IIIHHHHHHH. United States Patent (19) 11 Patent Number: 5,179,287 (45) Date of Patent: Jan. 12, Kitajima et al.

Size: px
Start display at page:

Download "IIIHHHHHHH. United States Patent (19) 11 Patent Number: 5,179,287 (45) Date of Patent: Jan. 12, Kitajima et al."

Transcription

1 United States Patent (19) Kitajima et al. 54) DISPLACEMENT SENSOR AND POSITONER 75 Inventors: Kourou Kitajima, Osaka; Hiroshi Seki, Ibaraki, both of Japan 73) Assignee: Omron Corporation, Kyoto, Japan (21) Appl. No.: 720, Filed: Jun. 25, Foreign Application Priority Data Jul. 6, 1990 JP Japan Oct. 4, 1990 JP Japan ) Int. Cl.... G01C3/00 52 U.S. C /561; 356/1; 250/ Field of Search /61, 2014; 356/1, 356/4 IIIHHHHHHH USOO A 11 Patent Number: 5,179,287 (45) Date of Patent: Jan. 12, 1993 (56) References Cited U.S. PATENT DOCUMENTS 4,589,773 5/1986 Ido et al /1 4,884,888 12/1989 Butefisch /1 4,971,443 11/1990 Koyagi / 5,024,529 6/1991 Svetkoff et al /1 Primary Examiner-Janice A. Howell Assistant Examiner-Don Wong Attorney, Agent, or Firm-Dickstein, Shapiro & Morin 57 ABSTRACT The invention provides a displacement sensor compris ing a light-emitting element for projecting a detection light towards an object in a substantially perpendicular direction, a condensing element for condensing a re flected light from the object, and a position sensitive device with its light-receiving surface disposed in paral lel with the axis of the detection light. A positioning apparatus employing the above displacement sensor is also disclosed. 18 Claims, 9 Drawing Sheets Sn (SN N

2 U.S. Patent Jan. 12, 1993 Sheet 1 of 9 5,179,287

3 U.S. Patent Jan. 12, 1993 Sheet 2 of 9 5,179,287 IA-IB IA+B FIG. 2 O.2- O. 5 O..5 2O 25 3O (mm) FIG 3 (O) IA (b) 7 N2O 2N 7 L 8 19 IB O

4 U.S. Patent Jan. 12, 1993 Sheet 3 of 9 5,179,287 2 s 2 s

5 U.S. Patent 5,179,287

6 U.S. Patent Jan. 12, 1993 Sheet 5 of 9 5, F.G : 4 º * Ti ZZZ 4% 23

7 U.S. Patent Jan. 12, 1993 Sheet 6 of 9 5,179,287 FIG 7 A 42 N. A. ZZ T2 NYNY Ya Ya YaYa YNYNNN

8 U.S. Patent Jan. 12, 1993 Sheet 7 of 9 5,179, N FIG

9 U.S. Patent Jan. 12, 1993 Sheet 8 of 9 5,179,287 FIG. PRIOR ART FIG. 2PRIOR ART

10 U.S. Patent Jan. 12, 1993 Sheet 9 of 9 5,179,287 FIG. 3 PRIOR ART FIG. 4 PRIOR ART

11 1. DISPLACEMENT SENSOR AND POSITONER FIELD OF THE INVENTION The present invention relates, in one aspect, to a displacement sensor including a position sensitive de vice and, in another aspect, to a contactless positioner utilizing said displacement sensor. BACKGROUND OF THE INVENTION There is known a displacement sensor utilizing a position sensitive device (hereinafter referred to briefly as PSD). Such a sensor is shown at 51 in FIG. 10 of the drawings accompanying this specification. This dis placement sensor generally comprises a sensor head 52 housing a light-emitting element 53, which may be a light-emitting diode (LED) or a semiconductor laser, and a projection lens 54 on the light emission side and a condenser 55 and a PSD 56 on the light reception side. The operating principle of this sensor is that a detection light beam 58 from said light-emitting element 53 is obliquely incident on the object 57 and the light 59 reflected therefrom is condensed by said condenser 55 and received by the PSD 56. It is so arranged that the axis of the detection light beam 58 is at right angles (8 as 90") with the light axis of the condenser 55. Since, in this sensor 51, the amount of displacement of the object 57 is proportional to the amount of shift in the point of incidence on the light-receiving surface of the PSD 56, the signal output of the PSD is linearly depen dent on the amount of displacement of the object 57. In this sensor 51, however, since both the light-emit ting element 53 and the PSD 56 are obliquely disposed with respect to the surface of the object 57, the distance s between the light-emitting element 53 and the PSD 56 is greater than the detection distance L so that the bulk of the sensor head 52 is increased of necessity. Illustrated in FIG. 11 is another known displacement sensor 61, wherein a light-emitting element 64 and a projecting lens 65 are disposed so as to project a detec tion light 63 perpendicularly towards the object 62 and, with the light-receiving surface of a PSD 66 being dis posed perpendicularly with respect to the axis of a de tection light beam 63, a condenser 69 for focusing a reflected light 68 on said PSD 66 is disposed in parallel with the axis of the detection light beam 63. In this displacement sensor 61, the axis of the detec tion light beam 63 is at right angles with the light receiving surface 67 of the PSD 66, the amount of shift in the point of light incidence on the light-receiving surface 67 of PSD 66 is not proportional to the amount of displacement of the object 62 so that the signal output of the PSD is not linearly dependent on the amount of displacement of the object 62, thus requiring a correct ing circuit. Moreover, the focal plane, indicated at 70, which is formed by the reflected rays 68 on focusing by the condenser 69, does not coincide with the light receiving surface 67 of PSD 66 as seen in FIG. 11, so that the reflected light 68 from the surface of said object 62 cannot always be focused on the light-receiving surface 67 of PSD 66. FIG. 12 is a schematic view showing still another known displacement sensor 71. In this displacement sensor 71, a light-emitting element 74 and a projecting lens 75 are disposed so as to project a detection light beam 73 in a perpendicular direction with respect to the surface of an object 72 and, with the light-receiving surface of a PSD 76 being disposed perpendicularly 5,179,287 5 O with respect to the axis of a detection light beam 73, a condenser 79 is disposed in an inclined position so that a reflected light 78 from the object 72 is invariably incident on the light-receiving surface 77 of a PSD 76. However, even in this displacement sensor 71, where the axis of the detection light 73 is perpendicular to the light-receiving surface 77 of PSD 76, no linearly dis placement-dependent signal output can be obtained from the PSD 76 as shown in FIG. 12 because, assum ing that the object 72 is displaced by a and a2, the amounts of shift of focus, b1 and b2, on the light-receiv ing surface 77 of PSD 76 are not proportional, viz. baseb2/a2. The technological background of positioning devices is now described briefly. FIG. 13 shows a schema for positioning a magnetic head 82 with respect to a disk 81 in an optical/magnetic disk system. This is a positioning system known as the focus error system. Here, a laser light 83 from a write laser diode is condensed by optics 84 onto the disk 81 to detect the distance from the disk 81 from the amount of defocus of the laser light 83 and this detection signal is fed back to the magnetic head 82 to maintain the magnetic head 82 at a predetermined distance from the disk 81. In such a focus error system, however, there are limits to the range of in-focus so that the disk and laser diode must be exactly positioned beforehand. For this reason, high assembling accuracy is required for the laser diode and other devices and the assembly of a magnetic disk involves a time-consuming operation. The system for positioning a magnetic head as shown in FIG. 14 detects the absolute position of a magnetic head 82 with a displacement sensor 93, which comprises a light-emitting element 91 and a PSD 92 such as those as illustrated in FIG. 10, and calcuates the distance d between the magnetic head 82 and the disk 81 to thereby indirectly detect the position of the magnetic head 82. Since, in this system, the distanced between the mag netic head 82 and the disk 81 is determined indirectly by calculation, the system has the drawback of fairly large positioning error. In the impact dot printer, the printing head must be positioned with respect to the printing paper. In the conventional practice, the printing head is once ad vanced into contact with the paper for positioning and, then, carried back away from the paper over a predeter mined distance to set the head in a necessary position relative to the paper. However, this system involves a large-stroke move ment of advancing the printing head into contact with the paper and carrying it back and requires a device for sensing the timing of the printing head contacting the paper and a mechanism for idling the printing head so that it will cease to advance as soon as it contacts the paper. Therefore, the system architecture is inevitably complicated. OBJECTS AND SUMMARY OF THE INVENTION It is an object of the present invention to provide a compact precision displacement sensor capable of pro viding a linear PSD signal output proportional to the amount of displacement of the object.

12 3. It is another object of the invention to provide a compact precision positioning device which does not require positional setting in assembling. The displacement sensor of the present invention comprises a light-emitting element for projecting a de tection light in a substantially perpendicular direction towards an object, a condenser element for condensing a reflected light from said object and a position sensitive device with its light-receiving surface being disposed in parallel with the light axis of said detection light. As an alternative, said condenser element may be disposed with its light axis normal to the axis of said detection light and the reflected light condensed by a condenser element is focused on the light-receiving surface of said position sensitive device. The positioner of the present invention comprises said light-emitting element, condenser element and PSD as integrally mounted on a single chassis to consti tute a distance sensor. In the displacement sensor of the invention where the light-receiving surface of the PSD is in parallel with the axis of detection light, the PSD signal output is linearly proportional to the amount of displacement of the ob ject. As a result, it is no longer necessary to provide a correcting circuit for PSD signal output. Moreover, the accuracy of detection is improved. The light-emitting element projects a detection light perpendicularly towards the object so that the sensor can be made compact. Moreover, the resolution of the displacement sensor is increased when said condenser element is disposed with its light axis normal to the axis of said detection light and the reflected light condensed by said con denser element is focused on the light-receiving surface of the PSD. The positioner of the invention which employs the above displacement sensor is simple and compact in construction and, yet, features high accuracy. More over, since the light-emitting element, condenser ele ment and PSD are integrated with a chassis such as a heat sink and stem, the relationship between distance and output is prefixed so that assembling of this posi tioner with an optical/magnetic disk or the like does not require initial positioning. Moreover, since the distance to object can be directly measured, the detection error is small and positioning can be effected with greater accuracy. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side elevation view showing a displace ment sensor as a first embodiment of the invention; FIG. 2 is a diagram showing the relationship between detection distance and PSD signal output in the same displacement sensor; FIGS. 3(a), (b) each is a view showing the procedure for determining the above relationship; FIG. 4 is a sectional view showing a displacement sensor as a second embodiment of the invention; F.G. 5 is a sectional view showing a displacement sensor as a third embodiment of the invention; FIG. 6 is a sectional view showing a displacement sensor as a fourth embodiment of the invention; FIG. 7 is a sectional view showing a displacement sensor as a fifth embodiment of the invention; FIG. 8 is a schematic view illustrating a positioning apparatus of the invention; FIG. 9 is another positioning apparatus of the inven tion; 5,179, FIG. 10 is a schematic view showing one conven tional displacement sensor; FIG. 11 is a schematic view showing another known displacement sensor; FIG. 12 is a schematic view showing still another known displacement sensor; FIG. 13 is a schematic view showing a conventional positioning apparatus for the magnetic head; and FIG. 14 is a schematic view showing a conventional positioning apparatus for the magnetic head. DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1 which shows a displacement sensor 1 as a first embodiment of the invention, a light emitting element 3, which may be a semiconductor laser or a light-emitting diode, is mounted on top of a heat sink block 2, while a lens mount 5 carrying a Fresnel lens 4 for projection is secured to the front side of the heat sink block 2. The above light-emitting element 3 is disposed on the light axis 6 of the Fresnel lens 4 so that the light from the light-emitting element 3 is converged by the Fresnel lens 4 and projected perpendicularly towards an object 7. A base plate 8 carrying said heat sink block 2 has a PSD mount 9 projecting out under said heat sink block 2 and a PSD 10 is mounted on this PSD mount 9 with its light-receiving surface 11 in par allel with the light axis 6 of the Fresnel lens 4. Affixed to the underside of said heat sink block 2 is a transparent lens base 12 of optical resin. A transmission condenser Fresnel lens 13 is disposed on the underside of a forward portion of the lens base 12 which is projecting beyond the front side of the heat sink block 2. In this embodi ment, the light axis 14 of the condensing Fresnel lens 13 is normal to the light axis of the projecting Fresnel lens 4 and the light-receiving surface 11 of PSD 10, and the distance from the projecting Fresnel lens 4 to the point at which an extension of the straight line connecting the PSD 10 to the condenser Fresnellens 13 intersects the light axis 6 of the projecting lens 4 approximates the desired range of detection. The light beam emergent from the optical axis 6 of the projecting lens 4 is con densed by the condenser 13 and focused on the light receiving surface 11 of the PSD 10. In other words, the point light source on the light axis 6 is focused on the light-receiving surface 11. It should be understood that the stem, cap and other parts of the apparatus are not shown in FIG. 1. The detection light 15 from the light-emitting ele ment 3 is converged by the projector Fresnel lens 4 and projected on the surface of the object 7. The reflected light 16 is condensed by the condenser 13 and focused on the light-receiving surface 11 of the PSD 10. As a result, the PSD 10 detects the position of focus (point of incidence) of reflected light 16 and, hence, the amount of displacement (or detection distance) of the object 7. For example, reflected rays 16 from the surfaces of object 7 at A, B and C are focused at a, b and c, respec tively, of the light-receiving surface 11 and the amounts of displacement AL and AL2 can be found from the distance All between positions a and b and the distance Al2 between positions b and c, respectively. Since the axis 6 of detection light 15 (light axis of the projector Fresnel lens 4) is parallel to the light-receiv ing surface 11 of the PSD 10 in this invention, the amount of displacement AL1, AL2 of the object 7 is proportional to the amount of displacement of the focus on the light-receiving surface 11.

13 Thus, of the reflected light rays 16 from the object 7, the center ray of the beam passing through the con denser Fresnel lens 13 (indicated by the dot-chain line) travels straight through the lens 13. Therefore, the amount of displacement of focus on the light-receiving surface 11 is proportional to the amount of displacement of the object 7 as will be apparent from FIG. 1. There fore, the present invention offers a good linearity be tween PAD signal output and detection distance, mak ing is possible to fabricate a high-accuracy displacement SSO. Furthermore, since in this embodiment the light axis of the condenser Fresnel lens 13 is normal to the light axis 6 of the projector Fresnel lens 4 and the light receiving surface 11 of the PSD 10, the PSD 10 can be located in such a position that the reflected light 16 from the object 7 is always focused on the light-receiv ing surface 11, so that both the resolution of the PSD 10 and the accuracy of detection are improved. FIG. 2 shows the relationship between detection distance L and PSD signal output as plotted using the above displacement sensor 1. The horizontal axis repre sents the detection distance L which was measured by erecting an uncoated paper sheet 17 in front of the dis placement sensor 1 and measuring the distance from the projector Fresnel lens 4 to the paper sheet 17. The vertical axis of FIG. 2 represents the PSD signal output which was the value (IA-IB)/(IA --IB) found by divid ing the difference (IA-IB) between the currents I4 and IB flowing through lead wires 20, 21 connected to two electrodes 18, 19 of the PSD 10, as shown in FIG. 3 (b), by the total current (IA-IB). As shown in FIG. 2, the relationship between detection distance L and PSD signal output showed good linearity, particularly over the range of L = mm. To increase the detection distance L, it is sufficient to reduce the angle which the direction from the con denser Fresnel lens 13 to the light-receiving surface 11 of the PSD 10 makes with the light axis 6 of the projec tor Fresnel lens 4, with the result that the bulk of the displacement sensor 1 need not be increased. FIG. 4 is a sectional elevation view showing a dis placement sensor as a second embodiment of the inven tion. In this displacement sensor 22, a heat sink block 2 is secured to the front side of a stem 23 and a light-emit ting element 3 is mounted on top of the heat sink block 2. A lens mount 5 carrying a projector Fresnel lens 4 is secured to the front side of said heat sink block 2. Se cured to the underside of the heat sink block 2 is a PSD 10 with its light-receiving surface 11 facing downwards and extending in parallel with the axis of detection light 15. Disposed below the heat sink block 2 is a transparent lens base 12 in face-to-face relation with the PSD 10 and a condenser Fresnel lens 13 is mounted on said lens base 12 in such a manner that the light axis of the condenser Fresnel lens 13 is normal to the light axis 6 of the projec tor Fresnel lens 4. The underside of the lens base 12 is formed with a reflective surface 24 in parallel with the condenser Fresnel lens 13. This displacement sensor 22 is covered with a cap 25 as secured to the stem 23 and the window of the cap 25 is paned with sheet glass 26. The detection light 15 from the light-emitting ele ment 3 is reflected by the surface of object 7 and the reflected light 16 is condensed by the Fresnel lens 13, then reflected upwards by the reflective surface 24 and focused on the light-receiving surface 11 of the PSD 10. 5,179, SO In this embodiment, too, the reflected light 16 is focused on the light-receiving surface 11 of PSD 10, regardless of detection distance. Moreover, since the amount of displacement of the focus on the light-receiving surface 11 is proportional to the amount of displacement of the object 7, an excellent linearity of PSD signal output can be obtained. Moreover, since the PSD 10 can be affixed to the underside of a heat sink block 2 prior to mounting of the lens base 12, wire bonding of the PSD 10 is facili tated. FIG. 5 is a sectional elevation view showing a dis placement sensor as a third embodiment of the inven tion. A light-emitting element 3 is mounted on top of a heat sink block 2 secured to the front side of a stem 23 and a lens base 5 carrying a projecting Fresnel lens 4 is secured to the front side of said heat sink block 2. Se cured to the underside of the heat sink block 2 is a PSD 10 with its light-receiving surface 11 facing downwards and extending in parallel with the light axis 6 of the projector Fresnel lens 4. Below the heat sink block 2 is a transparent lens base 12 in face-to-face relation with the PSD 10. Secured to the underside of the lens base 12 is a reflecting Fresnel lens 28, the light axis of which is normal to the light axis 6 of the projector Fresnel lens 4. The reflected light 16 from the object 7 is reflected upwards and condensed by the reflecting Fresnel lens 28 and focused on the light-receiving surface 11 of the PSD 10. In this embodiment, too, the wire bonding of the PSD 10 is facilitated when the lens base 12 is at tached afterwards. FIG. 6 shows a displacement sensor 29 as a fourth embodiment of the invention. This embodiment in cludes a vertically elongated transparent lens base 30 secured to the front face of a heat sink block 2 carrying a light-emitting element 3. The lens base 30 carries a projecting Fresnel lens 4 on the forward side thereof in juxtaposition with the light-emitting element 3 and a condensing Fresnel lens 31 under the projector lens 4. A PSD 10 is mounted on a PSD mount 9 located below the heat sink block 2, with its light-receiving surface 11 facing upwards. Thus, in this embodiment the light receiving surface 11 of the PSD 10 is parallel to the light axis 6 of the projector Fresnel lens 4 and the light axis of the condenser Fresnel lens 31 is also parallel to the light axis 6 of the projector Fresnel lens 4. In this embodiment, the light axis of the condenser Fresnel lens 31 is not normal but parallel to the axis 6 of the detection light 15. Therefore, unlike the first em bodiment, it is not that the reflected light is always focused on the light-receiving surface 11 of the PSD regardless of the position of the object 7 but since the light-receiving surface 11 of PSD 10 is parallel to the axis 6 of the detection light 15, the PSD signal output is linearly dependent on the amount of displacement of the object 7. Thus, referring to the center ray of the reflected light flux 16 (the light ray passing through the center of the condenser Fresnel lens 31 as indicated by the dot-chain line), the amount of displacement of the point at which the center ray of reflected light 16 crosses the light-receiving surface 11 is proportional to the amount of displacement of the object 7. FIG.7 shows a displacement sensor as a fifth embodi ment of the invention. In this displacement sensor 32, an elongated transparent lens base 30 secured to the front side of a heat sink block 2 carries a projecting Fresnel lens 4 and a condensing Fresnel lens 31, with the light axes of the two lenses being parallel to each other and a

14 7 PSD 10 being secured to the underside of the heat sink block 2, with its light-receiving surface 11 in parallel with the axis 6 of the detection light 15. Moreover, a reflector plate 33 is disposed below the heat sink block 2 and in parallel with the light-receiving surface 11. The reflected light 16 from the surface of object 7 is condensed by the condensing Fresnel lens 31, then re flected upwards by the reflector plate 33, and is finally incident on the light-receiving surface 11 of the PSD 10. Since, in this embodiment, too, the axis 6 of detection light 15 is parallel to the light-receiving surface 11, the PSD signal output is linearly dependent on the amount of displacement of the object 7. FIG. 8 shows a positioning apparatus as an embodi ment of the invention, employing a displacement sensor comprising said light-emitting element 3, condenser element (condensing Fresnel lens 13, reflecting Fresnel lens 28 or the like), PSD 10, stem 23, heat sink block 2 and PSD mount 9 as integrally mounted on a single chassis. This positioning apparatus 41 can be used to position an object 42 to be controlled, such as the mag netic head of a optical/magnetic disk system or the printing head of an impact dot printer, at a predeter mined distance from an associated object 43 such as the disk or the printing paper. In this embodiment, the dis placement sensor 44 and the object to be controlled 42 are disposed in the same plane for concerted movement. Therefore, if the distance D to the associated object 43, such as the disk or paper, is measured with the displace ment sensor 44, the distance between the object 42 and the associated object 43 can be directly found. As the detection signal from the displacement sensor 44 is fed back to the object 42 to indicate the distance to the associated object 43 and the object of control 42 is accordingly driven with an appropriate actuator, the object of control 42 can be positioned at a desired dis tance from the object 43 with a minimum of error. This positioning apparatus is contactless, and because the sensor 44 is small, can be compactly built. FIG. 9 shows another positioning apparatus 45 of the invention. In this embodiment, an object of control 42, such as a magnetic head or a printing head, and a dis placement sensor 44 are disposed on respective sides of an object 43 such as the disk or the paper, and it is so arranged that the object of control 42 and the displace ment sensor 44 always move at a predetermined dis tance therebetween. Therefore, provided that the dis tance between the object 42 and the sensor 44 and the thickness of the object 43 are known, the distance be tween the object of control 42 and the associated object 43 can be known by detecting the distance D between the displacement sensor 44 and the object 43 and the object of control 42 can be positioned to maintain this distance with high accuracy. Moreover, since this dis placement sensor is integrally mounted on a chassis, the relationship between distance to object 43 and detection signal is also predetermined. Therefore, unlike the focus error system, this apparatus does not call for critical setting in the assembling stage. The advantages of the displacement sensor may be summarized as follows. Since the light-receiving surface of the PSD is paral lel to the axis of the detection light, there can be manu factured a compact high-precision sensor which pro vides a linear PSD signal output relative to the displace ment of an object. In the embodiment where the condensing element has its light axis normal to the axis of said detection light, 5,179, the reflected light is focused on the light-receiving sur face of the PSD. Therefore, the resolution of the sensor is improved. The positioning apparatus of the invention is compact and, yet, high in precision. As the distance to the object can be directly determined, positioning accuracy is improved with a minimum of error. Furthermore, no initial setting is required in assembling so that the whole assembly process is facilitated. What is claimed is: 1. A sensor for detecting object displacement con prising: a light-emitting element for projecting a detection light along an axis towards said object in a substan tially perpendicular direction, said light being re flected by said object at an oblique angle relative to said detection light axis; a condensing element for condensing light reflected at said oblique angle; a position sensitive device having a light-receiving surface disposed in parallel with said detection light axis, said position sensitive device receiving said reflected light from said condensing element at locations on said light receiving surface which represent and are proportional to the displacement of said object. 2. A displacement sensor according to claim 1 wherein said condensing element has its light axis nor mal to the axis of said detection light and said reflected light is condensed by said condensing element and fo cused on said light-receiving surface of said position sensitive device. 3. A positioning apparatus as in claim 1, wherein said condensing element has its light axis normal to the axis of said detection light and said reflected light is con densed by said condensing element and focused on said light-receiving surface of said position sensitive device. 4. A sensor as in claim 1, wherein said condensing element is a Fresnel lens and a light axis of said Fresnel lens is disposed normal to said detection light axis and to said light receiving surface. 5. A sensor as in claim 1, wherein said light emitting element comprises a light source and a light converging Fresnel lens. 6. A sensor as in claim 1, wherein said light emitting element is mounted to a support structure, said condens ing lens is mounted on a transparent base connected to said support structure, and said position sensitive device is mounted to said support structure. 7. A sensor as in claim 6, wherein said condensing lens is disposed on a side of said transparent base which faces said position sensitive device. 8. A sensor as in claim 1, further comprising a reflec tion element for reflecting light from said condenser lens to said light receiving surface. 9. A sensor as in claim 8, wherein said condensing lens and reflection element are mounted on opposite sides of a transparent lens base. 10. A sensor as in claim'9, wherein said light emitting element and position sensitive device are mounted on opposite sides of a heat sink. 11. A sensor as in claim 1, wherein said condensing lens forms part of a reflection element for reflecting light from said condensor lens to said light receiving surface. 12. A sensor as in claim 11, wherein said light emit ting element and position sensitive device are mounted on opposite sides of a heat sink.

15 9 13. A sensor as in claim 1, wherein said condensing lens is a Fresnel lens and has a light axis which is per pendicular to said light receiving surface. 14. A sensor as in claim 11, wherein light from said condensing lens directly impinges on said light receiv ing surface. 15. A sensor as in claim 13, further comprising a reflector for reflecting light from said condensing lens to said light receiving surface. 16. A sensor as in claim 1, wherein said reflected light strikes said light receiving surface at an oblique angle. 17. A positioning apparatus comprising: a chassis; and a sensor for determining displacement of an object with respect to said chassis, said sensor being mounted on said chassis and comprising: 5,179, a light-emitting element for projecting a detection light along an axis towards said object in a substan tially perpendicular direction, said light being re flected by said object at an oblique angle relative to 5 said detection light axis; a condensing element for condensing light reflected at said oblique angle; and a position sensitive device having a light-receiving surface disposed in parallel with said detection O light axis, said position sensitive device receiving said reflected light from said condensing element at locations on said light receiving surface which represent and are proportional to the displacement of said object A positioning apparatus as in claim 17, wherein said reflected light strikes said light receiving surface at an oblique angle. z SO 55 65

United States Patent 19) 11 Patent Number: 5,442,436 Lawson (45) Date of Patent: Aug. 15, 1995

United States Patent 19) 11 Patent Number: 5,442,436 Lawson (45) Date of Patent: Aug. 15, 1995 I () US005442436A United States Patent 19) 11 Patent Number: Lawson (45) Date of Patent: Aug. 15, 1995 54 REFLECTIVE COLLIMATOR 4,109,304 8/1978 Khvalovsky et al.... 362/259 4,196,461 4/1980 Geary......

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Muchel 54) OPTICAL SYSTEM OF WARIABLE FOCAL AND BACK-FOCAL LENGTH (75) Inventor: Franz Muchel, Königsbronn, Fed. Rep. of Germany 73 Assignee: Carl-Zeiss-Stiftung, Heidenheim on

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 (19) United States US 20070147825A1 (12) Patent Application Publication (10) Pub. No.: US 2007/0147825 A1 Lee et al. (43) Pub. Date: Jun. 28, 2007 (54) OPTICAL LENS SYSTEM OF MOBILE Publication Classification

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0132875 A1 Lee et al. US 20070132875A1 (43) Pub. Date: Jun. 14, 2007 (54) (75) (73) (21) (22) (30) OPTICAL LENS SYSTEM OF MOBILE

More information

United States Patent (19) Morita et al.

United States Patent (19) Morita et al. United States Patent (19) Morita et al. - - - - - 54. TEMPLATE 75 Inventors: Shiro Morita, Sakura; Kazuo Yoshitake, Tokyo, both of Japan 73 Assignee: Yoshitake Seisakujo Co., Inc., Tokyo, Japan (21) Appl.

More information

United States Patent (19) Sun

United States Patent (19) Sun United States Patent (19) Sun 54 INFORMATION READINGAPPARATUS HAVING A CONTACT IMAGE SENSOR 75 Inventor: Chung-Yueh Sun, Tainan, Taiwan 73 Assignee: Mustek Systems, Inc., Hsinchu, Taiwan 21 Appl. No. 916,941

More information

United States Patent 19

United States Patent 19 United States Patent 19 Kohayakawa 54) OCULAR LENS MEASURINGAPPARATUS (75) Inventor: Yoshimi Kohayakawa, Yokohama, Japan 73 Assignee: Canon Kabushiki Kaisha, Tokyo, Japan (21) Appl. No.: 544,486 (22 Filed:

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Suzuki et al. USOO6385294B2 (10) Patent No.: US 6,385,294 B2 (45) Date of Patent: May 7, 2002 (54) X-RAY TUBE (75) Inventors: Kenji Suzuki; Tadaoki Matsushita; Tutomu Inazuru,

More information

United States Patent [15] 3,650,496 Svensson (45) Mar. 21, 1972

United States Patent [15] 3,650,496 Svensson (45) Mar. 21, 1972 United States Patent [15] 3,650,496 Svensson (45) Mar. 21, 1972 54. FOLDING FNS FOR MESSELES 3,273,500 9/1966 Kongelbeck... 244/3.28 (72) Inventor: Nils-Åke Birger Svensson, Karlskoga, Primary Examiner-Verlin

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States US 2005O116153A1 (12) Patent Application Publication (10) Pub. No.: US 2005/0116153 A1 Hataguchi et al. (43) Pub. Date: Jun. 2, 2005 (54) ENCODER UTILIZING A REFLECTIVE CYLINDRICAL SURFACE

More information

United States Patent (19) Nihei et al.

United States Patent (19) Nihei et al. United States Patent (19) Nihei et al. 54) INDUSTRIAL ROBOT PROVIDED WITH MEANS FOR SETTING REFERENCE POSITIONS FOR RESPECTIVE AXES 75) Inventors: Ryo Nihei, Akihiro Terada, both of Fujiyoshida; Kyozi

More information

Hsu (45) Date of Patent: Jul. 27, PICTURE FRAME Primary Examiner-Kenneth J. Dorner. Assistant Examiner-Brian K. Green

Hsu (45) Date of Patent: Jul. 27, PICTURE FRAME Primary Examiner-Kenneth J. Dorner. Assistant Examiner-Brian K. Green III United States Patent (19) 11) US005230172A Patent Number: 5,230,172 Hsu (45) Date of Patent: Jul. 27, 1993 54 PICTURE FRAME Primary Examiner-Kenneth J. Dorner o Assistant Examiner-Brian K. Green 76)

More information

III III 0 IIOI DID IIO 1101 I II 0II II 100 III IID II DI II

III III 0 IIOI DID IIO 1101 I II 0II II 100 III IID II DI II (19) United States III III 0 IIOI DID IIO 1101 I0 1101 0II 0II II 100 III IID II DI II US 200902 19549A1 (12) Patent Application Publication (10) Pub. No.: US 2009/0219549 Al Nishizaka et al. (43) Pub.

More information

USOO A United States Patent (19) 11 Patent Number: 5,991,083 Shirochi (45) Date of Patent: Nov. 23, 1999

USOO A United States Patent (19) 11 Patent Number: 5,991,083 Shirochi (45) Date of Patent: Nov. 23, 1999 USOO599.1083A United States Patent (19) 11 Patent Number: 5,991,083 Shirochi (45) Date of Patent: Nov. 23, 1999 54) IMAGE DISPLAY APPARATUS 56) References Cited 75 Inventor: Yoshiki Shirochi, Chiba, Japan

More information

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1. Yoshizawa et al. (43) Pub. Date: Mar. 5, 2009

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1. Yoshizawa et al. (43) Pub. Date: Mar. 5, 2009 (19) United States US 20090059759A1 (12) Patent Application Publication (10) Pub. No.: US 2009/0059759 A1 Yoshizawa et al. (43) Pub. Date: Mar. 5, 2009 (54) TRANSMISSIVE OPTICAL RECORDING (22) Filed: Apr.

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Miyaji et al. 11) Patent Number: 45 Date of Patent: Dec. 17, 1985 54). PHASED-ARRAY SOUND PICKUP APPARATUS 75 Inventors: Naotaka Miyaji, Yamato; Atsushi Sakamoto; Makoto Iwahara,

More information

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1 (19) United States US 2002O180938A1 (12) Patent Application Publication (10) Pub. No.: US 2002/0180938A1 BOk (43) Pub. Date: Dec. 5, 2002 (54) COOLINGAPPARATUS OF COLOR WHEEL OF PROJECTOR (75) Inventor:

More information

Imaging Systems for Eyeglass-Based Display Devices

Imaging Systems for Eyeglass-Based Display Devices University of Central Florida UCF Patents Patent Imaging Systems for Eyeglass-Based Display Devices 6-28-2011 Jannick Rolland University of Central Florida Ozan Cakmakci University of Central Florida Find

More information

(12) United States Patent (10) Patent No.: US 6, 177,908 B1

(12) United States Patent (10) Patent No.: US 6, 177,908 B1 USOO6177908B1 (12) United States Patent (10) Patent No.: US 6, 177,908 B1 Kawahata et al. (45) Date of Patent: Jan. 23, 2001 (54) SURFACE-MOUNTING TYPE ANTENNA, 5,861,854 * 1/1999 Kawahate et al.... 343/700

More information

202 19' 19 19' (12) United States Patent 202' US 7,050,043 B2. Huang et al. May 23, (45) Date of Patent: (10) Patent No.

202 19' 19 19' (12) United States Patent 202' US 7,050,043 B2. Huang et al. May 23, (45) Date of Patent: (10) Patent No. US00705.0043B2 (12) United States Patent Huang et al. (10) Patent No.: (45) Date of Patent: US 7,050,043 B2 May 23, 2006 (54) (75) (73) (*) (21) (22) (65) (30) Foreign Application Priority Data Sep. 2,

More information

(12) United States Patent (10) Patent No.: US 7.704,201 B2

(12) United States Patent (10) Patent No.: US 7.704,201 B2 USOO7704201B2 (12) United States Patent (10) Patent No.: US 7.704,201 B2 Johnson (45) Date of Patent: Apr. 27, 2010 (54) ENVELOPE-MAKING AID 3,633,800 A * 1/1972 Wallace... 223/28 4.421,500 A * 12/1983...

More information

United States Patent (19) Roulot

United States Patent (19) Roulot United States Patent (19) Roulot 54 LGHT SOURCE WITH ACOUSTO-OPTC OEFLECTOR AND AFOCAL LENS SYSTEM 76 Inventor: Maurice Roulot, 144 Boulevard de la Terrasse, 91400 Orsay, France (21) Appl. No.: 385,196

More information

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1 (19) United States US 20130222876A1 (12) Patent Application Publication (10) Pub. No.: US 2013/0222876 A1 SATO et al. (43) Pub. Date: Aug. 29, 2013 (54) LASER LIGHT SOURCE MODULE (52) U.S. Cl. CPC... H0IS3/0405

More information

(12) United States Patent

(12) United States Patent (12) United States Patent USOO9383 080B1 (10) Patent No.: US 9,383,080 B1 McGarvey et al. (45) Date of Patent: Jul. 5, 2016 (54) WIDE FIELD OF VIEW CONCENTRATOR USPC... 250/216 See application file for

More information

United States Patent (19) Hirakawa

United States Patent (19) Hirakawa United States Patent (19) Hirakawa US005233474A 11 Patent Number: (45) Date of Patent: 5,233,474 Aug. 3, 1993 (54) WIDE-ANGLE LENS SYSTEM (75) Inventor: Jun Hirakawa, Tokyo, Japan 73) Assignee: Asahi Kogaku

More information

58 Field of Search /341,484, structed from polarization splitters in series with half-wave

58 Field of Search /341,484, structed from polarization splitters in series with half-wave USOO6101026A United States Patent (19) 11 Patent Number: Bane (45) Date of Patent: Aug. 8, 9 2000 54) REVERSIBLE AMPLIFIER FOR OPTICAL FOREIGN PATENT DOCUMENTS NETWORKS 1-274111 1/1990 Japan. 3-125125

More information

United States Patent to 11 3,998,002

United States Patent to 11 3,998,002 United States Patent to 11 Nathanson 45 Dec. 21, 1976 54 PANEL, HOLDER FOR SMALL STRUCTURES AND TOYS 76 Inventor: Albert Nathanson, 249-26 63rd Ave., Little Neck, N.Y. 11329 22 Filed: Jan. 29, 1975 (21

More information

don, G.B. U.S. P. DOCUMENTS spaced by an air gap from the collecting lens. The widths of

don, G.B. U.S. P. DOCUMENTS spaced by an air gap from the collecting lens. The widths of United States Patent (19) Wartmann III US005708532A 11 Patent Number: 5,708,532 45 Date of Patent: Jan. 13, 1998 (54) DOUBLE-SIDED TELECENTRC 573790 11/1977 U.S.S.R... 359/663 MEASUREMENT OBJECTIVE 1 248

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 US 2006004.4273A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0044273 A1 Numazawa et al. (43) Pub. Date: Mar. 2, 2006 (54) MOUSE-TYPE INPUT DEVICE (30) Foreign Application

More information

(12) United States Patent (10) Patent No.: US 6,765,631 B2. Ishikawa et al. (45) Date of Patent: Jul. 20, 2004

(12) United States Patent (10) Patent No.: US 6,765,631 B2. Ishikawa et al. (45) Date of Patent: Jul. 20, 2004 USOO6765631 B2 (12) United States Patent (10) Patent No.: US 6,765,631 B2 Ishikawa et al. (45) Date of Patent: Jul. 20, 2004 (54) VEHICLE WINDSHIELD RAIN SENSOR (56) References Cited (75) Inventors: Junichi

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States US 2003OO3OO63A1 (12) Patent Application Publication (10) Pub. No.: US 2003/0030063 A1 Sosniak et al. (43) Pub. Date: Feb. 13, 2003 (54) MIXED COLOR LEDS FOR AUTO VANITY MIRRORS AND

More information

USOO A United States Patent (19) 11 Patent Number: 5,995,883 Nishikado (45) Date of Patent: Nov.30, 1999

USOO A United States Patent (19) 11 Patent Number: 5,995,883 Nishikado (45) Date of Patent: Nov.30, 1999 USOO5995883A United States Patent (19) 11 Patent Number: 5,995,883 Nishikado (45) Date of Patent: Nov.30, 1999 54 AUTONOMOUS VEHICLE AND 4,855,915 8/1989 Dallaire... 701/23 CONTROLLING METHOD FOR 5,109,566

More information

United States Patent (19)

United States Patent (19) 4 a c (, 42 R 6. A 7 United States Patent (19) Sprague et al. 11 (45) 4,428,647 Jan. 31, 1984 (54) MULTI-BEAM OPTICAL SYSTEM USING LENS ARRAY (75. Inventors: Robert A. Sprague, Saratoga; Donald R. Scifres,

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US007.961391 B2 (10) Patent No.: US 7.961,391 B2 Hua (45) Date of Patent: Jun. 14, 2011 (54) FREE SPACE ISOLATOR OPTICAL ELEMENT FIXTURE (56) References Cited U.S. PATENT DOCUMENTS

More information

(12) United States Patent (10) Patent No.: US 7,639,203 B2

(12) United States Patent (10) Patent No.: US 7,639,203 B2 USOO7639203B2 (12) United States Patent () Patent No.: US 7,639,203 B2 HaO (45) Date of Patent: Dec. 29, 2009 (54) SPIRAL COIL LOADED SHORT WIRE (52) U.S. Cl.... 343/895; 343/719; 343/745 ANTENNA (58)

More information

HHHHHH. United States Patent (19) 11 Patent Number: 5,079,455. McCafferty et al. tor to provide a negative feedback path for charging the

HHHHHH. United States Patent (19) 11 Patent Number: 5,079,455. McCafferty et al. tor to provide a negative feedback path for charging the United States Patent (19) McCafferty et al. (54. SURGE CURRENT-LIMITING CIRCUIT FOR A LARGE-CAPACITANCE LOAD 75 Inventors: Lory N. McCafferty; Raymond K. Orr, both of Kanata, Canada 73) Assignee: Northern

More information

US 7.203,426 B2. Apr. 10, (45) Date of Patent: (10) Patent No.: The recesses are sized in accordance with the wavelengths (56)

US 7.203,426 B2. Apr. 10, (45) Date of Patent: (10) Patent No.: The recesses are sized in accordance with the wavelengths (56) USOO72O3426B2 (12) United States Patent Wu et al. (10) Patent No.: (45) Date of Patent: US 7.203,426 B2 Apr. 10, 2007 (54) (75) (73) (*) (21) (22) (65) (51) (52) (58) (56) OPTICAL SUBASSEMBLY OF OPTICAL

More information

24. United States Patent (19) Noé et al. 21 Appl. No. 261,066. least one correcting roller which has an adjustable depth of

24. United States Patent (19) Noé et al. 21 Appl. No. 261,066. least one correcting roller which has an adjustable depth of United States Patent (19) Noé et al. 11) 45) US005535610A Patent Number: 5,535,610 Date of Patent: Jul. 16, 1996 54 METHD AND APPARATUS FR ELMINATING CRSSBW IN METAL STRIP 75 Inventors: Rolf Noé; Andreas

More information

United States Patent (19) 11 Patent Number: 5,299,109. Grondal. (45. Date of Patent: Mar. 29, a. Assistant Examiner-Alan B.

United States Patent (19) 11 Patent Number: 5,299,109. Grondal. (45. Date of Patent: Mar. 29, a. Assistant Examiner-Alan B. H HHHHHHH US005299.109A United States Patent (19) 11 Patent Number: 5,299,109 Grondal. (45. Date of Patent: Mar. 29, 1994 (54) LED EXIT LIGHT FIXTURE 5,138,782 8/1992 Mizobe... 40/219 75) Inventor: Daniel

More information

(12) United States Patent (10) Patent No.: US 8,304,995 B2

(12) United States Patent (10) Patent No.: US 8,304,995 B2 US0083 04995 B2 (12) United States Patent (10) Patent No.: US 8,304,995 B2 Ku et al. (45) Date of Patent: Nov. 6, 2012 (54) LAMP WITH SNOW REMOVING (56) References Cited STRUCTURE U.S. PATENT DOCUMENTS

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States US 2005OO17592A1 (12) Patent Application Publication (10) Pub. No.: Fukushima (43) Pub. Date: Jan. 27, 2005 (54) ROTARY ELECTRIC MACHINE HAVING ARMATURE WINDING CONNECTED IN DELTA-STAR

More information

Kiuchi et al. (45) Date of Patent: Mar. 8, 2011

Kiuchi et al. (45) Date of Patent: Mar. 8, 2011 (12) United States Patent US007902952B2 (10) Patent No.: Kiuchi et al. (45) Date of Patent: Mar. 8, 2011 (54) SHARED REACTOR TRANSFORMER (56) References Cited (75) Inventors: Hiroshi Kiuchi, Chiyoda-ku

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 US 2003O2325O2A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0232502 A1 Asakawa (43) Pub. Date: Dec. 18, 2003 (54) METHOD OF MANUFACTURING Publication Classification SEMCONDUCTOR

More information

(12) United States Patent (10) Patent No.: US 8,561,977 B2

(12) United States Patent (10) Patent No.: US 8,561,977 B2 US008561977B2 (12) United States Patent (10) Patent No.: US 8,561,977 B2 Chang (45) Date of Patent: Oct. 22, 2013 (54) POST-PROCESSINGAPPARATUS WITH (56) References Cited SHEET EUECTION DEVICE (75) Inventor:

More information

Optical spray painting practice and training system

Optical spray painting practice and training system University of Northern Iowa UNI ScholarWorks Patents (University of Northern Iowa) 9-14-1999 Optical spray painting practice and training system Richard J. Klein II Follow this and additional works at:

More information

United States Patent (19) Ohta

United States Patent (19) Ohta United States Patent (19) Ohta (54) NON-SATURATING COMPLEMENTARY TYPE UNITY GAIN AMPLIFER 75 Inventor: 73) Assignee: Genichiro Ohta, Ebina, Japan Matsushita Electric Industrial Co., Ltd., Osaka, Japan

More information

TSSSSSSSSSSSSSSSSS??ºzzz-->

TSSSSSSSSSSSSSSSSS??ºzzz--> US007591574B2 (12) United States Patent Eschbach (54) OPTICAL ELEMENT FORVARIABLE MESSAGE SIGNS (75) Inventor: Bernd Eschbach, Karlsruhe (DE) (73) Assignee: Dambach-Werke GmbH, Kuppenheim (DE) (*) Notice:

More information

United States Patent (19) Fries

United States Patent (19) Fries 4, 297 0 () () United States Patent (19) Fries 4). SOLAR LIGHTING SYSTEM 76) Inventor: James E. Fries, 7860 Valley View, Apt. 242, Buena Park, Calif. 90620 (21) Appl. No.: 2,620 22 Filed: Jan. 11, 1979

More information

United States Patent (19) 11) Patent Number: 5,621,555 Park (45) Date of Patent: Apr. 15, 1997 LLP 57)

United States Patent (19) 11) Patent Number: 5,621,555 Park (45) Date of Patent: Apr. 15, 1997 LLP 57) III US005621555A United States Patent (19) 11) Patent Number: 5,621,555 Park (45) Date of Patent: Apr. 15, 1997 (54) LIQUID CRYSTAL DISPLAY HAVING 5,331,447 7/1994 Someya et al.... 359/59 REDUNDANT PXEL

More information

4,162,827. United Stat to XR 49162,827. U.S. PATENT DOCUMENTS 1,293,086 2/1919 Graf /234. Jul. 31, Assignee:

4,162,827. United Stat to XR 49162,827. U.S. PATENT DOCUMENTS 1,293,086 2/1919 Graf /234. Jul. 31, Assignee: 3S() a 483 SR XR 49162,827 United Stat to 11 de- Jul. 31, 1979 54 WIDE ANGLE OBJECTIVE FOR OPHTHALMOSCOPIC INSTRUMENT Yuji Ito, Chigasaki, Japan Canon Kabushiki Kaisha, Tokyo, Japan Appl. No.: 802,877

More information

25 N WSZ, SN2. United States Patent (19) (11) 3,837,162. Meitinger. (45) Sept. 24, 1974 % N. and carried on a projecting portion which is rigidly

25 N WSZ, SN2. United States Patent (19) (11) 3,837,162. Meitinger. (45) Sept. 24, 1974 % N. and carried on a projecting portion which is rigidly O United States Patent (19) Meitinger 54) DEVICE FOR ADJUSTING THE DIAL TRAIN OF WATCHES 76 Inventor: Heinz Meitinger, Theodor-Heuss-Str. 16 D-7075, Mutlangen, Germany 22 Filed: Mar. 26, 1973 (21) Appl.

More information

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1 (19) United States US 200901 86.181A1 (12) Patent Application Publication (10) Pub. No.: US 2009/0186181 A1 Mase (43) Pub. Date: Jul. 23, 2009 (54) SCREEN PROTECTOR FILM WITH (30) Foreign Application Priority

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Takekuma USOO6850001B2 (10) Patent No.: (45) Date of Patent: Feb. 1, 2005 (54) LIGHT EMITTING DIODE (75) Inventor: Akira Takekuma, Tokyo (JP) (73) Assignee: Agilent Technologies,

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 US 20050207013A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0207013 A1 Kanno et al. (43) Pub. Date: Sep. 22, 2005 (54) PHOTOELECTRIC ENCODER AND (30) Foreign Application

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States US 2003009 1220A1 (12) Patent Application Publication (10) Pub. No.: US 2003/0091220 A1 Sato et al. (43) Pub. Date: May 15, 2003 (54) CAPACITIVE SENSOR DEVICE (75) Inventors: Hideaki

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States US 20050047461A1 (12) Patent Application Publication (10) Pub. No.: US 2005/0047461 A1 Kihara et al. (43) Pub. Date: Mar. 3, 2005 (54) OPTICAL TRANSMITTING MODULE (30) Foreign Application

More information

rectifying smoothing circuit

rectifying smoothing circuit USOO648671.4B2 (12) United States Patent (10) Patent No.: Ushida et al. (45) Date of Patent: Nov. 26, 2002 (54) HALF-BRIDGE INVERTER CIRCUIT (56) References Cited (75) Inventors: Atsuya Ushida, Oizumi-machi

More information

USOO A United States Patent (19) 11 Patent Number: 6,101,939 Giori et al. (45) Date of Patent: Aug. 15, 2000

USOO A United States Patent (19) 11 Patent Number: 6,101,939 Giori et al. (45) Date of Patent: Aug. 15, 2000 USOO6101939A United States Patent (19) 11 Patent Number: 6,101,939 Giori et al. (45) Date of Patent: Aug. 15, 2000 54) ROTARY PRINTING MACHINE FOR 4,152.986 5/1979 Dadowski et al.... 101/170 SECURITY PAPERS

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Kowalewski (54) RADIO FREQUENCY SWITCH EMPLOYING REED SWITCHES AND A QUARTER WAVE LINE 75) inventor: Rolf E. Kowalewski, Palatine, Ill. (73) Assignee: Motorola, Inc., Franklin

More information

58) Field of Seash, which is located on the first core leg. The fifth winding,

58) Field of Seash, which is located on the first core leg. The fifth winding, US006043569A United States Patent (19) 11 Patent Number: Ferguson (45) Date of Patent: Mar. 28, 2000 54) ZERO PHASE SEQUENCE CURRENT Primary Examiner Richard T. Elms FILTER APPARATUS AND METHOD FOR Attorney,

More information

United States Patent (19) Van Halen

United States Patent (19) Van Halen United States Patent (19) Van Halen 11) () Patent Number: Date of Patent: Apr. 14, 1987 54 MUSICAL INSTRUMENT SUPPORT 76 Inventor: Edward L. Van Halen, 1900 Ave. of Stars #1780, Los Angeles, Calif. 90067

More information

United States Patent 9 Grant

United States Patent 9 Grant United States Patent 9 Grant 1 l) May 8, 1973 4 7) (73) GAME BOX HAVING AMAZE Inventor: Perry J. Grant, Pacific Palisades, Calif. Assignee: Reuben B. Kamer d/b/a Reugen Klamer & Associates, Beverly Hills,

More information

USOO A United States Patent (19) 11 Patent Number: 5,923,417 Leis (45) Date of Patent: *Jul. 13, 1999

USOO A United States Patent (19) 11 Patent Number: 5,923,417 Leis (45) Date of Patent: *Jul. 13, 1999 USOO5923417A United States Patent (19) 11 Patent Number: Leis (45) Date of Patent: *Jul. 13, 1999 54 SYSTEM FOR DETERMINING THE SPATIAL OTHER PUBLICATIONS POSITION OF A TARGET Original Instruments Product

More information

III IIII. United States Patent (19) Hamilton et al. application of welds thereto for attaching the hub member to

III IIII. United States Patent (19) Hamilton et al. application of welds thereto for attaching the hub member to United States Patent (19) Hamilton et al. 54) EARTH SCREW ANCHOR ASSEMBLY HAVING ENHANCED PENETRATING CAPABILITY (75) Inventors: Daniel V. Hamilton; Robert M. Hoyt, both of Centralia; Patricia J. Halferty,

More information

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1 (19) United States US 20140204438A1 (12) Patent Application Publication (10) Pub. No.: US 2014/0204438 A1 Yamada et al. (43) Pub. Date: Jul. 24, 2014 (54) OPTICAL DEVICE AND IMAGE DISPLAY (52) U.S. Cl.

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 US 20070109547A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0109547 A1 Jungwirth (43) Pub. Date: (54) SCANNING, SELF-REFERENCING (22) Filed: Nov. 15, 2005 INTERFEROMETER

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Crawford 11 Patent Number: 45) Date of Patent: Jul. 3, 1990 54 (76) (21) 22 (51) (52) (58) 56 LASERRANGEFINDER RECEIVER. PREAMPLETER Inventor: Ian D. Crawford, 1805 Meadowbend

More information

(12) Patent Application Publication (10) Pub. No.: US 2001/ A1

(12) Patent Application Publication (10) Pub. No.: US 2001/ A1 US 2001 0021611A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2001/0021611 A1 Onizuka et al. (43) Pub. Date: Sep. 13, 2001 (54) BUS BAR STRUCTURE Related U.S. Application Data

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Waibel et al. USOO6624881B2 (10) Patent No.: (45) Date of Patent: Sep. 23, 2003 (54) OPTOELECTRONIC LASER DISTANCE MEASURING INSTRUMENT (75) Inventors: Reinhard Waibel, Berneck

More information

United States Patent (19) Fales et al.

United States Patent (19) Fales et al. United States Patent (19) Fales et al. 54 LAMP PACKAGING 76 Inventors: Gene T. Fales; Dennis W. Dollar, both of c/o Dunning Industries, Inc., P.O. Box 11393, Greensboro, N.C. 27409 21 Appl. No.:,008 (22

More information

(12) United States Patent

(12) United States Patent USOO948471 OB2 (12) United States Patent Yoshino et al. (10) Patent No.: (45) Date of Patent: US 9.484,710 B2 Nov. 1, 2016 (54) (71) SEMCONDUCTOR LASER DEVICE Applicant: USHIO DENKI KABUSHIKI KAISHA, Tokyo

More information

issi Field of search. 348/36, , 33) of the turret punch press machine; an image of the

issi Field of search. 348/36, , 33) of the turret punch press machine; an image of the US005721587A United States Patent 19 11 Patent Number: 5,721,587 Hirose 45 Date of Patent: Feb. 24, 1998 54 METHOD AND APPARATUS FOR Primary Examiner Bryan S. Tung NSPECTNG PRODUCT PROCESSED BY Attorney,

More information

M3 d. (12) United States Patent US 7,317,435 B2. Jan. 8, (45) Date of Patent: (10) Patent No.: (75) Inventor: Wei-Chieh Hsueh, Tainan (TW) T GND

M3 d. (12) United States Patent US 7,317,435 B2. Jan. 8, (45) Date of Patent: (10) Patent No.: (75) Inventor: Wei-Chieh Hsueh, Tainan (TW) T GND US7317435B2 (12) United States Patent Hsueh (10) Patent No.: (45) Date of Patent: Jan. 8, 2008 (54) PIXEL DRIVING CIRCUIT AND METHD FR USE IN ACTIVE MATRIX LED WITH THRESHLD VLTAGE CMPENSATIN (75) Inventor:

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Querry et al. (54) (75) PHASE LOCKED LOOP WITH AUTOMATIC SWEEP Inventors: 73) Assignee: 21) (22 (51) (52) 58 56) Lester R. Querry, Laurel; Ajay Parikh, Gaithersburg, both of Md.

More information

Y 6a W SES. (12) Patent Application Publication (10) Pub. No.: US 2005/ A1. (19) United States. Belinda et al. (43) Pub. Date: Nov.

Y 6a W SES. (12) Patent Application Publication (10) Pub. No.: US 2005/ A1. (19) United States. Belinda et al. (43) Pub. Date: Nov. (19) United States US 2005O2521.52A1 (12) Patent Application Publication (10) Pub. No.: Belinda et al. (43) Pub. Date: Nov. 17, 2005 (54) STEELTRUSS FASTENERS FOR MULTI-POSITIONAL INSTALLATION (76) Inventors:

More information

11 Patent Number: 5,584,458 Rando 45) Date of Patent: Dec. 17, (56) References Cited (54) SEAERS FOR U.S. PATENT DOCUMENTS

11 Patent Number: 5,584,458 Rando 45) Date of Patent: Dec. 17, (56) References Cited (54) SEAERS FOR U.S. PATENT DOCUMENTS United States Patent (19) III IIHIIII USOO5584458A 11 Patent Number: 5,584,458 Rando 45) Date of Patent: Dec. 17, 1996 (56) References Cited (54) SEAERS FOR U.S. PATENT DOCUMENTS 4,926,722 5/1990 Sorensen

More information

United States Patent (19) (11) 3,865,005 Carree (45) Feb. 11, 1975

United States Patent (19) (11) 3,865,005 Carree (45) Feb. 11, 1975 United States Patent (19) (11) 3,865,005 Carree (45) Feb. 11, 1975 54) WIND MUSICAL INSTRUMENT 2,560,083 7/1951 Bullock... 84/385 75) Inventor: Robert Victor Carree, Mantes-la-Ville, France Primary Examiner-Lawrence

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 US 2005O190276A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0190276A1 Taguchi (43) Pub. Date: Sep. 1, 2005 (54) METHOD FOR CCD SENSOR CONTROL, (30) Foreign Application

More information

United States Patent (19) Vitale

United States Patent (19) Vitale United States Patent (19) Vitale 54) ULTRASON CALLY BONDED NON-WOVEN FABRIC 75 (73) Inventor: Assignee: Joseph Vitale, Charlotte, N.C. Perfect Fit Industries, Monroe, N.C. (21) Appl. No.: 756,423 22) Filed:

More information

United States Patent (19) Onuki et al.

United States Patent (19) Onuki et al. United States Patent (19) Onuki et al. 54). IGNITION APPARATUS FOR AN INTERNAL COMBUSTION ENGINE 75 Inventors: Hiroshi Onuki; Takashi Ito, both of Hitachinaka, Katsuaki Fukatsu, Naka-gun; Ryoichi Kobayashi,

More information

(12) United States Patent (10) Patent No.: US 9,564,782 B2. Kimura et al. (45) Date of Patent: Feb. 7, 2017

(12) United States Patent (10) Patent No.: US 9,564,782 B2. Kimura et al. (45) Date of Patent: Feb. 7, 2017 USO09564782B2 (12) United States Patent () Patent No.: Kimura et al. (45) Date of Patent: Feb. 7, 2017 (54) WINDING, WINDING METHOD, AND (56) References Cited AUTOMOTIVE ROTATING ELECTRIC MACHINE U.S.

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Bettinger (54). SPECTACLE-MOUNTED OCULAR DISPLAY APPARATUS 76 Inventor: David S. Bettinger, 8030 Coventry, Grosse Ile, Mich. 48138 21 Appl. No.: 69,854 (22 Filed: Jul. 6, 1987

More information

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1 (19) United States US 20100176538A1 (12) Patent Application Publication (10) Pub. No.: US 2010/0176538A1 NOZaWa et al. (43) Pub. Date: Jul. 15, 2010 (54) SYSTEMS AND METHODS OF INSTALLING HOOK FASTENERELEMENTS

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1 US 20120312936A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0312936A1 HUANG (43) Pub. Date: Dec. 13, 2012 (54) HOLDING DEVICE OF TABLET ELECTRONIC DEVICE (52) U.S. Cl....

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1. Penn et al. (43) Pub. Date: Aug. 7, 2003

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1. Penn et al. (43) Pub. Date: Aug. 7, 2003 US 2003O147052A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0147052 A1 Penn et al. (43) Pub. Date: (54) HIGH CONTRAST PROJECTION Related U.S. Application Data (60) Provisional

More information

Fig. 3. BY r: 42.e4.14ce. Oct. 13, 1970 H. HEITMULLER E.T A. 3,533,197 PLIERS, PARTICULARLY NIPPERS INVENTOR.

Fig. 3. BY r: 42.e4.14ce. Oct. 13, 1970 H. HEITMULLER E.T A. 3,533,197 PLIERS, PARTICULARLY NIPPERS INVENTOR. Oct. 13, 1970 H. HEITMULLER E.T A. 3,533,197 METHOD OF SHARPENING THE CUTTING EDGES OF SIDE CUTTING Filed March 27, 1967 PLIERS, PARTICULARLY NIPPERS 4. Sheets-Sheet Fig. 3 4 BY r: INVENTOR. 42.e4.14ce

More information

United States Patent (19) Mori

United States Patent (19) Mori United States Patent (19) Mori 11 Patent Number: 45) Date of Patent: Dec. 3, 1991 54 PAPER-CUTTING MACHINE AND METHOD OF CUTTNG PAPER 75) Inventor: 73 Assignee: Chuzo Mori, Katsushika, Japan Carl Manufacturing

More information

United States Patent (19) Tohata et al.

United States Patent (19) Tohata et al. United States Patent (19) Tohata et al. 11 Patent Number: 45 Date of Patent: Jan. 13, 1987 54 REFLECTION TYPE OVERHEAD PROJECTOR 75) Inventors: 73. Assignee: Susumu Tohata; Kunio Numata, both of Tokyo,

More information

United States Patent (19) Rannou et al.

United States Patent (19) Rannou et al. United States Patent (19) Rannou et al. (54) (75) 73 22) (21) 30) 52 (51) (58) (56) WIDE-BAND OMNIDIRECTIONAL ANTENNA Inventors: Jean Rannou; William Luther, both of Paris, France Assignee: Thomson-CSF,

More information

IIH. United States Patent (19) Chen. (11) Patent Number: 5,318,090 (45. Date of Patent: Jun. 7, 1994

IIH. United States Patent (19) Chen. (11) Patent Number: 5,318,090 (45. Date of Patent: Jun. 7, 1994 United States Patent (19) Chen 54) ROLLER ASSEMBLY FORVENETIAN BLIND 76 Inventor: Cheng-Hsiung Chen, No. 228, Sec. 2, Chung-Te Rd., Taichung City, Taiwan 21 Appl. No.: 60,278 22 Filed: May 11, 1993 51)

More information

United States Patent (19) Minowa

United States Patent (19) Minowa United States Patent (19) Minowa 54 ANALOG DISPLAY ELECTRONIC STOPWATCH (75) Inventor: 73 Assignee: Yoshiki Minowa, Suwa, Japan Kubushiki Kaisha Suwa Seikosha, Tokyo, Japan 21) Appl. No.: 30,963 22 Filed:

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 US 2003.01225O2A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0122502 A1 Clauberg et al. (43) Pub. Date: Jul. 3, 2003 (54) LIGHT EMITTING DIODE DRIVER (52) U.S. Cl....

More information

73 Assignee: Dialight Corporation, Manasquan, N.J. 21 Appl. No.: 09/144, Filed: Aug. 31, 1998 (51) Int. Cl... G05F /158; 315/307

73 Assignee: Dialight Corporation, Manasquan, N.J. 21 Appl. No.: 09/144, Filed: Aug. 31, 1998 (51) Int. Cl... G05F /158; 315/307 United States Patent (19) Grossman et al. 54) LED DRIVING CIRCUITRY WITH VARIABLE LOAD TO CONTROL OUTPUT LIGHT INTENSITY OF AN LED 75 Inventors: Hyman Grossman, Lambertville; John Adinolfi, Milltown, both

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Yoshida et al. 54 SHAFT WITH GROOVES FOR DYNAMIC PRESSURE GENERATION AND MOTOR EMPLOYNG THE SAME 75 Inventors: Fumio Yoshida, Toride; Mikio Nakasugi, Chofu, both of Japan 73)

More information

United States Patent (19) 11 Patent Number: 5,076,665 Petersen (45) Date of Patent: Dec. 31, 1991

United States Patent (19) 11 Patent Number: 5,076,665 Petersen (45) Date of Patent: Dec. 31, 1991 United States Patent (19) 11 Patent Number: Petersen (45) Date of Patent: Dec. 31, 1991 (54 COMPUTER SCREEN MONITOR OPTIC 4,253,737 3/1981 Thomsen et al.... 350/276 R RELEF DEVICE 4,529,268 7/1985 Brown...

More information

(12) United States Patent

(12) United States Patent US007098655B2 (12) United States Patent Yamada et al. (54) EDDY-CURRENT SENSOR WITH PLANAR MEANDER EXCITING COIL AND SPIN VALVE MAGNETORESISTIVE ELEMENT FOR NONDESTRUCTIVE TESTING (75) Inventors: Sotoshi

More information

United States Patent (19) Lee

United States Patent (19) Lee United States Patent (19) Lee (54) POWER SUPPLY CIRCUIT FOR DRIVING MAGNETRON 75 Inventor: Kyong-Keun Lee, Suwon, Rep. of Korea 73) Assignee: Samsung Electronics Co., Ltd., Suweon City, Rep. of Korea (21)

More information

(12) United States Patent (10) Patent No.: US 6,346,966 B1

(12) United States Patent (10) Patent No.: US 6,346,966 B1 USOO6346966B1 (12) United States Patent (10) Patent No.: US 6,346,966 B1 TOh (45) Date of Patent: *Feb. 12, 2002 (54) IMAGE ACQUISITION SYSTEM FOR 4,900.934. A * 2/1990 Peeters et al.... 250/461.2 MACHINE

More information

Dec. 17, WOLFF 2,412,703 RADIO LOCATOR DEVICE. Fillied Aug. 29, 194l 2 Sheets-Sheet l. rena

Dec. 17, WOLFF 2,412,703 RADIO LOCATOR DEVICE. Fillied Aug. 29, 194l 2 Sheets-Sheet l. rena Dec. 17, 1946.... WOLFF RADIO LOCATOR DEVICE Fillied Aug. 29, 194l 2 Sheets-Sheet l rena f A Dec. 17, 1946.... WOLFF RADIO LOCATOR DEVICE Filed Aug. 29, 1941 2 Sheets-Sheet 2 Patented Dec. 7, 1946 UNITED

More information

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1 (19) United States US 2016.0325383A1 (12) Patent Application Publication (10) Pub. No.: US 2016/0325383 A1 Xu et al. (43) Pub. Date: (54) ELECTRON BEAM MELTING AND LASER B23K I5/00 (2006.01) MILLING COMPOSITE

More information