves the right to change products or specification without notice. Revision History Revision 1.0 (Nov. 2002) - First release.

More information

Automotive LPDDR2 SDRAM

Automotive LPDDR2 SDRAM Automotive LPDDR2 SDRAM EDB1332BD, EDB1316BD, EDB2432B4 1Gb: x16, x32 Automotive LPDDR2 SDRAM Features Features Ultra low-voltage core and I/O power supplies V DD2 = 1.14 1.30V V DDCA /V DDQ = 1.14 1.30V

More information

Revision No. History Draft Date Remark. 0.1 Initial Draft Jul Preliminary. 1.0 Release Aug. 2009

Revision No. History Draft Date Remark. 0.1 Initial Draft Jul Preliminary. 1.0 Release Aug. 2009 128Mb Synchronous DRAM based on 2M x 4Bank x16 I/O Document Title 4Bank x 2M x 16bits Synchronous DRAM Revision History Revision No. History Draft Date Remark 0.1 Initial Draft Jul. 2009 Preliminary 1.0

More information

1. GENERAL DESCRIPTION FEATURES PIN CONFIGURATION... 8

1. GENERAL DESCRIPTION FEATURES PIN CONFIGURATION... 8 Table of Contents 1. GENERAL DESCRIPTION... 6 2. FEATURES... 7 3. PIN CONFIGURATION... 8 3.1 Ballout 1-CS Non-Merged Mode (Top View, MF=0)... 8 3.2 Ballout 2-CS Non-Merged Mode (Top View, MF=0)... 9 3.3

More information