Unmanned Aerial Vehicle-Aided Wireless Sensor Network Deployment System for Post-disaster Monitoring

Size: px
Start display at page:

Download "Unmanned Aerial Vehicle-Aided Wireless Sensor Network Deployment System for Post-disaster Monitoring"

Transcription

1 Unmanned Aerial Vehicle-Aided Wireless Sensor Network Deployment System for Post-disaster Monitoring Gurkan una 1, arik Veli Mumcu 2, Kayhan Gulez 2, Vehbi Cagri Gungor 3, and Hayrettin Erturk 4 1 rakya University, Department of Computer Programming, Edirne, URKEY 2 Yildiz echnical University, Electrical-Electronics Faculty, Control and Automation Eng. Dept., Istanbul, URKEY 3 Bahcesehir University, Faculty of Engineering, Department of Computer Engineering, Istanbul, URKEY gurkantuna@trakya.edu.tr, cagri.gungor@bahcesehir.edu.tr, 4hayrettinerturk@gmail.com, {tmumcu,gulez}@yildiz.edu.tr Abstract. his paper presents design strategies of using unmanned aerial vehicles (UAVs) to deploy wireless sensor networks (WSNs) for post-disaster monitoring. Natural disasters are unforeseeable events which cannot be prevented. But some recovery procedures can be followed to minimize their effects. Post-disaster monitoring is important to estimate the effects of disasters, which in turn is used to determine recovery procedures to be followed. We propose an UAV-aided unattended WSN deployment system. he system is a post-disaster solution which can be used anywhere required. In this study, we mainly evaluate the efficiency of localization and navigation performance of the proposed system. Our simulation studies with an AirRobot quadrotor helicopter in Unified System for Automation and Robot Simulation (USARSim) simulation platform show that UAVs can be used to deploy WSNs after disasters to monitor environmental conditions. Future work includes implementing the system using a hexarotor helicopter. Keywords: Wireless sensor networks, unmanned aerial vehicles, localization and navigation systems, Global Positioning System, inertial navigation system, Kalman filter. 1 Introduction Although natural disasters cannot be prevented, their effects can be minimized through proper warnings and post-disaster recovery procedures. After the disasters monitoring of environmental conditions is a vital process to prevent possible hazardous effects to human health. Unmanned Aerial Vehicles (UAVs) are used for various civilian and non-civilian tasks including surveillance and reconnaissance operations, monitoring, and aerial photography. Another envisioned use of UAVs is the deployment of wireless sensor networks (WSNs). D.-S. Huang et al. (Eds.): ICIC 2012, CCIS 304, pp , Springer-Verlag Berlin Heidelberg 2012

2 Unmanned Aerial Vehicle-Aided Wireless Sensor Network Deployment System 299 WSNs are distributed systems of sensor nodes which are interconnected over wireless links [1], [2]. During a deployment phase, sensor nodes can be placed by using different attended/unattended methods such as such as dropping from an aerial vehicle [3], [4], delivering in an artillery shell, or rocket, and placing one by one by either a human or a mobile robot [5], [6], [7], [8]. Deployment phase is the first step of making WSNs operational. In this study, we propose an unattended autonomous WSN deployment system by using an UAV. Different from existing studies in the literature which mostly explain theoretical background and practical uses of UAV-aided wireless sensor node deployment; in this paper we mainly investigate localization and navigation performance of an UAV responsible for WSN deployment. Since localization and navigation capabilities are the main requirements of all autonomous vehicles, successful implementation of the proposed system depends on these capabilities. he paper is organized as follows. UAV aided WSN deployment system is explained in Section II. Simulation studies are given in Section III. Conclusions of the paper and future work are given in Section IV. 2 Unmanned Aerial Vehicle Aided WSN Deployment In this study, we propose using UAVs for unattended deployment of wireless sensor nodes. In this system, an UAV follows a predetermined trajectory and drops wireless sensor nodes at predetermined intervals at predetermined locations. Due to several factors a location where a wireless sensor node is dropped for deployment cannot be determined accurately during flight multiple nodes are deployed together. In addition, some nodes may become damaged during deployment. Also communication cannot be established with some nodes since they are out of range. hese are common problems in unattended sensor node deployments. he localization and navigation system plays an important role in the design of the proposed system. It is based on the Kalman Filter (KF). o improve the system s performance we couple Global Positioning System (GPS) receiver and Inertial Navigation System (INS) sensors. Since GPS and INS sensors are common in aerial vehicles, in this study we preferred these sensors. GPS receivers provide absolute information of position and speed, and they do not need information about their previous states to produce a navigation solution [9], GPS signals carry information to determine a GPS receiver s position. he signal is composed of navigation data and a pseudo-random code [10]. GPS receivers cannot be used alone for navigation systems due to the requirement of having an open view of at least four GPS satellites and their low sample rates [10]. he INS consists of an inertial measurement unit (IMU) with an accelerometer and a gyro in addition to a navigation computer. It provides position, velocity and attitude angles. he accelerometer provides a non-gravitational acceleration, and the gyro keeps track of the orientation. Different from GPS receivers, INS systems are not subjected to interferences and reception limitations. But when they are used alone, some drifts are experienced. We combine the advantages of these sensors. An INS sensor keeps the track to the actual position, velocity and attitude with the aid of a GPS receiver. Long term accuracy of the GPS receiver is utilized to reduce the drifts in the INS outputs.

3 300 G. una et al. Fig. 1. Using UAVs to deploy WSNs Centralized architectures designed for GPS-INS integrations generally provide more accurate solutions, but they require intensive computations in addition to requiring to access raw IMU and GPS data. Hence, considering the specifications of the UAV to be used in our field tests, we designed a loosely coupled direct feedback GPS-INS architecture shown in Fig. 2 using the GPS-INS integration architectures in [11] and [12]. he architecture shown in Fig. 2 involves three main steps. hese steps are data preprocessing, filtering, and smoothing. his architecture estimates systematic errors in the IMU outputs. o do this it uses observations obtained from the GPS receiver. In case of GPS outages, very common in urban areas, the IMU error estimates obtained with KF based on the previously accumulated GPS data can compensate inertial navigation errors. In Fig. 2, x and y represent position coordinates. ˆx and ŷ are position estimations. he INS uses θ and ν to calculate a position. Here, θ represents incremental angles derived from gyros, and ν represents incremental velocities derived from accelerometers. he GPS receiver uses s and ϕ to yield a position. Here, s represents measured range, and ϕ represents carrier signal phase. navigation frame. n C represents the rotation matrix from sensor to s 2.1. Filtering Fig. 2. GPS-INS integration architecture In the proposed navigation architecture, the observation delivered to the filter is actually the observed error of the inertial navigation, and the filter estimates the errors

4 Unmanned Aerial Vehicle-Aided Wireless Sensor Network Deployment System 301 in this inertial navigation solution. Hence, the inertial navigation equations were linearised, and the filter took on a linear form shown in Fig. 2. KF is a statistical recursive algorithm which operates recursively in two stages: Prediction and Update [13], [14]. KF provides an estimate of the states, ˆx( k k ), at time k given all observations up to time k. ˆx( k k 1) shows the estimate of the state at time k given information up to time k-1, and is called the prediction. Under the assumption that observation and process noises are zero mean and uncorrelated, KF provides an optimal Minimum Mean Squared Error (MMSE). KF uses a landmark based map and In the prediction stage, the command u(k) and the UAV motion model are utilized to estimate the UAV s location. hen, in the update stage, to update the landmark s position and to refine the estimation of the UAV s location, the new observation z(k) from an exteroceptive sensor is used. Fig. 3 shows the steps of KF based localization and navigation approach. Fig. 3. he steps of KF based localization and navigation In the GPS-INS integration architecture in Fig. 2, when an observation arrives, the filter estimates the error in the vehicle states. he observation is the observed error of the inertial navigation system. Whenever the GPS receiver provides position and velocity data, the observation error becomes, z p( k ) P INS ( k) - P GPS ( k) z( k)= = z v( k ) V INS ( k ) - V GPS ( k ) (1) When position and velocity errors are integrated, the observation model becomes z p( k ) P INS ( k) - P GPS ( k) z( k)= = z v( k ) V INS ( k ) - V GPS ( k ) (P ( k) + δ P( k)) - (P ( k) - v P ( k)) = (V ( k) + δ V( k)) - (V ( k) - v V ( k)) δ P( k) v P ( k) = δ V( k) + v V ( k) (2)

5 302 G. una et al. he observation is the error between the position and velocity obtained from the INS and that of the GPS receiver. he uncertainty in the observation is reflected by the noise of the observation of the GPS receiver. he architecture brings an advantage that tuning the filter is only based on the observation noise matrix Smoothing Optimal fixed-interval smoothers provide optimal estimates using measurements from a fixed interval. here are several commonly used smoothing algorithms. In this study we preferred he Rauch-ung-Striebel (RS) smoother. RS smoother is a fixedinterval two-pass smoothing algorithm which is commonly used for bridging GPS outages in the post-processing mode. In this algorithm, the standard Kalman estimate and covariance are computed in a forward pass, and then the smoothed quantities are computed in a backward pass. Forward pass: Backward pass: xˆ = Axˆ t+ 1 t t t Pt + 1 t = APt t A + Q t+ 1 t+ 1 t t+ 1 t 1 ( ) ( C ) K = P C CP C + R xˆ = xˆ + K y xˆ t+ 1 t+ 1 t+ 1 t t+ 1 t+ 1 t+ 1 t P = P K CP t+ 1 t+ 1 t+ 1 t t+ 1 t+ 1 t L = P A P 1 t t t t+ 1 t ( + + ) xˆ = xˆ + L xˆ xˆ t t t t t 1 t 1 t P = P + L ( P P ) L t t t t t+ 1 t+ 1 t t (3) (4) ˆ t x is the optimal estimate of state at time t, P t is the measure of uncertainty, and L t is gain matrix. 3 Performance Evaluations In this study, we mainly concentrate on the performance of the localization and navigation system. o show the localization and navigation performance of an UAVaided WSN deployment system, we performed simulation studies by using USARSim and Robot Operating System (ROS). We created a ROS interface to USARSim in Python. USARSim is based on the Unreal ournament (U) game engine, and is a simulation of robots and environments. USARSim serves both as a general purpose research tool and as the basis for the RoboCup rescue virtual robot competition [15], [16]. he interface we developed interfaces with the USARSim server, receives input from GPS and INS sensors of the UAV and sends commands to the UAV. We

6 Unmanned Aerial Vehicle-Aided Wireless Sensor Network Deployment System 303 implemented INS and GPS integration by using the KF. Source codes of the simulation application are available upon request. In our simulation studies, we used an AirRobot [17] autonomous quadrotor helicopter. In USARSim simulation platform, USARBot.AirRobot class is used to represent an AirRobot. Simulated AirRobot is equipped with one tilt-only color camera as the exteroceptive sensor by default. Since the system uses GPS and INS measurements to localize and navigate the AirRobot, we placed a GPS receiver and an INS on it. he GPS sensor finds the current AirRobot position in meters and converts it to latitude and longitude. Since USARSim worlds inherently do not have a GPS coordinate associated with them, we edited the USARBot.ini file and added ZeroZeroLocation inside the GPSSensor section to map a virtual location to a real one. he INS sensor simulates a physical INS sensor by using angular velocities and distance traveled [16]. During localization and navigation simulations we only calculated positional errors from the real trajectory. Positional errors from the East and North are shown in Fig. 5 (a) and Fig. 5 (b). Only first 250 seconds of the simulation are shown in the figures. When calculating the positional errors we compared the filter outputs with the ground truth values. Fig. 4. he simulated AirRobot Fig. 5. (a) rajectory Errors - X (in meters), (b) rajectory Errors Y (in meters) rajectory errors of the simulated UAV are around less than or around 0.5 m for X and Y. hese minor deviations can be neglected in UAV-aided WSN deployment system. he results of our simulations show that an UAV can localize and navigate itself successfully during deployment when loaded with a priori map and a waypoint.

7 304 G. una et al. In addition to the simulations, we are planning to conduct field tests with an autonomous hexarotor helicopter Flybox shown in Fig. 6. he specifications of Flybox can be found in [18]. Since it runs Robot Operating System (ROS) [19] on Ubuntu, we are going to develop our application by using ROS. Fig. 6. Flybox autonomous hexarotor helicopter 4 Conclusions his paper focuses on using UAVs to deploy WSNs in case of disasters. Since disasters are mostly unforeseeable events, recovery procedures to minimize the effects of these events need to be planned. Monitoring of the disaster area is important to determining the recovery procedures. Proposed system takes the benefit of UAVs to establish a monitoring system consisted of wireless sensor nodes. herefore a single UAV team can serve many cities in a small region. he proposed system has a practical use after disasters. In this study, we specifically address efficiency of the system s localization and navigation aspects. he results of our simulation studies show that an UAV can follow a predetermined trajectory successfully to deploy a WSN for post-disaster monitoring. Future work includes implementing field tests. Acknowledgment. his research has been supported by Yildiz echnical University Scientific Research Projects Coordination Department. Project Number: ODAP01 and Project Number: KAP05. References 1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks, 38(4): (2002) 2. Gungor, V. C., Hancke, G. P.: Industrial Wireless Sensor Networks: Challenges, Design Principles, and echnical Approaches. IEEE ransactions on Industrial Electronics, 56(10): (2009)

8 Unmanned Aerial Vehicle-Aided Wireless Sensor Network Deployment System Ollero, A., Bernard, M., Civita, M. L., Hoesel, L. V., Marron, P. J., Lepley, J., Andres, E. D.: AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned aerial vehicles. In: Proceedings of the 2007 IEEE International Workshop on Safety, Security and Rescue Robotics, pp. 1-6 (2007) 4. Corke, P., S. Hrabar, R. Peterson, D. Rus, S. Saripalli, G. Sukhatme: Autonomous Deployment and Repair of a Sensor Network using an Unmanned Aerial Vehicle. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA), pp (2004) 5. Wang, Y., Wu, C. H.: Robot-Assisted Sensor Network Deployment and Data Collection. In: Proceedings of the 2007 IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp (2007) 6. Younis, M., Akkaya, K.: Strategies and techniques for node placement in wireless sensor networks: A survey, Ad Hoc Networks, 6(4): (2008) 7. Suzuki,., Kawabata, K., Hada, Y., obe, Y.: Deployment of Wireless Sensor Network Using Mobile Robots to Construct an Intelligent Environment in a Multi-Robot Sensor Network. In: Advances in Service Robotics, pp (2008) 8. Suzuki,., Sugizaki, R., Kawabata, K., Hada, Y., obe, Y.: Autonomous Deployment and Restoration of Sensor Network using Mobile Robots, International Journal of Advanced Robotic Systems, 7(2): (2010) 9. Guivant, J. E., Masson, F. R., Nebot, E. M.: Simultaneous Localization and Map Building Using Natural Features and Absolute Information, Robotics and Autonomous Systems, 40(2-3):79-90 (2002) 10. Huang, J., an, H.-S.: A Low-Order DGPS-Based Vehicle Positioning System Under Urban Environment, IEEE ransactions on Mechatronics, 11(5): (2006) 11. Sukkarieh, S.: Low Cost, High Integrity, Aided Inertial Navigation Systems for Autonomous Land Vehicles, Ph.D. hesis, University of Sydney (2000) 12. Giremus, A., Doucet, A., Calmettes, V., ourneret, J.-Y.,: A Rao-Blackwellized particle filter for INS/GPS integration. In: Proceedings of the 2004 IEEE International Conference on Acoustics Speech and Signal Processing ICASSP- 04, 3: (2004) 13. Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H. F., Csorba, M.: A Solution to the Simultaneous Localization and Map Building (SLAM) Problem. IEEE ransactions on Robotics and Automation, 17(3): (2001) 14. hrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MI Press, Cambridge (2005) 15. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot simulator for research and education. In: Proceedings of the 2007 IEEE Conference on Robotics and Automation, Roma, pp (2007) 16. USARSim (2011), AirRobot (2011), Flybox (2011), %20FlyboXScientificFlyerV2.pdf 19. ROS (2011),

Design considerations of UAV-aided automated meter reading

Design considerations of UAV-aided automated meter reading Gurkan TUNA Trakya University Design considerations of UAV-aided automated meter reading Abstract. This paper introduces a new approach of using mini/micro unmanned aerial vehicles (UAVs) for automatic

More information

Sensor Data Fusion Using Kalman Filter

Sensor Data Fusion Using Kalman Filter Sensor Data Fusion Using Kalman Filter J.Z. Sasiade and P. Hartana Department of Mechanical & Aerospace Engineering arleton University 115 olonel By Drive Ottawa, Ontario, K1S 5B6, anada e-mail: jsas@ccs.carleton.ca

More information

Measurement Level Integration of Multiple Low-Cost GPS Receivers for UAVs

Measurement Level Integration of Multiple Low-Cost GPS Receivers for UAVs Measurement Level Integration of Multiple Low-Cost GPS Receivers for UAVs Akshay Shetty and Grace Xingxin Gao University of Illinois at Urbana-Champaign BIOGRAPHY Akshay Shetty is a graduate student in

More information

Integrated Navigation System

Integrated Navigation System Integrated Navigation System Adhika Lie adhika@aem.umn.edu AEM 5333: Design, Build, Model, Simulate, Test and Fly Small Uninhabited Aerial Vehicles Feb 14, 2013 1 Navigation System Where am I? Position,

More information

INDOOR HEADING MEASUREMENT SYSTEM

INDOOR HEADING MEASUREMENT SYSTEM INDOOR HEADING MEASUREMENT SYSTEM Marius Malcius Department of Research and Development AB Prospero polis, Lithuania m.malcius@orodur.lt Darius Munčys Department of Research and Development AB Prospero

More information

INTRODUCTION TO VEHICLE NAVIGATION SYSTEM LECTURE 5.1 SGU 4823 SATELLITE NAVIGATION

INTRODUCTION TO VEHICLE NAVIGATION SYSTEM LECTURE 5.1 SGU 4823 SATELLITE NAVIGATION INTRODUCTION TO VEHICLE NAVIGATION SYSTEM LECTURE 5.1 SGU 4823 SATELLITE NAVIGATION AzmiHassan SGU4823 SatNav 2012 1 Navigation Systems Navigation ( Localisation ) may be defined as the process of determining

More information

A Positon and Orientation Post-Processing Software Package for Land Applications - New Technology

A Positon and Orientation Post-Processing Software Package for Land Applications - New Technology A Positon and Orientation Post-Processing Software Package for Land Applications - New Technology Tatyana Bourke, Applanix Corporation Abstract This paper describes a post-processing software package that

More information

Pedestrian Navigation System Using. Shoe-mounted INS. By Yan Li. A thesis submitted for the degree of Master of Engineering (Research)

Pedestrian Navigation System Using. Shoe-mounted INS. By Yan Li. A thesis submitted for the degree of Master of Engineering (Research) Pedestrian Navigation System Using Shoe-mounted INS By Yan Li A thesis submitted for the degree of Master of Engineering (Research) Faculty of Engineering and Information Technology University of Technology,

More information

UC Mercenary Team Description Paper: RoboCup 2008 Virtual Robot Rescue Simulation League

UC Mercenary Team Description Paper: RoboCup 2008 Virtual Robot Rescue Simulation League UC Mercenary Team Description Paper: RoboCup 2008 Virtual Robot Rescue Simulation League Benjamin Balaguer and Stefano Carpin School of Engineering 1 University of Califronia, Merced Merced, 95340, United

More information

Extended Kalman Filtering

Extended Kalman Filtering Extended Kalman Filtering Andre Cornman, Darren Mei Stanford EE 267, Virtual Reality, Course Report, Instructors: Gordon Wetzstein and Robert Konrad Abstract When working with virtual reality, one of the

More information

Artificial Beacons with RGB-D Environment Mapping for Indoor Mobile Robot Localization

Artificial Beacons with RGB-D Environment Mapping for Indoor Mobile Robot Localization Sensors and Materials, Vol. 28, No. 6 (2016) 695 705 MYU Tokyo 695 S & M 1227 Artificial Beacons with RGB-D Environment Mapping for Indoor Mobile Robot Localization Chun-Chi Lai and Kuo-Lan Su * Department

More information

An Information Fusion Method for Vehicle Positioning System

An Information Fusion Method for Vehicle Positioning System An Information Fusion Method for Vehicle Positioning System Yi Yan, Che-Cheng Chang and Wun-Sheng Yao Abstract Vehicle positioning techniques have a broad application in advanced driver assistant system

More information

Design and Implementation of Inertial Navigation System

Design and Implementation of Inertial Navigation System Design and Implementation of Inertial Navigation System Ms. Pooja M Asangi PG Student, Digital Communicatiom Department of Telecommunication CMRIT College Bangalore, India Mrs. Sujatha S Associate Professor

More information

Carrier Phase GPS Augmentation Using Laser Scanners and Using Low Earth Orbiting Satellites

Carrier Phase GPS Augmentation Using Laser Scanners and Using Low Earth Orbiting Satellites Carrier Phase GPS Augmentation Using Laser Scanners and Using Low Earth Orbiting Satellites Colloquium on Satellite Navigation at TU München Mathieu Joerger December 15 th 2009 1 Navigation using Carrier

More information

302 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. MARCH VOLUME 15, ISSUE 1. ISSN

302 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. MARCH VOLUME 15, ISSUE 1. ISSN 949. A distributed and low-order GPS/SINS algorithm of flight parameters estimation for unmanned vehicle Jiandong Guo, Pinqi Xia, Yanguo Song Jiandong Guo 1, Pinqi Xia 2, Yanguo Song 3 College of Aerospace

More information

QUADROTOR ROLL AND PITCH STABILIZATION USING SYSTEM IDENTIFICATION BASED REDESIGN OF EMPIRICAL CONTROLLERS

QUADROTOR ROLL AND PITCH STABILIZATION USING SYSTEM IDENTIFICATION BASED REDESIGN OF EMPIRICAL CONTROLLERS QUADROTOR ROLL AND PITCH STABILIZATION USING SYSTEM IDENTIFICATION BASED REDESIGN OF EMPIRICAL CONTROLLERS ANIL UFUK BATMAZ 1, a, OVUNC ELBIR 2,b and COSKU KASNAKOGLU 3,c 1,2,3 Department of Electrical

More information

ANNUAL OF NAVIGATION 16/2010

ANNUAL OF NAVIGATION 16/2010 ANNUAL OF NAVIGATION 16/2010 STANISŁAW KONATOWSKI, MARCIN DĄBROWSKI, ANDRZEJ PIENIĘŻNY Military University of Technology VEHICLE POSITIONING SYSTEM BASED ON GPS AND AUTONOMIC SENSORS ABSTRACT In many real

More information

Intelligent Vehicle Localization Using GPS, Compass, and Machine Vision

Intelligent Vehicle Localization Using GPS, Compass, and Machine Vision The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems October 11-15, 2009 St. Louis, USA Intelligent Vehicle Localization Using GPS, Compass, and Machine Vision Somphop Limsoonthrakul,

More information

GPS and Recent Alternatives for Localisation. Dr. Thierry Peynot Australian Centre for Field Robotics The University of Sydney

GPS and Recent Alternatives for Localisation. Dr. Thierry Peynot Australian Centre for Field Robotics The University of Sydney GPS and Recent Alternatives for Localisation Dr. Thierry Peynot Australian Centre for Field Robotics The University of Sydney Global Positioning System (GPS) All-weather and continuous signal system designed

More information

FEKF ESTIMATION FOR MOBILE ROBOT LOCALIZATION AND MAPPING CONSIDERING NOISE DIVERGENCE

FEKF ESTIMATION FOR MOBILE ROBOT LOCALIZATION AND MAPPING CONSIDERING NOISE DIVERGENCE 2006-2016 Asian Research Publishing Networ (ARPN). All rights reserved. FEKF ESIMAION FOR MOBILE ROBO LOCALIZAION AND MAPPING CONSIDERING NOISE DIVERGENCE Hamzah Ahmad, Nur Aqilah Othman, Saifudin Razali

More information

Wide Area Wireless Networked Navigators

Wide Area Wireless Networked Navigators Wide Area Wireless Networked Navigators Dr. Norman Coleman, Ken Lam, George Papanagopoulos, Ketula Patel, and Ricky May US Army Armament Research, Development and Engineering Center Picatinny Arsenal,

More information

Vehicle Speed Estimation Using GPS/RISS (Reduced Inertial Sensor System)

Vehicle Speed Estimation Using GPS/RISS (Reduced Inertial Sensor System) ISSC 2013, LYIT Letterkenny, June 20 21 Vehicle Speed Estimation Using GPS/RISS (Reduced Inertial Sensor System) Thomas O Kane and John V. Ringwood Department of Electronic Engineering National University

More information

Hydroacoustic Aided Inertial Navigation System - HAIN A New Reference for DP

Hydroacoustic Aided Inertial Navigation System - HAIN A New Reference for DP Return to Session Directory Return to Session Directory Doug Phillips Failure is an Option DYNAMIC POSITIONING CONFERENCE October 9-10, 2007 Sensors Hydroacoustic Aided Inertial Navigation System - HAIN

More information

KALMAN FILTER APPLICATIONS

KALMAN FILTER APPLICATIONS ECE555: Applied Kalman Filtering 1 1 KALMAN FILTER APPLICATIONS 1.1: Examples of Kalman filters To wrap up the course, we look at several of the applications introduced in notes chapter 1, but in more

More information

Utility of Sensor Fusion of GPS and Motion Sensor in Android Devices In GPS- Deprived Environment

Utility of Sensor Fusion of GPS and Motion Sensor in Android Devices In GPS- Deprived Environment Utility of Sensor Fusion of GPS and Motion Sensor in Android Devices In GPS- Deprived Environment Amrit Karmacharya1 1 Land Management Training Center Bakhundol, Dhulikhel, Kavre, Nepal Tel:- +977-9841285489

More information

MarineSIM : Robot Simulation for Marine Environments

MarineSIM : Robot Simulation for Marine Environments MarineSIM : Robot Simulation for Marine Environments P.G.C.Namal Senarathne, Wijerupage Sardha Wijesoma,KwangWeeLee, Bharath Kalyan, Moratuwage M.D.P, Nicholas M. Patrikalakis, Franz S. Hover School of

More information

UC Merced Team Description Paper: Robocup 2009 Virtual Robot Rescue Simulation Competition

UC Merced Team Description Paper: Robocup 2009 Virtual Robot Rescue Simulation Competition UC Merced Team Description Paper: Robocup 2009 Virtual Robot Rescue Simulation Competition Benjamin Balaguer, Derek Burch, Roger Sloan, and Stefano Carpin School of Engineering University of California

More information

OughtToPilot. Project Report of Submission PC128 to 2008 Propeller Design Contest. Jason Edelberg

OughtToPilot. Project Report of Submission PC128 to 2008 Propeller Design Contest. Jason Edelberg OughtToPilot Project Report of Submission PC128 to 2008 Propeller Design Contest Jason Edelberg Table of Contents Project Number.. 3 Project Description.. 4 Schematic 5 Source Code. Attached Separately

More information

GPS data correction using encoders and INS sensors

GPS data correction using encoders and INS sensors GPS data correction using encoders and INS sensors Sid Ahmed Berrabah Mechanical Department, Royal Military School, Belgium, Avenue de la Renaissance 30, 1000 Brussels, Belgium sidahmed.berrabah@rma.ac.be

More information

Cooperative navigation: outline

Cooperative navigation: outline Positioning and Navigation in GPS-challenged Environments: Cooperative Navigation Concept Dorota A Grejner-Brzezinska, Charles K Toth, Jong-Ki Lee and Xiankun Wang Satellite Positioning and Inertial Navigation

More information

12th International Conference on Information Fusion Seattle, WA, USA, July 6-9, ISIF 126

12th International Conference on Information Fusion Seattle, WA, USA, July 6-9, ISIF 126 12th International Conference on Information Fusion Seattle, WA, USA, July 6-9, 2009 978-0-9824438-0-4 2009 ISIF 126 with x s denoting the known satellite position. ρ e shall be used to model the errors

More information

AN AIDED NAVIGATION POST PROCESSING FILTER FOR DETAILED SEABED MAPPING UUVS

AN AIDED NAVIGATION POST PROCESSING FILTER FOR DETAILED SEABED MAPPING UUVS MODELING, IDENTIFICATION AND CONTROL, 1999, VOL. 20, NO. 3, 165-175 doi: 10.4173/mic.1999.3.2 AN AIDED NAVIGATION POST PROCESSING FILTER FOR DETAILED SEABED MAPPING UUVS Kenneth Gade and Bjørn Jalving

More information

International Journal of Informative & Futuristic Research ISSN (Online):

International Journal of Informative & Futuristic Research ISSN (Online): Reviewed Paper Volume 2 Issue 4 December 2014 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 A Survey On Simultaneous Localization And Mapping Paper ID IJIFR/ V2/ E4/

More information

Lecture: Allows operation in enviroment without prior knowledge

Lecture: Allows operation in enviroment without prior knowledge Lecture: SLAM Lecture: Is it possible for an autonomous vehicle to start at an unknown environment and then to incrementally build a map of this enviroment while simulaneous using this map for vehicle

More information

Robotic Vehicle Design

Robotic Vehicle Design Robotic Vehicle Design Sensors, measurements and interfacing Jim Keller July 19, 2005 Sensor Design Types Topology in system Specifications/Considerations for Selection Placement Estimators Summary Sensor

More information

Evaluation of a Low-cost MEMS Accelerometer for Distance Measurement

Evaluation of a Low-cost MEMS Accelerometer for Distance Measurement Journal of Intelligent and Robotic Systems 30: 249 265, 2001. 2001 Kluwer Academic Publishers. Printed in the Netherlands. 249 Evaluation of a Low-cost MEMS Accelerometer for Distance Measurement GRANTHAM

More information

Cooperative localization (part I) Jouni Rantakokko

Cooperative localization (part I) Jouni Rantakokko Cooperative localization (part I) Jouni Rantakokko Cooperative applications / approaches Wireless sensor networks Robotics Pedestrian localization First responders Localization sensors - Small, low-cost

More information

Hybrid Positioning through Extended Kalman Filter with Inertial Data Fusion

Hybrid Positioning through Extended Kalman Filter with Inertial Data Fusion Hybrid Positioning through Extended Kalman Filter with Inertial Data Fusion Rafiullah Khan, Francesco Sottile, and Maurizio A. Spirito Abstract In wireless sensor networks (WSNs), hybrid algorithms are

More information

This is an author-deposited version published in: Eprints ID: 11765

This is an author-deposited version published in:  Eprints ID: 11765 Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Decentralised SLAM with Low-Bandwidth Communication for Teams of Vehicles

Decentralised SLAM with Low-Bandwidth Communication for Teams of Vehicles Decentralised SLAM with Low-Bandwidth Communication for Teams of Vehicles Eric Nettleton a, Sebastian Thrun b, Hugh Durrant-Whyte a and Salah Sukkarieh a a Australian Centre for Field Robotics, University

More information

A Neural Network and Kalman Filter Hybrid Approach for GPS/INS Integration

A Neural Network and Kalman Filter Hybrid Approach for GPS/INS Integration A Neural Network and Kalman Filter Hybrid Approach for GPS/INS Integration Jianguo Jack Wang 1, Jinling Wang 1, David Sinclair 2, Leo Watts 2 1 School of Surveying and Spatial Information Systems, University

More information

PHINS, An All-In-One Sensor for DP Applications

PHINS, An All-In-One Sensor for DP Applications DYNAMIC POSITIONING CONFERENCE September 28-30, 2004 Sensors PHINS, An All-In-One Sensor for DP Applications Yves PATUREL IXSea (Marly le Roi, France) ABSTRACT DP positioning sensors are mainly GPS receivers

More information

Precision Estimation of GPS Devices in Static and Dynamic Modes

Precision Estimation of GPS Devices in Static and Dynamic Modes Transporta elektronikas un telemātikas katedra RTU ETF Precision Estimation of GPS Devices in Static and Dynamic Modes A. Kluga, V. Beļinska, I. Mitrofanovs, J. Kluga Department of Transport Electronics

More information

LOCALIZATION WITH GPS UNAVAILABLE

LOCALIZATION WITH GPS UNAVAILABLE LOCALIZATION WITH GPS UNAVAILABLE ARES SWIEE MEETING - ROME, SEPT. 26 2014 TOR VERGATA UNIVERSITY Summary Introduction Technology State of art Application Scenarios vs. Technology Advanced Research in

More information

Satellite and Inertial Attitude. A presentation by Dan Monroe and Luke Pfister Advised by Drs. In Soo Ahn and Yufeng Lu

Satellite and Inertial Attitude. A presentation by Dan Monroe and Luke Pfister Advised by Drs. In Soo Ahn and Yufeng Lu Satellite and Inertial Attitude and Positioning System A presentation by Dan Monroe and Luke Pfister Advised by Drs. In Soo Ahn and Yufeng Lu Outline Project Introduction Theoretical Background Inertial

More information

Systematical Methods to Counter Drones in Controlled Manners

Systematical Methods to Counter Drones in Controlled Manners Systematical Methods to Counter Drones in Controlled Manners Wenxin Chen, Garrett Johnson, Yingfei Dong Dept. of Electrical Engineering University of Hawaii 1 System Models u Physical system y Controller

More information

Implementation and Performance Evaluation of a Fast Relocation Method in a GPS/SINS/CSAC Integrated Navigation System Hardware Prototype

Implementation and Performance Evaluation of a Fast Relocation Method in a GPS/SINS/CSAC Integrated Navigation System Hardware Prototype This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. Implementation and Performance Evaluation of a Fast Relocation Method in a GPS/SINS/CSAC

More information

Robotic Vehicle Design

Robotic Vehicle Design Robotic Vehicle Design Sensors, measurements and interfacing Jim Keller July 2008 1of 14 Sensor Design Types Topology in system Specifications/Considerations for Selection Placement Estimators Summary

More information

If you want to use an inertial measurement system...

If you want to use an inertial measurement system... If you want to use an inertial measurement system...... which technical data you should analyse and compare before making your decision by Dr.-Ing. E. v. Hinueber, imar Navigation GmbH Keywords: inertial

More information

GPS-Aided INS Datasheet Rev. 2.6

GPS-Aided INS Datasheet Rev. 2.6 GPS-Aided INS 1 GPS-Aided INS The Inertial Labs Single and Dual Antenna GPS-Aided Inertial Navigation System INS is new generation of fully-integrated, combined GPS, GLONASS, GALILEO and BEIDOU navigation

More information

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,, March 16-18, 2016, Hong Kong Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free

More information

Experimental Cooperative Control of Fixed-Wing Unmanned Aerial Vehicles

Experimental Cooperative Control of Fixed-Wing Unmanned Aerial Vehicles Experimental Cooperative Control of Fixed-Wing Unmanned Aerial Vehicles Selcuk Bayraktar, Georgios E. Fainekos, and George J. Pappas GRASP Laboratory Departments of ESE and CIS University of Pennsylvania

More information

Motion State Estimation for an Autonomous Vehicle- Trailer System Using Kalman Filtering-based Multisensor Data Fusion

Motion State Estimation for an Autonomous Vehicle- Trailer System Using Kalman Filtering-based Multisensor Data Fusion Motion State Estimation for an Autonomous Vehicle- Trailer System Using Kalman Filtering-based Multisensor Data Fusion Youngshi Kim Mechanical Engineering, Hanbat National University, Daejon, 35-719, Korea

More information

Technical issues of MRL Virtual Robots Team RoboCup 2016, Leipzig Germany

Technical issues of MRL Virtual Robots Team RoboCup 2016, Leipzig Germany Technical issues of MRL Virtual Robots Team RoboCup 2016, Leipzig Germany Mohammad H. Shayesteh 1, Edris E. Aliabadi 1, Mahdi Salamati 1, Adib Dehghan 1, Danial JafaryMoghaddam 1 1 Islamic Azad University

More information

Design of Accurate Navigation System by Integrating INS and GPS using Extended Kalman Filter

Design of Accurate Navigation System by Integrating INS and GPS using Extended Kalman Filter Design of Accurate Navigation System by Integrating INS and GPS using Extended Kalman Filter Santhosh Kumar S. A 1, 1 M.Tech student, Digital Electronics and Communication Systems, PES institute of technology,

More information

GPS Position Estimation Using Integer Ambiguity Free Carrier Phase Measurements

GPS Position Estimation Using Integer Ambiguity Free Carrier Phase Measurements ISSN (Online) : 975-424 GPS Position Estimation Using Integer Ambiguity Free Carrier Phase Measurements G Sateesh Kumar #1, M N V S S Kumar #2, G Sasi Bhushana Rao *3 # Dept. of ECE, Aditya Institute of

More information

Heterogeneous Control of Small Size Unmanned Aerial Vehicles

Heterogeneous Control of Small Size Unmanned Aerial Vehicles Magyar Kutatók 10. Nemzetközi Szimpóziuma 10 th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics Heterogeneous Control of Small Size Unmanned Aerial Vehicles

More information

Sensing and Perception: Localization and positioning. by Isaac Skog

Sensing and Perception: Localization and positioning. by Isaac Skog Sensing and Perception: Localization and positioning by Isaac Skog Outline Basic information sources and performance measurements. Motion and positioning sensors. Positioning and motion tracking technologies.

More information

Preliminary Results in Range Only Localization and Mapping

Preliminary Results in Range Only Localization and Mapping Preliminary Results in Range Only Localization and Mapping George Kantor Sanjiv Singh The Robotics Institute, Carnegie Mellon University Pittsburgh, PA 217, e-mail {kantor,ssingh}@ri.cmu.edu Abstract This

More information

Robot Mapping. Introduction to Robot Mapping. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. Introduction to Robot Mapping. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping Introduction to Robot Mapping Gian Diego Tipaldi, Wolfram Burgard 1 What is Robot Mapping? Robot a device, that moves through the environment Mapping modeling the environment 2 Related Terms

More information

NovAtel SPAN and Waypoint GNSS + INS Technology

NovAtel SPAN and Waypoint GNSS + INS Technology NovAtel SPAN and Waypoint GNSS + INS Technology SPAN Technology SPAN provides real-time positioning and attitude determination where traditional GNSS receivers have difficulties; in urban canyons or heavily

More information

A 3D Gesture Based Control Mechanism for Quad-copter

A 3D Gesture Based Control Mechanism for Quad-copter I J C T A, 9(13) 2016, pp. 6081-6090 International Science Press A 3D Gesture Based Control Mechanism for Quad-copter Adarsh V. 1 and J. Subhashini 2 ABSTRACT Objectives: The quad-copter is one of the

More information

What is Robot Mapping? Robot Mapping. Introduction to Robot Mapping. Related Terms. What is SLAM? ! Robot a device, that moves through the environment

What is Robot Mapping? Robot Mapping. Introduction to Robot Mapping. Related Terms. What is SLAM? ! Robot a device, that moves through the environment Robot Mapping Introduction to Robot Mapping What is Robot Mapping?! Robot a device, that moves through the environment! Mapping modeling the environment Cyrill Stachniss 1 2 Related Terms State Estimation

More information

2006 CCRTS THE STATE OF THE ART AND THE STATE OF THE PRACTICE. Network on Target: Remotely Configured Adaptive Tactical Networks. C2 Experimentation

2006 CCRTS THE STATE OF THE ART AND THE STATE OF THE PRACTICE. Network on Target: Remotely Configured Adaptive Tactical Networks. C2 Experimentation 2006 CCRTS THE STATE OF THE ART AND THE STATE OF THE PRACTICE Network on Target: Remotely Configured Adaptive Tactical Networks C2 Experimentation Alex Bordetsky Eugene Bourakov Center for Network Innovation

More information

Wavelet Denoising Technique for Improvement of the Low Cost MEMS-GPS Integrated System

Wavelet Denoising Technique for Improvement of the Low Cost MEMS-GPS Integrated System International Symposium on GPS/GNSS October 6-8,. Wavelet Denoising Technique for Improvement of the Low Cost MEMS-GPS Integrated System Chul Woo Kang, Chang Ho Kang, and Chan Gook Park 3* Seoul National

More information

Autonomous Underwater Vehicle Navigation.

Autonomous Underwater Vehicle Navigation. Autonomous Underwater Vehicle Navigation. We are aware that electromagnetic energy cannot propagate appreciable distances in the ocean except at very low frequencies. As a result, GPS-based and other such

More information

Teleoperation of a Tail-Sitter VTOL UAV

Teleoperation of a Tail-Sitter VTOL UAV The 2 IEEE/RSJ International Conference on Intelligent Robots and Systems October 8-22, 2, Taipei, Taiwan Teleoperation of a Tail-Sitter VTOL UAV Ren Suzuki, Takaaki Matsumoto, Atsushi Konno, Yuta Hoshino,

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation INS/GPS Integration Aly El-Osery 1 Stephen Bruder 2 1 Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA 2 Electrical and Computer Engineering Department,

More information

Robot Mapping. Introduction to Robot Mapping. Cyrill Stachniss

Robot Mapping. Introduction to Robot Mapping. Cyrill Stachniss Robot Mapping Introduction to Robot Mapping Cyrill Stachniss 1 What is Robot Mapping? Robot a device, that moves through the environment Mapping modeling the environment 2 Related Terms State Estimation

More information

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station The platform provides a high performance basis for electromechanical system control. Originally designed for autonomous aerial vehicle

More information

TEST RESULTS OF A DIGITAL BEAMFORMING GPS RECEIVER FOR MOBILE APPLICATIONS

TEST RESULTS OF A DIGITAL BEAMFORMING GPS RECEIVER FOR MOBILE APPLICATIONS TEST RESULTS OF A DIGITAL BEAMFORMING GPS RECEIVER FOR MOBILE APPLICATIONS Alison Brown, Huan-Wan Tseng, and Randy Kurtz, NAVSYS Corporation BIOGRAPHY Alison Brown is the President and CEO of NAVSYS Corp.

More information

Cooperative navigation (part II)

Cooperative navigation (part II) Cooperative navigation (part II) An example using foot-mounted INS and UWB-transceivers Jouni Rantakokko Aim Increased accuracy during long-term operations in GNSS-challenged environments for - First responders

More information

COMPARISON AND FUSION OF ODOMETRY AND GPS WITH LINEAR FILTERING FOR OUTDOOR ROBOT NAVIGATION. A. Moutinho J. R. Azinheira

COMPARISON AND FUSION OF ODOMETRY AND GPS WITH LINEAR FILTERING FOR OUTDOOR ROBOT NAVIGATION. A. Moutinho J. R. Azinheira ctas do Encontro Científico 3º Festival Nacional de Robótica - ROBOTIC23 Lisboa, 9 de Maio de 23. COMPRISON ND FUSION OF ODOMETRY ND GPS WITH LINER FILTERING FOR OUTDOOR ROBOT NVIGTION. Moutinho J. R.

More information

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Introduction: Applications, Problems, Architectures

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Introduction: Applications, Problems, Architectures Autonomous and Mobile Robotics Prof. Giuseppe Oriolo Introduction: Applications, Problems, Architectures organization class schedule 2017/2018: 7 Mar - 1 June 2018, Wed 8:00-12:00, Fri 8:00-10:00, B2 6

More information

GPS-Aided INS Datasheet Rev. 3.0

GPS-Aided INS Datasheet Rev. 3.0 1 GPS-Aided INS The Inertial Labs Single and Dual Antenna GPS-Aided Inertial Navigation System INS is new generation of fully-integrated, combined GPS, GLONASS, GALILEO, QZSS, BEIDOU and L-Band navigation

More information

DEVELOPMENT OF THE AUTONOMOUS ANTHROPOMORPHIC WHEELED MOBILE ROBOTIC PLATFORM

DEVELOPMENT OF THE AUTONOMOUS ANTHROPOMORPHIC WHEELED MOBILE ROBOTIC PLATFORM Interdisciplinary Description of Complex Systems 16(1), 139-148, 2018 DEVELOPMENT OF THE AUTONOMOUS ANTHROPOMORPHIC WHEELED MOBILE ROBOTIC PLATFORM Gyula Mester* Óbuda University, Doctoral School of Safety

More information

Unmanned Air Systems. Naval Unmanned Combat. Precision Navigation for Critical Operations. DEFENSE Precision Navigation

Unmanned Air Systems. Naval Unmanned Combat. Precision Navigation for Critical Operations. DEFENSE Precision Navigation NAVAIR Public Release 2012-152. Distribution Statement A - Approved for public release; distribution is unlimited. FIGURE 1 Autonomous air refuleing operational view. Unmanned Air Systems Precision Navigation

More information

TECHNICAL PAPER: Performance Analysis of Next-Generation GNSS/INS System from KVH and NovAtel

TECHNICAL PAPER: Performance Analysis of Next-Generation GNSS/INS System from KVH and NovAtel TECHNICAL PAPER: Performance Analysis of Next-Generation GNSS/INS System from KVH and NovAtel KVH Industries, Inc. 50 Enterprise Center Middletown, RI 02842 USA KVH Contact Information Phone: +1 401-847-3327

More information

Experimental Validation of the Moving Long Base-Line Navigation Concept

Experimental Validation of the Moving Long Base-Line Navigation Concept Experimental Validation of the Moving Long Base-Line Navigation Concept Jérôme Vaganay (1), John J. Leonard (2), Joseph A. Curcio (2), J. Scott Willcox (1) (1) Bluefin Robotics Corporation 237 Putnam Avenue

More information

GPS-Aided INS Datasheet Rev. 2.7

GPS-Aided INS Datasheet Rev. 2.7 1 The Inertial Labs Single and Dual Antenna GPS-Aided Inertial Navigation System INS is new generation of fully-integrated, combined GPS, GLONASS, GALILEO, QZSS and BEIDOU navigation and highperformance

More information

ZJU Team Entry for the 2013 AUVSI. International Aerial Robotics Competition

ZJU Team Entry for the 2013 AUVSI. International Aerial Robotics Competition ZJU Team Entry for the 2013 AUVSI International Aerial Robotics Competition Lin ZHANG, Tianheng KONG, Chen LI, Xiaohuan YU, Zihao SONG Zhejiang University, Hangzhou 310027, China ABSTRACT This paper introduces

More information

WIND VELOCITY ESTIMATION WITHOUT AN AIR SPEED SENSOR USING KALMAN FILTER UNDER THE COLORED MEASUREMENT NOISE

WIND VELOCITY ESTIMATION WITHOUT AN AIR SPEED SENSOR USING KALMAN FILTER UNDER THE COLORED MEASUREMENT NOISE WIND VELOCIY ESIMAION WIHOU AN AIR SPEED SENSOR USING KALMAN FILER UNDER HE COLORED MEASUREMEN NOISE Yong-gonjong Par*, Chan Goo Par** Department of Mechanical and Aerospace Eng/Automation and Systems

More information

Subsea UK 2014 Developments in ROV Technology

Subsea UK 2014 Developments in ROV Technology Subsea UK 2014 Developments in ROV Technology Smarter Technologies Enable Smarter Platforms (ROVs) => Improved Offshore Operations Nick Lawson What does an ROV do? Any ROVs primary function is to provide

More information

NovAtel SPAN and Waypoint. GNSS + INS Technology

NovAtel SPAN and Waypoint. GNSS + INS Technology NovAtel SPAN and Waypoint GNSS + INS Technology SPAN Technology SPAN provides continual 3D positioning, velocity and attitude determination anywhere satellite reception may be compromised. SPAN uses NovAtel

More information

3DM-GX3-45 Theory of Operation

3DM-GX3-45 Theory of Operation Theory of Operation 8500-0016 Revision 001 3DM-GX3-45 Theory of Operation www.microstrain.com Little Sensors, Big Ideas 2012 by MicroStrain, Inc. 459 Hurricane Lane Williston, VT 05495 United States of

More information

An Adaptive Indoor Positioning Algorithm for ZigBee WSN

An Adaptive Indoor Positioning Algorithm for ZigBee WSN An Adaptive Indoor Positioning Algorithm for ZigBee WSN Tareq Alhmiedat Department of Information Technology Tabuk University Tabuk, Saudi Arabia t.alhmiedat@ut.edu.sa ABSTRACT: The areas of positioning

More information

How to introduce LORD Sensing s newest inertial sensors into your application

How to introduce LORD Sensing s newest inertial sensors into your application LORD TECHNICAL NOTE Migrating from the 3DM-GX4 to the 3DM-GX5 How to introduce LORD Sensing s newest inertial sensors into your application Introduction The 3DM-GX5 is the latest generation of the very

More information

Ubiquitous Positioning: A Pipe Dream or Reality?

Ubiquitous Positioning: A Pipe Dream or Reality? Ubiquitous Positioning: A Pipe Dream or Reality? Professor Terry Moore The University of What is Ubiquitous Positioning? Multi-, low-cost and robust positioning Based on single or multiple users Different

More information

ARDUINO BASED CALIBRATION OF AN INERTIAL SENSOR IN VIEW OF A GNSS/IMU INTEGRATION

ARDUINO BASED CALIBRATION OF AN INERTIAL SENSOR IN VIEW OF A GNSS/IMU INTEGRATION Journal of Young Scientist, Volume IV, 2016 ISSN 2344-1283; ISSN CD-ROM 2344-1291; ISSN Online 2344-1305; ISSN-L 2344 1283 ARDUINO BASED CALIBRATION OF AN INERTIAL SENSOR IN VIEW OF A GNSS/IMU INTEGRATION

More information

Ultrasound-Based Indoor Robot Localization Using Ambient Temperature Compensation

Ultrasound-Based Indoor Robot Localization Using Ambient Temperature Compensation Acta Universitatis Sapientiae Electrical and Mechanical Engineering, 8 (2016) 19-28 DOI: 10.1515/auseme-2017-0002 Ultrasound-Based Indoor Robot Localization Using Ambient Temperature Compensation Csaba

More information

Localisation et navigation de robots

Localisation et navigation de robots Localisation et navigation de robots UPJV, Département EEA M2 EEAII, parcours ViRob Année Universitaire 2017/2018 Fabio MORBIDI Laboratoire MIS Équipe Perception ique E-mail: fabio.morbidi@u-picardie.fr

More information

A Mini UAV for security environmental monitoring and surveillance: telemetry data analysis

A Mini UAV for security environmental monitoring and surveillance: telemetry data analysis A Mini UAV for security environmental monitoring and surveillance: telemetry data analysis G. Belloni 2,3, M. Feroli 3, A. Ficola 1, S. Pagnottelli 1,3, P. Valigi 2 1 Department of Electronic and Information

More information

Acoustic INS aiding NASNet & PHINS

Acoustic INS aiding NASNet & PHINS NAUTRONIX MARINE TECHNOLOGY SOLUTIONS Acoustic INS aiding NASNet & PHINS Sam Hanton Aberdeen Houston Rio Positioning Options Satellites GPS, GLONASS, COMPASS Acoustics LBL, SBL, USBL Relative sensors Laser

More information

PID CONTROL FOR TWO-WHEELED INVERTED PENDULUM (WIP) SYSTEM

PID CONTROL FOR TWO-WHEELED INVERTED PENDULUM (WIP) SYSTEM PID CONTROL FOR TWO-WHEELED INVERTED PENDULUM (WIP) SYSTEM Bogdan Grămescu, Constantin Niţu, Nguyen Su Phuong Phuc, Claudia Irina Borzea University POLITEHNICA of Bucharest 313, Splaiul Independentei,

More information

Resilient and Accurate Autonomous Vehicle Navigation via Signals of Opportunity

Resilient and Accurate Autonomous Vehicle Navigation via Signals of Opportunity Resilient and Accurate Autonomous Vehicle Navigation via Signals of Opportunity Zak M. Kassas Autonomous Systems Perception, Intelligence, and Navigation (ASPIN) Laboratory University of California, Riverside

More information

COOPERATIVE RELATIVE LOCALIZATION FOR MOBILE ROBOT TEAMS: AN EGO- CENTRIC APPROACH

COOPERATIVE RELATIVE LOCALIZATION FOR MOBILE ROBOT TEAMS: AN EGO- CENTRIC APPROACH COOPERATIVE RELATIVE LOCALIZATION FOR MOBILE ROBOT TEAMS: AN EGO- CENTRIC APPROACH Andrew Howard, Maja J Matarić and Gaurav S. Sukhatme Robotics Research Laboratory, Computer Science Department, University

More information

GPS-Aided INS Datasheet Rev. 2.3

GPS-Aided INS Datasheet Rev. 2.3 GPS-Aided INS 1 The Inertial Labs Single and Dual Antenna GPS-Aided Inertial Navigation System INS is new generation of fully-integrated, combined L1 & L2 GPS, GLONASS, GALILEO and BEIDOU navigation and

More information

Dynamic displacement estimation using data fusion

Dynamic displacement estimation using data fusion Dynamic displacement estimation using data fusion Sabine Upnere 1, Normunds Jekabsons 2 1 Technical University, Institute of Mechanics, Riga, Latvia 1 Ventspils University College, Ventspils, Latvia 2

More information

Improved MDS-based Algorithm for Nodes Localization in Wireless Sensor Networks

Improved MDS-based Algorithm for Nodes Localization in Wireless Sensor Networks Improved MDS-based Algorithm for Nodes Localization in Wireless Sensor Networks Biljana Risteska Stojkoska, Vesna Kirandziska Faculty of Computer Science and Engineering University "Ss. Cyril and Methodius"

More information

SENLUTION Miniature Angular & Heading Reference System The World s Smallest Mini-AHRS

SENLUTION Miniature Angular & Heading Reference System The World s Smallest Mini-AHRS SENLUTION Miniature Angular & Heading Reference System The World s Smallest Mini-AHRS MotionCore, the smallest size AHRS in the world, is an ultra-small form factor, highly accurate inertia system based

More information