Rev. A ( /10) By: AY, SA, JB (OPAL-RT)

Size: px
Start display at page:

Download "Rev. A ( /10) By: AY, SA, JB (OPAL-RT)"

Transcription

1 Rev. A ( /10) By: AY, SA, JB (OPAL-RT) OPAL-RT Technologies reserves all rights in this document and in the information contained herein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

2 A. Solar Power Conditioner Using a Zigzag-Connected Chopper Converter (Public) 1) Circuit 2) Time step Requirement 3) Test Results and Accuracy 4) Possible Solutions 5) Typical Model Separation 6) Real time simulation performance of the conditioner system 7) References Copyright (C) OPAL-RT Technologies 2

3 HIL Simulator of Solar Power Conditioner Copyright (C) OPAL-RT Technologies 3

4 Solar Power Conditioner Using a Zigzag-Connected Chopper Converter Copyright (C) OPAL-RT Technologies 4

5 Refer to reference (1) Copyright (C) OPAL-RT Technologies 5

6 The circuit was simulated: With PLECS With Simulink, SimPowerSystems (SPS) With Simulink, SimPowerSystems, with ARTEMIS, and TSB blocks for power converters Compared Simulation accuracy and Speed Copyright (C) OPAL-RT Technologies 6

7 The simulation of PLECS, SPS, and TSB models showed that the waveforms exactly the same at very small time-step (1 us) Results are given on the next 3 slides. Therefore, in following tests, the model SPS at 1 us was taken as reference for the comparison. Copyright (C) OPAL-RT Technologies 7

8 Copyright (C) OPAL-RT Technologies 8

9 Copyright (C) OPAL-RT Technologies 9

10 Copyright (C) OPAL-RT Technologies 10

11 Copyright (C) OPAL-RT Technologies 11

12 Solar Power Conditioner Using a Zigzag-Connected Chopper Converter Copyright (C) OPAL-RT Technologies 12

13 The following tests were made on the circuit: SPS: at 1 us & 10 us TSB: at 1 us & 10 us PLECS: at 1 us & 10 us Copyright (C) OPAL-RT Technologies 13

14 If the (fixed) time step is increased then: both SPS and PLECS models loose their accuracy SPS-TSB model retains very good accuracy This is understandable because the simulation of switching converters in the circuit requires the use of interpolation when fixed step is used. And Interpolation is available only in OPAL-RT s TSB OPAL-RT studies show the following figures: With PLECS or SPS (no interpolation), the required step size needed for good accuracy is 1 to 2 % or the PWM period With TSB (with interpolation), the required step size is higher, % of PWM period 25 to 50 us is usually needed for other power system components Example PV conversion system switching at 20 khz (PWM cycle of 50 us), the required time step is: PLECS or SPS: 0.5 to 1 us OPAL-RT TSB: 5 to 10 us Solutions: Either decrease the time step to a very low value FPGA implementation Or increase the time step to a reasonable value CPU implementation using TSB converter models Copyright (C) OPAL-RT Technologies 14

15 Copyright (C) OPAL-RT Technologies 15

16 Copyright (C) OPAL-RT Technologies 16

17 Copyright (C) OPAL-RT Technologies 17

18 Solar Power Conditioner Using a Zigzag-Connected Chopper Converter Copyright (C) OPAL-RT Technologies 18

19 Bad results with non-characteristic unreal harmonics when no interpolation is used(plecs& SPS) Incorrect steady state results without interpolation(plecs& SPS) Good results when TSB blocks are used, because of interpolation of switching goodsteadystateresultswithtsb Bad staircase relation between Duty Cycle and steady-state output without interpolation (PLECS, SPS) and good linear relation with interpolation(tsb) Because TSB uses interpolation, it is able and does simulate dead-time effect(impossible with PLECS, or SPS) Copyright (C) OPAL-RT Technologies 19

20 100 V upper IG B T 1 m H 0.1 Ω lower IG BT load current The load current should be linearly dependent upon the chopper duty-cycle 150 Variation of Duty Cycle with step 0.1µs Load Current Vs Duty Cycle Load Current (A) TSB 0.1us PLECS 0.1us SPS 0.1us duty Cycle (%) Copyright (C) OPAL-RT Technologies 20

21 500 Variation of Duty Cycle with step 1µs Load Current Vs Duty Cycle 400 Load Current (A) TSB 1us 100 PLECS 1us SPS 1us duty Cycle (%) Load Current (A) Variation of Duty Cycle with step 10µs Load Current Vs Duty Cycle SPS_TSB_10us PLECS 10 SPS 10us Observation steady state results are totally incorrect & not acceptable without interpolation (PLECS or SPS), resulting in this staircase shape when duty is increased slowly TSB 10us PLECS 10us SPS 10us duty Cycle (%) Copyright (C) OPAL-RT Technologies 21

22 Solar Power Conditioner Using a Zigzag-Connected Chopper Converter Copyright (C) OPAL-RT Technologies 22

23 Mixed Simulation Targets Converters on FPGA, with OPAL- RT s converter model for FPGA Power component on CPU with PLECS or SPS All-CPU Simulation Converters model one CPU with OPAL-RT TSB Power component on a second CPU with PLECS or SPS FPGA CPU CPU 1 CPU 2 Copyright (C) OPAL-RT Technologies 23

24 Solar Power Conditioner Using a Zigzag-Connected Chopper Converter Copyright (C) OPAL-RT Technologies 24

25 Real time simulation performance of the PV conditioner developed in Matlab using OPAL-RT software platform This real time simulation ran on a dual-xeon-based, 3.33 GHz and RT-LAB simulator with a time step of 10µs. The overall system was run using two CPUs core out of 12 processor cores available. The processors allocation and Real-Time Performance are summarized in Table bellow. CPUs Descript ions CPU 1: (10 µs) CPU 2: (10us) Components Content SS_PV_conditioner (complete system in slide 5) SM_PV_conditioner (controller) Model Calculation Time 2.5 µs 1 µs Minimu m time step Accelera tion factor 5 µs 23 Copyright (C) OPAL-RT Technologies 25

26 Real time simulation performance of the PV conditioner developed in PLECS A PLECS circuit cannot contain more than 1024 = 2 10 possible topologies[2] which is equivalent to 10 switches per PLECS circuit. The solution of this problem is to divide the system into a number of PLECS sub-circuits in order to reduce the number of switches to less than 10 switches per PLECS. The other solution is to increase the possible topologies by PLECS Company. The PV conditioner given in slide 5 was separated into two PLECS circuits. Each circuit contains one of the two phases of the PV conditioner. This separation introduces some delays to connect the two PLECS circuits which can in some cases, affect the accuracy and the stability of the system depending on the number of delays introduced to separate the system. Copyright (C) OPAL-RT Technologies 26

27 Real time simulation performance of the PV conditioner developed in Matlab using PLECS This real time simulation ran on a dual-xeon-based, 3.33 GHz and RT-LAB simulator with a time step of 10µs. The overall system was run using two CPUs core out of 12 processor cores available. The processors allocation and Real-Time Performance are summarized in Table bellow. CPUs Descript ions CPU 1: (10 µs) CPU 2: (10us) Components Content SS_PV_conditioner (complete system in slide 5) SM_PV_conditioner (controller) Model Calculation Time 2.5 µs 1 µs Minimu m time step Accelera tion factor 5 µs 14 Copyright (C) OPAL-RT Technologies 27

28 1) Hideaki Fujita, A High-Efficiency Solar Power Conditioner Using a Zigzag-Connected Chopper Converter, The 2010 International Power Electronics Conference, Tokyo Institute of Technology, Tokyo, Japan. 2) PLECS Manual: Copyright (C) OPAL-RT Technologies 28

Hardware-In-the-Loop Simulation of Power Drives with RT-LAB

Hardware-In-the-Loop Simulation of Power Drives with RT-LAB Hardware-In-the-Loop Simulation of Power Drives with RT-LAB Christian Dufour, Simon Abourida, Jean Bélanger Opal-RT Technologies inc. 1751 Richardson, #2525 Montreal (Quebec), H3K 1G6, Canada {christian.dufour,

More information

Fast solver to get steady-state waveforms for power converter design

Fast solver to get steady-state waveforms for power converter design Fast solver to get steady-state waveforms for power converter design Guillaume Fontes, Power Design Technologies, France, guillaume.fontes@powerdesign.tech Regis Ruelland, Power Design Technologies, France,

More information

Development of Dynamic Test Cases in OPAL-RT Real-time Power System Simulator

Development of Dynamic Test Cases in OPAL-RT Real-time Power System Simulator Development of Dynamic Test Cases in OPAL-RT Real-time Power System Simulator Shiv Kumar Singh, Bibhu P. Padhy, Student Member, IEEE, S. Chakrabarti, Senior Member, IEEE, S.N. Singh, Senior Member, IEEE,

More information

Closed Loop Single Phase Bidirectional AC to AC Buck Boost Converter for Power Quality Improvement

Closed Loop Single Phase Bidirectional AC to AC Buck Boost Converter for Power Quality Improvement International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 7, Issue 11 (July 2013), PP. 35-42 Closed Loop Single Phase Bidirectional AC to

More information

IMPROVING THE VOLTAGE GAIN OF DC- DC BOOST CONVERTER BY COUPLED INDUCTOR

IMPROVING THE VOLTAGE GAIN OF DC- DC BOOST CONVERTER BY COUPLED INDUCTOR IMPROVING THE VOLTAGE GAIN OF DC- DC BOOST CONVERTER BY COUPLED INDUCTOR YENISETTI NEELIMA 1 1 ASST PROF CJIT JANGAON. Abstract The high gain DC-DC converter with coupling inductor is design to boost low

More information

Validation of Frequency- and Time-domain Fidelity of an Ultra-low Latency Hardware-in-the-Loop (HIL) Emulator

Validation of Frequency- and Time-domain Fidelity of an Ultra-low Latency Hardware-in-the-Loop (HIL) Emulator Validation of Frequency- and Time-domain Fidelity of an Ultra-low Latency Hardware-in-the-Loop (HIL) Emulator Elaina Chai, Ivan Celanovic Institute for Soldier Nanotechnologies Massachusetts Institute

More information

D-UPFC Application as the Series Power Device in the Massive Roof-top PVs and Domestic Loads

D-UPFC Application as the Series Power Device in the Massive Roof-top PVs and Domestic Loads Current Photovoltaic Research 4(4) 131-139 (2016) pissn 2288-3274 DOI:https://doi.org/10.21218/CPR.2016.4.4.131 eissn 2508-125X D-UPFC Application as the Series Power Device in the Massive Roof-top PVs

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter 3.1 Introduction DC/DC Converter efficiently converts unregulated DC voltage to a regulated DC voltage with better efficiency and high power density.

More information

10 pf ~ 32 pf or Series Resonance. ±3 ppm per year max. -55 /+125 C OTHER PARAMETERS ARE AVAILABLE ON REQUEST / CREATE HERE YOUR SPECIFICATION

10 pf ~ 32 pf or Series Resonance. ±3 ppm per year max. -55 /+125 C OTHER PARAMETERS ARE AVAILABLE ON REQUEST / CREATE HERE YOUR SPECIFICATION SMD QUARTZ CRYSTAL SERIES SMD0507 (2 pad housing 7.0x5.0mm) Please do not use this housing for new design. Please use SMD0507/4 housing FEATURES + Large frequency spectrum available + Do not use for new

More information

Grid Connected photovoltaic system based on Chain cell converter Using Simulink

Grid Connected photovoltaic system based on Chain cell converter Using Simulink Grid Connected photovoltaic system based on Chain cell converter Using Simulink Problem statement To prove Chain cell converter performance superior when compared with the traditional Pulse width modulation

More information

A Unity Power Factor Boost Rectifier with a Predictive Capacitor Model for High Bandwidth DC Bus Voltage Control

A Unity Power Factor Boost Rectifier with a Predictive Capacitor Model for High Bandwidth DC Bus Voltage Control A Unity Power Factor Boost Rectifier with a Predictive Capacitor Model for High Bandwidth DC Bus Voltage Control Peter Wolfs Faculty of Sciences, Engineering and Health Central Queensland University, Rockhampton

More information

Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies

Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies Jaw-Kuen Shiau, Min-Yi Lee, Yu-Chen Wei, and Bo-Chih Chen Department of Aerospace Engineering,

More information

Jawad Ali, Muhammad Iftikhar Khan, Khadim Ullah Jan

Jawad Ali, Muhammad Iftikhar Khan, Khadim Ullah Jan International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 664 New Operational Mode of Diode Clamped Multilevel Inverters for Pure Sinusoidal Output Jawad Ali, Muhammad Iftikhar

More information

MMC (Modular Multilevel Converter)

MMC (Modular Multilevel Converter) MMC (Modular Multilevel Converter) Lisbon September 29 2017 Susana Apiñániz Smart Grids Energy and environment Division Tecnalia susana.apinaniz@tecnalia.com INDEX 1. General information 2. Power sub-modules

More information

New Conceptual High Efficiency Sinewave PV Power Conditioner with Partially-Tracked Dual Mode Step-up DC-DC Converter

New Conceptual High Efficiency Sinewave PV Power Conditioner with Partially-Tracked Dual Mode Step-up DC-DC Converter IEEE PEDS 2015, Sydney, Australia 9 12 June 2015 New Conceptual High Efficiency Sinewave PV Power Conditioner with Partially-Tracked Dual Mode Step-up DC-DC Converter Koki Ogura Kawasaki Heavy Industries,

More information

A Bi-directional Z-source Inverter for Electric Vehicles

A Bi-directional Z-source Inverter for Electric Vehicles A Bi-directional Z-source Inverter for Electric Vehicles Makoto Yamanaka and Hirotaka Koizumi Tokyo University of Science 1-14-6 Kudankita, Chiyoda-ku Tokyo 102-0073 Japan Email: hosukenigou@ieee.org littlespring@ieee.org

More information

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 63 CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 3.1 INTRODUCTION The power output of the PV module varies with the irradiation and the temperature and the output

More information

Success Story. An innovative HIL Test Bench to Validate Embedded SOCOMEC Inverter Software

Success Story. An innovative HIL Test Bench to Validate Embedded SOCOMEC Inverter Software An innovative HIL Test Bench to Validate Embedded SOCOMEC Inverter Software SOCOMEC is represented on 5 continents, either through direct affiliates or distributors. Thanks to its commitment to innovation,

More information

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 74 CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 5.1 INTRODUCTION Pulse Width Modulation method is a fixed dc input voltage is given to the inverters and a controlled

More information

CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS

CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS 68 CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS 4.1 INTRODUCTION The main objective of this research work is to implement and compare four control methods, i.e., PWM

More information

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 52 CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 3.1 INTRODUCTION The power electronics interface, connected between a solar panel and a load or battery bus, is a pulse width modulated

More information

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Riya Philip 1, Reshmi V 2 Department of Electrical and Electronics, Amal Jyothi College of Engineering, Koovapally, India 1,

More information

Real-time Volt/Var Optimization Scheme for Distribution Systems with PV Integration

Real-time Volt/Var Optimization Scheme for Distribution Systems with PV Integration Grid-connected Advanced Power Electronic Systems Real-time Volt/Var Optimization Scheme for Distribution Systems with PV Integration 02-15-2017 Presenter Name: Yan Chen (On behalf of Dr. Benigni) Outline

More information

In this lab you will build a photovoltaic controller that controls a single panel and optimizes its operating point driving a resistive load.

In this lab you will build a photovoltaic controller that controls a single panel and optimizes its operating point driving a resistive load. EE 155/255 Lab #3 Revision 1, October 10, 2017 Lab3: PV MPPT Photovoltaic cells are a great source of renewable energy. With the sun directly overhead, there is about 1kW of solar energy (energetic photons)

More information

A Switched Boost Inverter Fed Three Phase Induction Motor Drive

A Switched Boost Inverter Fed Three Phase Induction Motor Drive A Switched Boost Inverter Fed Three Phase Induction Motor Drive 1 Riya Elizabeth Jose, 2 Maheswaran K. 1 P.G. student, 2 Assistant Professor 1 Department of Electrical and Electronics engineering, 1 Nehru

More information

Laboratory set-up for Real-Time study of Electric Drives with Integrated Interfaces for Test and Measurement

Laboratory set-up for Real-Time study of Electric Drives with Integrated Interfaces for Test and Measurement Laboratory set-up for Real-Time study of Electric Drives with Integrated Interfaces for Test and Measurement Fong Mak, Ram Sundaram, Varun Santhaseelan, and Sunil Tandle Gannon University, mak001@gannon.edu,

More information

Real-Time Power System Simulation:

Real-Time Power System Simulation: OPAL-RT Technologies Real-Time Power System Simulation: EMT vs. Phasor White Paper OPAL-RT Technologies Inc. White Paper: opwp150620-sa-reva Last update: 02 September 2016 By: Simon Abourida, Jean Bélanger,

More information

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 47 CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 4.1 INTRODUCTION Passive filters are used to minimize the harmonic components present in the stator voltage and current of the BLDC motor. Based on the design,

More information

CASCADED H-BRIDGE THREE-PHASE MULTILEVEL INVERTERS CONTROLLED BY MULTI-CARRIER SPWM DEDICATED TO PV

CASCADED H-BRIDGE THREE-PHASE MULTILEVEL INVERTERS CONTROLLED BY MULTI-CARRIER SPWM DEDICATED TO PV CASCADED H-BRIDGE THREE-PHASE MULTILEVEL INVERTERS CONTROLLED BY MULTI-CARRIER SPWM DEDICATED TO PV 1 ABDELAZIZ FRI, 2 RACHID EL BACHTIRI, 3 ABDELAZIZ EL GHZIZAL 123 LESSI Lab, FSDM Faculty, USMBA University.

More information

Dsp Sine Wave Generation

Dsp Sine Wave Generation Dsp Free PDF ebook Download: Dsp Download or Read Online ebook dsp sine wave generation in PDF Format From The Best User Guide Database Sine wave generation using IIR filter. Introduction.. There exists

More information

Modeling and Simulation of a DC-DC Boost converter and its performance analysis based on various parameters

Modeling and Simulation of a DC-DC Boost converter and its performance analysis based on various parameters Modeling and Simulation of a DC-DC Boost converter and its performance analysis based on various parameters 1 Poonam Verma, 2 Dr. M. K. Bhaskar, Surbhi Bhandari 3 1 PG Scholar, 2 Professor, 3 Assistant

More information

A Real-Time Multi Electrical System Integrated Simulator (MESIS) for Validation and Testing of More Electric Aircraft (MEA) Equipment

A Real-Time Multi Electrical System Integrated Simulator (MESIS) for Validation and Testing of More Electric Aircraft (MEA) Equipment A Real-Time Multi Electrical System Integrated Simulator (MESIS) for Validation and Testing of More Electric Aircraft (MEA) Equipment M. Hicar (a), C. Fallaha (b) and J-N. Paquin (c) (a) Bombardier Aerospace,

More information

Single Phase AC Converters for Induction Heating Application

Single Phase AC Converters for Induction Heating Application Single Phase AC Converters for Induction Heating Application Neethu Salim 1, Benny Cherian 2, Geethu James 3 P.G. student, Mar Athanasius College of Engineering, Kothamangalam, Kerala, India 1 Professor,

More information

CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI

CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI 98 CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI 5.1 INTRODUCTION This chapter deals with the design and development of FPGA based PWM generation with the focus on to improve the

More information

A Double Input DC to DC Buck-Boost Converter for Low Voltage Photovoltaic/Wind Systems

A Double Input DC to DC Buck-Boost Converter for Low Voltage Photovoltaic/Wind Systems International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.2, pp 1016-1023, April-June 2013 ICGSEE-2013[14 th 16 th March 2013] International Conference on Global Scenario

More information

UNISONIC TECHNOLOGIES CO., LTD

UNISONIC TECHNOLOGIES CO., LTD U UNISONIC TECHNOLOGIES CO., LTD REGULATING PWM IC DESCRIPTION The UTC U is a pulse width modulator IC and designed for switching power supplies application to improve performance and reduce external parts

More information

Data Sheet. Peak, CW & Average. Power Sensors. Taking performance to a new peak

Data Sheet. Peak, CW & Average. Power Sensors. Taking performance to a new peak Data Sheet Peak, CW & Average Power Sensors Taking performance to a new peak Peak, CW & Average Power Sensors The overall performance of a power meter dependents on the power sensor employed. Boonton has

More information

Self Lifted SEPIC-Cuk Combination Converter

Self Lifted SEPIC-Cuk Combination Converter Self Lifted SEPIC-Cuk Combination Converter Anooja Shahul 1, Prof. Annie P Oommen 2, Prof. Benny Cherian 3 1 PG Scholar, 2,3 Professor, Department of Electrical and Electronics Engineering, Mar Athanasius

More information

CONCLUSIONS AND SCOPE FOR FUTURE WORK

CONCLUSIONS AND SCOPE FOR FUTURE WORK Chapter 6 CONCLUSIONS AND SCOPE FOR FUTURE WORK 6.1 CONCLUSIONS Distributed generation (DG) has much potential to improve distribution system performance. The use of DG strongly contributes to a clean,

More information

An Interleaved High-Power Fly back Inverter for Photovoltaic Applications

An Interleaved High-Power Fly back Inverter for Photovoltaic Applications An Interleaved High-Power Fly back Inverter for Photovoltaic Applications S.Sudha Merlin PG Scholar, Department of EEE, St.Joseph's College of Engineering, Semmencherry, Chennai, Tamil Nadu, India. ABSTRACT:

More information

PA-AB 4Q POWER AMPLIFIER

PA-AB 4Q POWER AMPLIFIER PA series is a real 4 quadrants AC+DC amplifier to test or simulate all kind of loads or generators with power, high dymamic, a low distortion and a large bandwidth. Our own high performance linear technology

More information

Simulation of Perturb and Observe MPPT algorithm for FPGA

Simulation of Perturb and Observe MPPT algorithm for FPGA Simulation of Perturb and Observe MPPT algorithm for FPGA Vinod Kumar M. P. 1 PG Scholar, Department of Electrical and Electronics Engineering, NMAMIT, Nitte, Udupi, India 1 ABSTRACT: The generation of

More information

Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices

Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices Suroso* (Nagaoka University of Technology), and Toshihiko Noguchi (Shizuoka University) Abstract The paper proposes

More information

Bidirectional Ac/Dc Converter with Reduced Switching Losses using Feed Forward Control

Bidirectional Ac/Dc Converter with Reduced Switching Losses using Feed Forward Control Bidirectional Ac/Dc Converter with Reduced Switching Losses using Feed Forward Control Lakkireddy Sirisha Student (power electronics), Department of EEE, The Oxford College of Engineering, Abstract: The

More information

Design of Chopper Fed Z Source PWM Inverter

Design of Chopper Fed Z Source PWM Inverter Volume 119 No. 12 2018, 15165-15175 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Design of Chopper Fed Z Source PWM Inverter 1 K. Vibha and 2 K. Sudha 1 Department of Electronics

More information

DC Chopper. Prof. Dr. Fahmy El-khouly

DC Chopper. Prof. Dr. Fahmy El-khouly DC Chopper Prof. Dr. Fahmy El-khouly Definitions: The power electronic circuit which converts directly from dc to dc is called dc-to-dc converter or dc-chopper. Chopper is a dc to dc transformer: The input

More information

SIMULATIONS WITH THE BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006

SIMULATIONS WITH THE BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006 SIMULATIONS WITH THE BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY Modified February 26 Page 1 of 24 PURPOSE: The purpose of this lab is to simulate the Boost converter using ORCAD

More information

DIGITAL SIMULATION OF MULTILEVEL INVERTER BASED STATCOM

DIGITAL SIMULATION OF MULTILEVEL INVERTER BASED STATCOM DIGITAL SIMULATION OF MULTILEVEL INVERTER BASED STATCOM G.SUNDAR, S.RAMAREDDY Research Scholar, Bharath University Chenna Professor Jerusalam College of Engg. Chennai ABSTRACT This paper deals with simulation

More information

CHAPTER 3 MODELLING OF PV SOLAR FARM AS STATCOM

CHAPTER 3 MODELLING OF PV SOLAR FARM AS STATCOM 47 CHAPTER 3 MODELLING OF PV SOLAR FARM AS STATCOM 3.1 INTRODUCTION Today, we are mostly dependent on non renewable energy that have been and will continue to be a major cause of pollution and other environmental

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online): 2321-0613 Study of Bidirectional AC/DC Converter with Feedforward Scheme using Neural Network Control

More information

Importance of object middleware on a digital signal processor for SCA type architectures - a power/cpu management perspective

Importance of object middleware on a digital signal processor for SCA type architectures - a power/cpu management perspective Importance of object middleware on a digital signal processor for SCA type architectures - a power/cpu management perspective S. Aslam-Mir, M. Robert. J. Reed PrismTech & Virginia Tech September 2004 Agenda!

More information

A Novel 2 - Stage Power Conditioning System for PV Power Generation Using FPGA

A Novel 2 - Stage Power Conditioning System for PV Power Generation Using FPGA A Novel 2 - Stage Power Conditioning System for PV Power Generation Using FPGA Abhimanyu Bhimarjun Panthee 1, C.Dinakaran 2, Dr.M.Muralidhar 3 PG Scholar (PE&ED), Department of EEE, S.V.C.E.T, Chittoor,

More information

A Hybrid Particle Swarm Optimization Algorithm for Maximum Power Point Tracking of Solar Photovoltaic Systems

A Hybrid Particle Swarm Optimization Algorithm for Maximum Power Point Tracking of Solar Photovoltaic Systems Proceedings of The National Conference On Undergraduate Research (NCUR) 2017 University of Memphis Memphis, Tennessee April 6-8, 2017 A Hybrid Particle Swarm Optimization Algorithm for Maximum Power Point

More information

Design and Simulation of FPGA Based Digital Controller for Single Phase Boost PFC Converter

Design and Simulation of FPGA Based Digital Controller for Single Phase Boost PFC Converter Design and Simulation of FPGA Based Digital Controller for Single Phase Boost PFC Converter Aishwarya B A M. Tech(Computer Applications in Industrial Drives) Dept. of Electrical & Electronics Engineering

More information

Power quality improvement and ripple cancellation in zeta converters

Power quality improvement and ripple cancellation in zeta converters Power quality improvement and ripple cancellation in zeta converters Mariamma John 1, Jois.K.George 2 1 Student, Kottayam Institute of Technology and Science, Chengalam, Kottayam, India 2Assistant Professor,

More information

Bidirectional AC/DC Converter Using Simplified PWM with Feed-Forward Control

Bidirectional AC/DC Converter Using Simplified PWM with Feed-Forward Control Bidirectional AC/DC Converter Using Simplified PWM with Feed-Forward Control VeenaVivek 1, ManjushaV. A 2 P.G. Student, Department of Electrical & Electronics Engineering, Amal Jyothi College of Engineering,

More information

Real-Time Simulation and Research on Photovoltaic Power System based on RT-LAB

Real-Time Simulation and Research on Photovoltaic Power System based on RT-LAB Send Orders for Reprints to reprints@benthamscience.ae The Open Fuels & Energy Science Journal, 2015, 8, 183-188 183 Open Access Real-Time Simulation and Research on Photovoltaic Power System based on

More information

PA-AB 4Q POWER AMPLIFIER VA Page 1/5

PA-AB 4Q POWER AMPLIFIER VA Page 1/5 PA-AB 4Q POWER AMPLIFIER 600-1000-2000-3000-5000VA Page 1/5 PA series is a real 4 quadrants AC+DC amplifier to test or simulate all kind of loads or generators with power, high dymamic, a low distortion

More information

When to use an FPGA to prototype a controller and how to start

When to use an FPGA to prototype a controller and how to start When to use an FPGA to prototype a controller and how to start Mark Corless, Principal Application Engineer, Novi MI Brad Hieb, Principal Application Engineer, Novi MI 2015 The MathWorks, Inc. 1 When to

More information

Modeling and Analysis of Flyback Switching Power Converter using FPGA

Modeling and Analysis of Flyback Switching Power Converter using FPGA International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 6 (2012), pp. 731-742 International Research Publication House http://www.irphouse.com Modeling and Analysis of Flyback

More information

Regulating Pulse Width Modulators

Regulating Pulse Width Modulators Regulating Pulse Width Modulators UC1525A/27A FEATURES 8 to 35V Operation 5.1V Reference Trimmed to ±1% 100Hz to 500kHz Oscillator Range Separate Oscillator Sync Terminal Adjustable Deadtime Control Internal

More information

A Pv Fed Buck Boost Converter Combining Ky And Buck Converter With Feedback

A Pv Fed Buck Boost Converter Combining Ky And Buck Converter With Feedback International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 2 (February 2014), PP.84-88 A Pv Fed Buck Boost Converter Combining Ky

More information

Research on Parallel Three Phase PWM Converters base on RTDS

Research on Parallel Three Phase PWM Converters base on RTDS IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Research on Parallel Three Phase PWM Converters base on RTDS To cite this article: Yan Xia et al 208 IOP Conf. Ser.: Earth Environ.

More information

Proposed System Model and Simulation for Three Phase Induction Motor Operation with Single PV Panel

Proposed System Model and Simulation for Three Phase Induction Motor Operation with Single PV Panel Proposed System Model and Simulation for Three Phase Induction Motor Operation with Single PV Panel Eliud Ortiz-Perez, Ricardo Maldonado, Harry O Neill, Eduardo I. Ortiz-Rivera (IEEE member) University

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Ean A. Amon for the degree of Master of Science in Electrical and Computer Engineering presented on January 8, 2007. Title: Hybrid Electric Vehicle Active Rectifier Performance

More information

N-Channel 2.5-V (G-S) Battery Switch, ESD Protection

N-Channel 2.5-V (G-S) Battery Switch, ESD Protection N-Channel.-V (G-S) Battery Switch, ESD Protection Si694AEDQ PRODUCT SUMMARY V DS (V) R DS(on) (Ω) I D (A).33 at V GS = 4. V 4.6 8.38 at V GS = 3. V 4.3.4 at V GS =. V 4. FEATURES Halogen-free Low R DS(on)

More information

Matlab /Simlink based closed Loop Control of Bi-Directional DC - DC Converter

Matlab /Simlink based closed Loop Control of Bi-Directional DC - DC Converter Matlab /Simlink based closed Loop Control of Bi-Directional DC - DC Converter S. Preethi 1, I Mahendiravarman 2, A. Ragavendiran 3 and M. Arunprakash 4 Department of EEE, AVC college of Engineering, Mayiladuthurai.

More information

An Overview of Simulation Tools for Electromagnetic Transients in Power Systems

An Overview of Simulation Tools for Electromagnetic Transients in Power Systems An Overview of Simulation Tools for Electromagnetic Transients in Power Systems J. Mahseredjian, V. Dinavahi, J. A. Martinez IEEE PES General Meeting, 2007 1 Overview and Summary EMT-type (EMTP-type) Electromagnetic

More information

Experiment DC-DC converter

Experiment DC-DC converter POWER ELECTRONIC LAB Experiment-7-8-9 DC-DC converter Power Electronics Lab Ali Shafique, Ijhar Khan, Dr. Syed Abdul Rahman Kashif 10/11/2015 This manual needs to be completed before the mid-term examination.

More information

Linear vs. PWM/ Digital Drives

Linear vs. PWM/ Digital Drives APPLICATION NOTE 125 Linear vs. PWM/ Digital Drives INTRODUCTION Selecting the correct drive technology can be a confusing process. Understanding the difference between linear (Class AB) type drives and

More information

ECE 231 Laboratory Exercise 3 Oscilloscope/Function-Generator Operation ECE 231 Laboratory Exercise 3 Oscilloscope/Function Generator Operation

ECE 231 Laboratory Exercise 3 Oscilloscope/Function-Generator Operation ECE 231 Laboratory Exercise 3 Oscilloscope/Function Generator Operation ECE 231 Laboratory Exercise 3 Oscilloscope/Function Generator Operation Laboratory Group (Names) OBJECTIVES Gain experience in using an oscilloscope to measure time varying signals. Gain experience in

More information

A8230A ULTRA LOW-DROPOUT CONSTANT-CURRENT WITHOUT WHITE LED BIAS

A8230A ULTRA LOW-DROPOUT CONSTANT-CURRENT WITHOUT WHITE LED BIAS DESCRIPTION The is a high performance ultra lowdropout constant current bias supply for white LEDs. It can be used as an alternative to the simple ballast resistors in conventional parallel white LEDs

More information

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS 8 TO 35 V OPERATION 5.1 V REFERENCE TRIMMED TO ± 1 % 100 Hz TO 500 KHz OSCILLATOR RANGE SEPARATE OSCILLATOR SYNC TERMINAL ADJUSTABLE DEADTIME CONTROL INTERNAL

More information

SIMULATION OF FOUR SWITCH PWM AC CHOPPER FED SINGLE PHASE INDUCTION MOTOR. M. Narendra Kumar and K.S.R. Anjaneyulu

SIMULATION OF FOUR SWITCH PWM AC CHOPPER FED SINGLE PHASE INDUCTION MOTOR. M. Narendra Kumar and K.S.R. Anjaneyulu ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS SIMULATION OF FOUR SWITCH PWM AC CHOPPER FED SINGLE PHASE INDUCTION MOTOR M. Narendra Kumar and K.S.R. Anjaneyulu Research Scholar, JNTU and

More information

An Innovative Option for Electrical Energy Conservation with a Step-Up DCto-DC Power Converter Based Grid Tie Inverter

An Innovative Option for Electrical Energy Conservation with a Step-Up DCto-DC Power Converter Based Grid Tie Inverter An Innovative Option for Electrical Energy Conservation with a Step-Up DCto-DC Power Converter Based Grid Tie Inverter Zaber Hasan Mahmud 1, Dr. Md. Kamrul Hassan 2 Department of Electrical & Electronic

More information

DESIGN AND FPGA IMPLEMENTATION OF SLIDING MODE CONTROLLER FOR BUCK CONVERTER

DESIGN AND FPGA IMPLEMENTATION OF SLIDING MODE CONTROLLER FOR BUCK CONVERTER DESIGN AND FPGA IMPLEMENTATION OF SLIDING MODE CONTROLLER FOR BUCK CONVERTER 1 ABHINAV PRABHU, 2 SHUBHA RAO K 1 Student (M.Tech in CAID), 2 Associate Professor Department of Electrical and Electronics,

More information

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER 61 CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER This Chapter deals with the procedure of embedding PI controller in the ARM processor LPC2148. The error signal which is generated from the reference

More information

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 40 CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 2.1 INTRODUCTION Interleaving technique in the boost converter effectively reduces the ripple current

More information

Photovoltaic Grid-Connected System Based On Cascaded Quasi-Z-Source Network

Photovoltaic Grid-Connected System Based On Cascaded Quasi-Z-Source Network Photovoltaic Grid-Connected System Based On Cascaded Quasi-Z-Source Network T. Hari Hara Kumar 1, P. Aravind 2 Final Year B.Tech, Dept. of EEE, K L University, Guntur, AP, India 1 Final Year B.Tech, Dept.

More information

International Journal of Engineering Research and General Science Volume 3, Issue 4, July-August, 2015 ISSN

International Journal of Engineering Research and General Science Volume 3, Issue 4, July-August, 2015 ISSN A High-Performance Single-Phase Bridgeless Interleaved PFC Converter with Over - Current Protection Edwin Basil Lal 1, Bos Mathew Jos 2,Leena Thomas 3 P.G Student 1, edwinbasil@gmail.com, 9746710546 Abstract-

More information

Reduced losses in PV converters by modulation of the DC link voltage

Reduced losses in PV converters by modulation of the DC link voltage International Journal of Energy and Power Engineering 01; (): 1-11 Published online May 0, 01 (http://www.sciencepublishinggroup.com/j/ijepe) doi: 10.118/j.ijepe.0100.1 Reduced losses in PV converters

More information

FEATURES APPLICATION

FEATURES APPLICATION DESCRIPTION The is a Boost LED driver for driving up to 39 LEDs (3-series and 13-parallel) from a 5V system rail. The uses current mode, fixed frequency architecture to regulate the LED current, which

More information

Lecture 2 Exercise 1a. Lecture 2 Exercise 1b

Lecture 2 Exercise 1a. Lecture 2 Exercise 1b Lecture 2 Exercise 1a 1 Design a converter that converts a speed of 60 miles per hour to kilometers per hour. Make the following format changes to your blocks: All text should be displayed in bold. Constant

More information

Modelling and Simulation of a DC Motor Drive

Modelling and Simulation of a DC Motor Drive Modelling and Simulation of a DC Motor Drive 1 Introduction A simulation model of the DC motor drive will be built using the Matlab/Simulink environment. This assignment aims to familiarise you with basic

More information

Simulation of Three Phase Nine-level Inverter for Interfacing with Solar PV system

Simulation of Three Phase Nine-level Inverter for Interfacing with Solar PV system Simulation of Three Phase Nine-level Inverter for Interfacing with Solar PV system D.Ganesh 1, Dr.G.Chandra Sekhar 2 P.G. Student, GMR Institute of Technology, Rajam, India Professor, GMR Institute of

More information

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit RESEARCH ARTICLE OPEN ACCESS High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit C. P. Sai Kiran*, M. Vishnu Vardhan** * M-Tech (PE&ED) Student, Department of EEE, SVCET,

More information

Energy System Protection for Grid Resilience. Xianyong Feng, PhD, PE Center for Electromechanics The University of Texas at Austin October 31, 2017

Energy System Protection for Grid Resilience. Xianyong Feng, PhD, PE Center for Electromechanics The University of Texas at Austin October 31, 2017 Energy System Protection for Grid Resilience Xianyong Feng, PhD, PE Center for Electromechanics The University of Texas at Austin October 31, 1 Presentation Outline Overview Mission Critical Energy Systems

More information

THESIS REAL-TIME MODELING AND SIMULATION OF DISTRIBUTION FEEDER AND DISTRIBUTED RESOURCES. Submitted by. Pawan Singh

THESIS REAL-TIME MODELING AND SIMULATION OF DISTRIBUTION FEEDER AND DISTRIBUTED RESOURCES. Submitted by. Pawan Singh THESIS REAL-TIME MODELING AND SIMULATION OF DISTRIBUTION FEEDER AND DISTRIBUTED RESOURCES Submitted by Pawan Singh Department of Electrical and Computer Engineering In partial fulfillment of the requirements

More information

2N/PN/SST4391 Series. N-Channel JFETs. Vishay Siliconix 2N4391 PN4391 SST4391 2N4392 PN4392 SST4392 2N4393 PN4393 SST4393

2N/PN/SST4391 Series. N-Channel JFETs. Vishay Siliconix 2N4391 PN4391 SST4391 2N4392 PN4392 SST4392 2N4393 PN4393 SST4393 2N/PN/SST49 Series N-Channel JFETs 2N49 PN49 SST49 2N492 PN492 SST492 2N49 PN49 SST49 Part Number GS(off) () r DS(on) Max ( ) I D(off) Typ (pa) t ON Typ (ns) 2N/PN/SST49 4 to 5 4 2N/PN/SST492 2 to 5 6

More information

REDUCED SWITCHING LOSS AC/DC/AC CONVERTER WITH FEED FORWARD CONTROL

REDUCED SWITCHING LOSS AC/DC/AC CONVERTER WITH FEED FORWARD CONTROL REDUCED SWITCHING LOSS AC/DC/AC CONVERTER WITH FEED FORWARD CONTROL Avuluri.Sarithareddy 1,T. Naga durga 2 1 M.Tech scholar,lbr college of engineering, 2 Assistant professor,lbr college of engineering.

More information

5. Active Conditioning for a Distributed Power System

5. Active Conditioning for a Distributed Power System 5. Active Conditioning for a Distributed Power System 5.1 The Concept of the DC Bus Conditioning 5.1.1 Introduction In the process of the system integration, the greatest concern is the dc bus stability

More information

SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006

SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006 SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY Modified February 2006 Page 1 of 13 PURPOSE: The purpose of this lab is to simulate the Buck-Boost converter

More information

J/SST/U308 Series. N-Channel JFETs. Vishay Siliconix J308 SST308 U309 J309 SST309 U310 J310 SST310 PRODUCT SUMMARY FEATURES BENEFITS APPLICATIONS

J/SST/U308 Series. N-Channel JFETs. Vishay Siliconix J308 SST308 U309 J309 SST309 U310 J310 SST310 PRODUCT SUMMARY FEATURES BENEFITS APPLICATIONS J/SST/U8 Series N-Channel JFETs J8 SST8 U9 J9 SST9 U J SST PRODUCT SUMMARY Part Number V GS(off) (V) V (BR)GSS Min (V) g fs Min (ms) I DSS Min (ma) J8 to.5 25 8 J9 to 25 J 2 to.5 25 8 2 SST8 to.5 25 8

More information

knowledge generating NOVEL PULSED-DC TECHNOLOGY DUAL USAGE POWER SUPPLY Background The challenge: effective application of plasma power supply

knowledge generating NOVEL PULSED-DC TECHNOLOGY DUAL USAGE POWER SUPPLY Background The challenge: effective application of plasma power supply generating knowledge NOVEL PULSED-DC TECHNOLOGY DUAL USAGE POWER SUPPLY Background The DC and Pulsed-DC sputtering is one of the most commonly used sputtering technique on the industrial scale. It is used

More information

Real-Time Step Motor Emulator for Hardware-in-the-Loop Simulation

Real-Time Step Motor Emulator for Hardware-in-the-Loop Simulation Real-Time Step Motor Emulator for Hardware-in-the-Loop Simulation A. Oceguera 1, T. Basten 1,2, L. Somers 1,3, S. Hulsenboom 3 1 Eindhoven University of Technology, 2 Embedded Systems Institute, 3 Océ

More information

Power Electronics (BEG335EC )

Power Electronics (BEG335EC ) 1 Power Electronics (BEG335EC ) 2 PURWANCHAL UNIVERSITY V SEMESTER FINAL EXAMINATION - 2003 The figures in margin indicate full marks. Attempt any FIVE questions. Q. [1] [a] A single phase full converter

More information

IMPLEMENTATION OF SOFTWARE-BASED 2X2 MIMO LTE BASE STATION SYSTEM USING GPU

IMPLEMENTATION OF SOFTWARE-BASED 2X2 MIMO LTE BASE STATION SYSTEM USING GPU IMPLEMENTATION OF SOFTWARE-BASED 2X2 MIMO LTE BASE STATION SYSTEM USING GPU Seunghak Lee (HY-SDR Research Center, Hanyang Univ., Seoul, South Korea; invincible@dsplab.hanyang.ac.kr); Chiyoung Ahn (HY-SDR

More information

A Control Scheme Research Based on Sliding Mode and Proportional-Integral Control for Three-phase Rectifier

A Control Scheme Research Based on Sliding Mode and Proportional-Integral Control for Three-phase Rectifier This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. A Control Scheme Research Based on Sliding Mode and Proportional-Integral Control for Three-phase

More information