What the spider s eyes don t tell the spider s brain

Size: px
Start display at page:

Download "What the spider s eyes don t tell the spider s brain"

Transcription

1 What the spider s eyes don t tell the spider s brain

2 Depth Perception from Image Defocus in a Jumping Spider (*) Depth Perception from Image Defocus in a Jumping Spider Nagata, Koyanagi, Tsukamoto, Saeki, Isono, Shichida, Tolunaga, Kinoshita, Arikawa, and Terakita.

3 How to judge distance to prey? World is 3-D images are 2-D Can t determine distance monocularly Scale factor ambiguity

4 How to judge distance to prey? World is 3-D images are 2-D Can t determine distance monocularly Scale factor ambiguity Many depth cues Ratio image size to object size Ratio image motion to object motion...

5 How to judge distance to prey? World is 3-D images are 2-D Can t determine distance monocularly Scale factor ambiguity Many depth cues Ratio image size to object size Ratio image motion to object motion... Lens accomodation

6 How to judge distance to prey? World is 3-D images are 2-D Can t determine distance monocularly Scale factor ambiguity Many depth cues Ratio image size to object size Ratio image motion to object motion... Lens accomodation Binocular stereo

7 How to judge distance to prey? World is 3-D images are 2-D Can t determine distance monocularly Scale factor ambiguity Many depth cues Ratio image size to object size Ratio image motion to object motion... Lens accomodation Binocular stereo Defocus blur

8 Accomodation? (1/f = 1/a + 1/b)

9 Accomodation? (1/f = 1/a + 1/b)

10 Accomodation? (1/f = 1/a + 1/b)

11 Binocular stereo? (*) Jumping Spider Vision, David Hill, Wikipedia

12 Defocus blurring?

13 Defocus blurring? R PSF

14 Defocus blurring? 2J 1 (Rρ)/(Rρ) R PSF / R MTF

15 Multi-layer retina (*) Depth Perception from Image Defocus in a Jumping Spider Nagata, Koyanagi, Tsukamoto, Saeki, Isono, Shichida, Tolunaga, Kinoshita, Arikawa, and Terakita.

16 Depth from two image planes (*) Depth Perception from Image Defocus in a Jumping Spider Nagata, Koyanagi, Tsukamoto, Saeki, Isono, Shichida, Tolunaga, Kinoshita, Arikawa, and Terakita.

17 What s wrong with that model?

18 What is wrong with that model? Assumes image on back layer (L1) is always in focus But this would require accomodation; then there is no need for anything else!

19 What is wrong with that model? Assumes image on back layer (L1) is always in focus But this would require accomodation; then there is no need for anything else! Assumes blur on front layer (L2) depends on distance If back is in focus then the blur in front is fixed; blur in front merely reflects inter image layer spacing!

20 What is wrong with that model? Assumes image on back layer (L1) is always in focus But this would require accomodation; then there is no need for anything else! Assumes blur on front layer (L2) depends on distance If back is in focus then the blur in front is fixed; blur in front merely reflects inter image layer spacing! Assumes amount of blur can be ascertained from image Problem is ill posed; for example: Blurry image of sharp texture same as sharp image of blurry texture!

21 Some possible approaches Transport of Intensity Equation (TIE) ( xy I(x,y,z) ) xyφ(x,y,z) = I(x,y,z) k z

22 Some possible approaches Transport of Intensity Equation (TIE) ( xy I(x,y,z) ) xyφ(x,y,z) = I(x,y,z) k z Light-field propagation

23 Some possible approaches Transport of Intensity Equation (TIE) ( xy I(x,y,z) ) xyφ(x,y,z) = I(x,y,z) k z Light-field propagation Deconvolution...

24 System model b1(x,y) E1(x,y) E(x,y) b2(x,y) E2(x,y)

25 Solution based on this b1(x,y) E1(x,y) b2(x,y) E(x,y) b2(x,y) E2(x,y) b1(x,y)

26 Solution based on this b1(x,y) E1(x,y) b2(x,y) E(x,y) b1 b2 = b2 b1 b2(x,y) E2(x,y) b1(x,y)

27 Doing it in parallel E(x,y) b(z) E1(x,y) b(z+d) E2(x,y) b(1+d) b(1) mag b(2+d) b(2) mag b(3+d) b(3) arg min mag b(4+d) b(4) mag

28 0.00 mm

29 0.15 mm

30 0.30 mm

31 0.45 mm

32 0.60 mm

33 0.75 mm

34 0.90 mm

35 1.05 mm

36 1.20 mm

37 Recovery of in-focus distance

38 Recovering the in focus image Ill-posed problem from single defocused image: P 1 (u) = P(u)M 1 (u) can t recover frequency components where M 1 (u) = 0.

39 Recovering the in focus image Ill-posed problem from single defocused image: P 1 (u) = P(u)M 1 (u) can t recover frequency components where M 1 (u) = 0. But with two images defocused to different degrees: P 2 (u) = P(u)M 2 (u) P 1 (u)m1 (u) + P 2(u)M2 (u) = P(u)( M 1 (u) 2 + M 2 (u) 2) works as long as, for any u, either M 1 (u) 0 or M 2 (u) 0. (actually, use Wiener filtering)

40 What the spider s eyes don t tell the spider s brain

41 Pillbox convolved with pillbox is not a pillbox

42 Calibration of lens motion f (mm) steps

43 Lens motion from estimates of zeros in DFT mm frame

Project 4 Results http://www.cs.brown.edu/courses/cs129/results/proj4/jcmace/ http://www.cs.brown.edu/courses/cs129/results/proj4/damoreno/ http://www.cs.brown.edu/courses/csci1290/results/proj4/huag/

More information

Coded Aperture for Projector and Camera for Robust 3D measurement

Coded Aperture for Projector and Camera for Robust 3D measurement Coded Aperture for Projector and Camera for Robust 3D measurement Yuuki Horita Yuuki Matugano Hiroki Morinaga Hiroshi Kawasaki Satoshi Ono Makoto Kimura Yasuo Takane Abstract General active 3D measurement

More information

Computational Approaches to Cameras

Computational Approaches to Cameras Computational Approaches to Cameras 11/16/17 Magritte, The False Mirror (1935) Computational Photography Derek Hoiem, University of Illinois Announcements Final project proposal due Monday (see links on

More information

On the Recovery of Depth from a Single Defocused Image

On the Recovery of Depth from a Single Defocused Image On the Recovery of Depth from a Single Defocused Image Shaojie Zhuo and Terence Sim School of Computing National University of Singapore Singapore,747 Abstract. In this paper we address the challenging

More information

Deconvolution , , Computational Photography Fall 2017, Lecture 17

Deconvolution , , Computational Photography Fall 2017, Lecture 17 Deconvolution http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 17 Course announcements Homework 4 is out. - Due October 26 th. - There was another

More information

Defocusing and Deblurring by Using with Fourier Transfer

Defocusing and Deblurring by Using with Fourier Transfer Defocusing and Deblurring by Using with Fourier Transfer AKIRA YANAGAWA and TATSUYA KATO 1. Introduction Image data may be obtained through an image system, such as a video camera or a digital still camera.

More information

Today. Defocus. Deconvolution / inverse filters. MIT 2.71/2.710 Optics 12/12/05 wk15-a-1

Today. Defocus. Deconvolution / inverse filters. MIT 2.71/2.710 Optics 12/12/05 wk15-a-1 Today Defocus Deconvolution / inverse filters MIT.7/.70 Optics //05 wk5-a- MIT.7/.70 Optics //05 wk5-a- Defocus MIT.7/.70 Optics //05 wk5-a-3 0 th Century Fox Focus in classical imaging in-focus defocus

More information

Toward Non-stationary Blind Image Deblurring: Models and Techniques

Toward Non-stationary Blind Image Deblurring: Models and Techniques Toward Non-stationary Blind Image Deblurring: Models and Techniques Ji, Hui Department of Mathematics National University of Singapore NUS, 30-May-2017 Outline of the talk Non-stationary Image blurring

More information

Single Digital Image Multi-focusing Using Point to Point Blur Model Based Depth Estimation

Single Digital Image Multi-focusing Using Point to Point Blur Model Based Depth Estimation Single Digital mage Multi-focusing Using Point to Point Blur Model Based Depth Estimation Praveen S S, Aparna P R Abstract The proposed paper focuses on Multi-focusing, a technique that restores all-focused

More information

Recent Advances in Image Deblurring. Seungyong Lee (Collaboration w/ Sunghyun Cho)

Recent Advances in Image Deblurring. Seungyong Lee (Collaboration w/ Sunghyun Cho) Recent Advances in Image Deblurring Seungyong Lee (Collaboration w/ Sunghyun Cho) Disclaimer Many images and figures in this course note have been copied from the papers and presentation materials of previous

More information

Near-Invariant Blur for Depth and 2D Motion via Time-Varying Light Field Analysis

Near-Invariant Blur for Depth and 2D Motion via Time-Varying Light Field Analysis Near-Invariant Blur for Depth and 2D Motion via Time-Varying Light Field Analysis Yosuke Bando 1,2 Henry Holtzman 2 Ramesh Raskar 2 1 Toshiba Corporation 2 MIT Media Lab Defocus & Motion Blur PSF Depth

More information

Cameras have finite depth of field or depth of focus

Cameras have finite depth of field or depth of focus Robert Allison, Laurie Wilcox and James Elder Centre for Vision Research York University Cameras have finite depth of field or depth of focus Quantified by depth that elicits a given amount of blur Typically

More information

Coded photography , , Computational Photography Fall 2018, Lecture 14

Coded photography , , Computational Photography Fall 2018, Lecture 14 Coded photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 14 Overview of today s lecture The coded photography paradigm. Dealing with

More information

Coded photography , , Computational Photography Fall 2017, Lecture 18

Coded photography , , Computational Photography Fall 2017, Lecture 18 Coded photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 18 Course announcements Homework 5 delayed for Tuesday. - You will need cameras

More information

DEFOCUS BLUR PARAMETER ESTIMATION TECHNIQUE

DEFOCUS BLUR PARAMETER ESTIMATION TECHNIQUE International Journal of Electronics and Communication Engineering and Technology (IJECET) Volume 7, Issue 4, July-August 2016, pp. 85 90, Article ID: IJECET_07_04_010 Available online at http://www.iaeme.com/ijecet/issues.asp?jtype=ijecet&vtype=7&itype=4

More information

Deconvolution , , Computational Photography Fall 2018, Lecture 12

Deconvolution , , Computational Photography Fall 2018, Lecture 12 Deconvolution http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 12 Course announcements Homework 3 is out. - Due October 12 th. - Any questions?

More information

Focused Image Recovery from Two Defocused

Focused Image Recovery from Two Defocused Focused Image Recovery from Two Defocused Images Recorded With Different Camera Settings Murali Subbarao Tse-Chung Wei Gopal Surya Department of Electrical Engineering State University of New York Stony

More information

The Human Visual System!

The Human Visual System! an engineering-focused introduction to! The Human Visual System! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 2! Gordon Wetzstein! Stanford University! nautilus eye,

More information

A Framework for Analysis of Computational Imaging Systems

A Framework for Analysis of Computational Imaging Systems A Framework for Analysis of Computational Imaging Systems Kaushik Mitra, Oliver Cossairt, Ashok Veeraghavan Rice University Northwestern University Computational imaging CI systems that adds new functionality

More information

Fast Blur Removal for Wearable QR Code Scanners (supplemental material)

Fast Blur Removal for Wearable QR Code Scanners (supplemental material) Fast Blur Removal for Wearable QR Code Scanners (supplemental material) Gábor Sörös, Stephan Semmler, Luc Humair, Otmar Hilliges Department of Computer Science ETH Zurich {gabor.soros otmar.hilliges}@inf.ethz.ch,

More information

Coded Aperture Pairs for Depth from Defocus

Coded Aperture Pairs for Depth from Defocus Coded Aperture Pairs for Depth from Defocus Changyin Zhou Columbia University New York City, U.S. changyin@cs.columbia.edu Stephen Lin Microsoft Research Asia Beijing, P.R. China stevelin@microsoft.com

More information

A Poorly Focused Talk

A Poorly Focused Talk A Poorly Focused Talk Prof. Hank Dietz CCC, January 16, 2014 University of Kentucky Electrical & Computer Engineering My Best-Known Toys Some Of My Other Toys Computational Photography Cameras as computing

More information

Total Variation Blind Deconvolution: The Devil is in the Details*

Total Variation Blind Deconvolution: The Devil is in the Details* Total Variation Blind Deconvolution: The Devil is in the Details* Paolo Favaro Computer Vision Group University of Bern *Joint work with Daniele Perrone Blur in pictures When we take a picture we expose

More information

Spline wavelet based blind image recovery

Spline wavelet based blind image recovery Spline wavelet based blind image recovery Ji, Hui ( 纪辉 ) National University of Singapore Workshop on Spline Approximation and its Applications on Carl de Boor's 80 th Birthday, NUS, 06-Nov-2017 Spline

More information

Enhanced Method for Image Restoration using Spatial Domain

Enhanced Method for Image Restoration using Spatial Domain Enhanced Method for Image Restoration using Spatial Domain Gurpal Kaur Department of Electronics and Communication Engineering SVIET, Ramnagar,Banur, Punjab, India Ashish Department of Electronics and

More information

Standard Operating Procedure for Flat Port Camera Calibration

Standard Operating Procedure for Flat Port Camera Calibration Standard Operating Procedure for Flat Port Camera Calibration Kevin Köser and Anne Jordt Revision 0.1 - Draft February 27, 2015 1 Goal This document specifies the practical procedure to obtain good images

More information

Squid. Common cuttlefish (Sepia officinalis)

Squid. Common cuttlefish (Sepia officinalis) 97 Squid Common cuttlefish (Sepia officinalis) 98 Unbeatable As mentioned on page 39, the eyes of mantis shrimp are incredibly well developed far superior to those of other crabs, and far more complex

More information

Computational Cameras. Rahul Raguram COMP

Computational Cameras. Rahul Raguram COMP Computational Cameras Rahul Raguram COMP 790-090 What is a computational camera? Camera optics Camera sensor 3D scene Traditional camera Final image Modified optics Camera sensor Image Compute 3D scene

More information

Restoration of Motion Blurred Document Images

Restoration of Motion Blurred Document Images Restoration of Motion Blurred Document Images Bolan Su 12, Shijian Lu 2 and Tan Chew Lim 1 1 Department of Computer Science,School of Computing,National University of Singapore Computing 1, 13 Computing

More information

Blind Single-Image Super Resolution Reconstruction with Defocus Blur

Blind Single-Image Super Resolution Reconstruction with Defocus Blur Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Blind Single-Image Super Resolution Reconstruction with Defocus Blur Fengqing Qin, Lihong Zhu, Lilan Cao, Wanan Yang Institute

More information

SHAPE FROM FOCUS. Keywords defocus, focus operator, focus measure function, depth estimation, roughness and tecture, automatic shapefromfocus.

SHAPE FROM FOCUS. Keywords defocus, focus operator, focus measure function, depth estimation, roughness and tecture, automatic shapefromfocus. SHAPE FROM FOCUS k.kanthamma*, Dr S.A.K.Jilani** *(Department of electronics and communication engineering, srinivasa ramanujan institute of technology, Anantapur,Andrapradesh,INDIA ** (Department of electronics

More information

Position-Dependent Defocus Processing for Acoustic Holography Images

Position-Dependent Defocus Processing for Acoustic Holography Images Position-Dependent Defocus Processing for Acoustic Holography Images Ruming Yin, 1 Patrick J. Flynn, 2 Shira L. Broschat 1 1 School of Electrical Engineering & Computer Science, Washington State University,

More information

2014. Published by The Company of Biologists Ltd The Journal of Experimental Biology (2014) 217, doi: /jeb

2014. Published by The Company of Biologists Ltd The Journal of Experimental Biology (2014) 217, doi: /jeb 214. Published by The Company of Biologists Ltd (214) 217, 29-216 doi:.1242/jeb.98624 RESEARCH ARTICLE Multitasking in an eye: the unusual organization of the Thermonectus marmoratus principal larval eyes

More information

Vision: Distance & Size Perception

Vision: Distance & Size Perception Vision: Distance & Size Perception Useful terms: Egocentric distance: distance from you to an object. Relative distance: distance between two objects in the environment. 3-d structure: Objects appear three-dimensional,

More information

Einführung in die Erweiterte Realität. 5. Head-Mounted Displays

Einführung in die Erweiterte Realität. 5. Head-Mounted Displays Einführung in die Erweiterte Realität 5. Head-Mounted Displays Prof. Gudrun Klinker, Ph.D. Institut für Informatik,Technische Universität München klinker@in.tum.de Nov 30, 2004 Agenda 1. Technological

More information

Transfer Efficiency and Depth Invariance in Computational Cameras

Transfer Efficiency and Depth Invariance in Computational Cameras Transfer Efficiency and Depth Invariance in Computational Cameras Jongmin Baek Stanford University IEEE International Conference on Computational Photography 2010 Jongmin Baek (Stanford University) Transfer

More information

Optimal Camera Parameters for Depth from Defocus

Optimal Camera Parameters for Depth from Defocus Optimal Camera Parameters for Depth from Defocus Fahim Mannan and Michael S. Langer School of Computer Science, McGill University Montreal, Quebec H3A E9, Canada. {fmannan, langer}@cim.mcgill.ca Abstract

More information

International Journal of Advancedd Research in Biology, Ecology, Science and Technology (IJARBEST)

International Journal of Advancedd Research in Biology, Ecology, Science and Technology (IJARBEST) Gaussian Blur Removal in Digital Images A.Elakkiya 1, S.V.Ramyaa 2 PG Scholars, M.E. VLSI Design, SSN College of Engineering, Rajiv Gandhi Salai, Kalavakkam 1,2 Abstract In many imaging systems, the observed

More information

Coded Computational Photography!

Coded Computational Photography! Coded Computational Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 9! Gordon Wetzstein! Stanford University! Coded Computational Photography - Overview!!

More information

Vision. Definition. Sensing of objects by the light reflected off the objects into our eyes

Vision. Definition. Sensing of objects by the light reflected off the objects into our eyes Vision Vision Definition Sensing of objects by the light reflected off the objects into our eyes Only occurs when there is the interaction of the eyes and the brain (Perception) What is light? Visible

More information

When Does Computational Imaging Improve Performance?

When Does Computational Imaging Improve Performance? When Does Computational Imaging Improve Performance? Oliver Cossairt Assistant Professor Northwestern University Collaborators: Mohit Gupta, Changyin Zhou, Daniel Miau, Shree Nayar (Columbia University)

More information

Chapter 4 PSY 100 Dr. Rick Grieve Western Kentucky University

Chapter 4 PSY 100 Dr. Rick Grieve Western Kentucky University Chapter 4 Sensation and Perception PSY 100 Dr. Rick Grieve Western Kentucky University Copyright 1999 by The McGraw-Hill Companies, Inc. Sensation and Perception Sensation The process of stimulating the

More information

Declaration. Michal Šorel March 2007

Declaration. Michal Šorel March 2007 Charles University in Prague Faculty of Mathematics and Physics Multichannel Blind Restoration of Images with Space-Variant Degradations Ph.D. Thesis Michal Šorel March 2007 Department of Software Engineering

More information

SUPER RESOLUTION INTRODUCTION

SUPER RESOLUTION INTRODUCTION SUPER RESOLUTION Jnanavardhini - Online MultiDisciplinary Research Journal Ms. Amalorpavam.G Assistant Professor, Department of Computer Sciences, Sambhram Academy of Management. Studies, Bangalore Abstract:-

More information

Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing

Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing Ashok Veeraraghavan, Ramesh Raskar, Ankit Mohan & Jack Tumblin Amit Agrawal, Mitsubishi Electric Research

More information

Coded Aperture Imaging

Coded Aperture Imaging Coded Aperture Imaging Manuel Martinello School of Engineering and Physical Sciences Heriot-Watt University A thesis submitted for the degree of PhilosophiæDoctor (PhD) May 2012 1. Reviewer: Prof. Richard

More information

Defocus Map Estimation from a Single Image

Defocus Map Estimation from a Single Image Defocus Map Estimation from a Single Image Shaojie Zhuo Terence Sim School of Computing, National University of Singapore, Computing 1, 13 Computing Drive, Singapore 117417, SINGAPOUR Abstract In this

More information

Unit IV: Sensation & Perception. Module 19 Vision Organization & Interpretation

Unit IV: Sensation & Perception. Module 19 Vision Organization & Interpretation Unit IV: Sensation & Perception Module 19 Vision Organization & Interpretation Visual Organization 19-1 Perceptual Organization 19-1 How do we form meaningful perceptions from sensory information? A group

More information

Chapter 5: Color vision remnants Chapter 6: Depth perception

Chapter 5: Color vision remnants Chapter 6: Depth perception Chapter 5: Color vision remnants Chapter 6: Depth perception Lec 12 Jonathan Pillow, Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017 1 Other types of color-blindness: Monochromat:

More information

Regan Mandryk. Depth and Space Perception

Regan Mandryk. Depth and Space Perception Depth and Space Perception Regan Mandryk Disclaimer Many of these slides include animated gifs or movies that may not be viewed on your computer system. They should run on the latest downloads of Quick

More information

Seeing and Perception. External features of the Eye

Seeing and Perception. External features of the Eye Seeing and Perception Deceives the Eye This is Madness D R Campbell School of Computing University of Paisley 1 External features of the Eye The circular opening of the iris muscles forms the pupil, which

More information

Restoration of Blurred Image Using Joint Statistical Modeling in a Space-Transform Domain

Restoration of Blurred Image Using Joint Statistical Modeling in a Space-Transform Domain IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 3, Ver. I (May.-Jun. 2017), PP 62-66 www.iosrjournals.org Restoration of Blurred

More information

Constancy PSY 310 Greg Francis. Lecture 19. Brightness illusions

Constancy PSY 310 Greg Francis. Lecture 19. Brightness illusions Constancy PSY 310 Greg Francis Lecture 19 It s all an illusion! Brightness illusions Most people think of visual perception as a measurement of light As it reflects off of objects 1 Object identification

More information

Visual Effects of Light. Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana

Visual Effects of Light. Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Visual Effects of Light Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Light is life If sun would turn off the life on earth would

More information

Recent advances in deblurring and image stabilization. Michal Šorel Academy of Sciences of the Czech Republic

Recent advances in deblurring and image stabilization. Michal Šorel Academy of Sciences of the Czech Republic Recent advances in deblurring and image stabilization Michal Šorel Academy of Sciences of the Czech Republic Camera shake stabilization Alternative to OIS (optical image stabilization) systems Should work

More information

Explanation of Aberration and Wavefront

Explanation of Aberration and Wavefront Explanation of Aberration and Wavefront 1. What Causes Blur? 2. What is? 4. What is wavefront? 5. Hartmann-Shack Aberrometer 6. Adoption of wavefront technology David Oh 1. What Causes Blur? 2. What is?

More information

Optics of Wavefront. Austin Roorda, Ph.D. University of Houston College of Optometry

Optics of Wavefront. Austin Roorda, Ph.D. University of Houston College of Optometry Optics of Wavefront Austin Roorda, Ph.D. University of Houston College of Optometry Geometrical Optics Relationships between pupil size, refractive error and blur Optics of the eye: Depth of Focus 2 mm

More information

A moment-preserving approach for depth from defocus

A moment-preserving approach for depth from defocus A moment-preserving approach for depth from defocus D. M. Tsai and C. T. Lin Machine Vision Lab. Department of Industrial Engineering and Management Yuan-Ze University, Chung-Li, Taiwan, R.O.C. E-mail:

More information

Method for out-of-focus camera calibration

Method for out-of-focus camera calibration 2346 Vol. 55, No. 9 / March 20 2016 / Applied Optics Research Article Method for out-of-focus camera calibration TYLER BELL, 1 JING XU, 2 AND SONG ZHANG 1, * 1 School of Mechanical Engineering, Purdue

More information

Visual Effects of. Light. Warmth. Light is life. Sun as a deity (god) If sun would turn off the life on earth would extinct

Visual Effects of. Light. Warmth. Light is life. Sun as a deity (god) If sun would turn off the life on earth would extinct Visual Effects of Light Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Light is life If sun would turn off the life on earth would

More information

Depth from Focusing and Defocusing. Carnegie Mellon University. Pittsburgh, PA result is 1.3% RMS error in terms of distance

Depth from Focusing and Defocusing. Carnegie Mellon University. Pittsburgh, PA result is 1.3% RMS error in terms of distance Depth from Focusing and Defocusing Yalin Xiong Steven A. Shafer The Robotics Institute Carnegie Mellon University Pittsburgh, PA 53 Abstract This paper studies the problem of obtaining depth information

More information

The Generation of Depth Maps. via Depth-from-Defocus. William Edward Crofts

The Generation of Depth Maps. via Depth-from-Defocus. William Edward Crofts The Generation of Depth Maps via Depth-from-Defocus by William Edward Crofts A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy School of Engineering University

More information

Vision Shaping Treatment

Vision Shaping Treatment JOHN WARREN, OD Vision Shaping Treatment WWW.WARRENEYECARECENTER.COM What Is VST? Using customized vision retainer lenses, VST reshapes the front surface of the eye, reducing nearsightedness and astigmatism

More information

Point Spread Function Engineering for Scene Recovery. Changyin Zhou

Point Spread Function Engineering for Scene Recovery. Changyin Zhou Point Spread Function Engineering for Scene Recovery Changyin Zhou Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences

More information

multiframe visual-inertial blur estimation and removal for unmodified smartphones

multiframe visual-inertial blur estimation and removal for unmodified smartphones multiframe visual-inertial blur estimation and removal for unmodified smartphones, Severin Münger, Carlo Beltrame, Luc Humair WSCG 2015, Plzen, Czech Republic images taken by non-professional photographers

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Sensors and Image Formation Imaging sensors and models of image formation Coordinate systems Digital

More information

Imaging Particle Analysis: The Importance of Image Quality

Imaging Particle Analysis: The Importance of Image Quality Imaging Particle Analysis: The Importance of Image Quality Lew Brown Technical Director Fluid Imaging Technologies, Inc. Abstract: Imaging particle analysis systems can derive much more information about

More information

Princeton University COS429 Computer Vision Problem Set 1: Building a Camera

Princeton University COS429 Computer Vision Problem Set 1: Building a Camera Princeton University COS429 Computer Vision Problem Set 1: Building a Camera What to submit: You need to submit two files: one PDF file for the report that contains your name, Princeton NetID, all the

More information

MIT CSAIL Advances in Computer Vision Fall Problem Set 6: Anaglyph Camera Obscura

MIT CSAIL Advances in Computer Vision Fall Problem Set 6: Anaglyph Camera Obscura MIT CSAIL 6.869 Advances in Computer Vision Fall 2013 Problem Set 6: Anaglyph Camera Obscura Posted: Tuesday, October 8, 2013 Due: Thursday, October 17, 2013 You should submit a hard copy of your work

More information

Large-field imaging. Frédéric Gueth, IRAM Grenoble. 7th IRAM Millimeter Interferometry School 4 8 October 2010

Large-field imaging. Frédéric Gueth, IRAM Grenoble. 7th IRAM Millimeter Interferometry School 4 8 October 2010 Large-field imaging Frédéric Gueth, IRAM Grenoble 7th IRAM Millimeter Interferometry School 4 8 October 2010 Large-field imaging The problems The field of view is limited by the antenna primary beam width

More information

6.869 Advances in Computer Vision Spring 2010, A. Torralba

6.869 Advances in Computer Vision Spring 2010, A. Torralba 6.869 Advances in Computer Vision Spring 2010, A. Torralba Due date: Wednesday, Feb 17, 2010 Problem set 1 You need to submit a report with brief descriptions of what you did. The most important part is

More information

Extended depth of field for visual measurement systems with depth-invariant magnification

Extended depth of field for visual measurement systems with depth-invariant magnification Extended depth of field for visual measurement systems with depth-invariant magnification Yanyu Zhao a and Yufu Qu* a,b a School of Instrument Science and Opto-Electronic Engineering, Beijing University

More information

Analysis on the Factors Causing the Real-Time Image Blurry and Development of Methods for the Image Restoration

Analysis on the Factors Causing the Real-Time Image Blurry and Development of Methods for the Image Restoration Analysis on the Factors Causing the Real-Time Image Blurry and Development of Methods for the Image Restoration Jianhua Zhang, Ronghua Ji, Kaiqun u, Xue Yuan, ui Li, and Lijun Qi College of Engineering,

More information

Chapter 2 Fourier Integral Representation of an Optical Image

Chapter 2 Fourier Integral Representation of an Optical Image Chapter 2 Fourier Integral Representation of an Optical This chapter describes optical transfer functions. The concepts of linearity and shift invariance were introduced in Chapter 1. This chapter continues

More information

Computer Vision Slides curtesy of Professor Gregory Dudek

Computer Vision Slides curtesy of Professor Gregory Dudek Computer Vision Slides curtesy of Professor Gregory Dudek Ioannis Rekleitis Why vision? Passive (emits nothing). Discreet. Energy efficient. Intuitive. Powerful (works well for us, right?) Long and short

More information

Beau Lotto: Optical Illusions Show How We See

Beau Lotto: Optical Illusions Show How We See Beau Lotto: Optical Illusions Show How We See What is the background of the presenter, what do they do? How does this talk relate to psychology? What topics does it address? Be specific. Describe in great

More information

A Review over Different Blur Detection Techniques in Image Processing

A Review over Different Blur Detection Techniques in Image Processing A Review over Different Blur Detection Techniques in Image Processing 1 Anupama Sharma, 2 Devarshi Shukla 1 E.C.E student, 2 H.O.D, Department of electronics communication engineering, LR College of engineering

More information

CERTIFICATE IN DISPENSING OPTICS (CDO) Term-End Examination June, 2015

CERTIFICATE IN DISPENSING OPTICS (CDO) Term-End Examination June, 2015 No. of Printed Pages : 8 OAH-005 CERTIFICATE IN DISPENSING OPTICS (CDO) Term-End Examination June, 2015 OAH-005 : PROGRESSIVE LENS Time : 90 Minutes Maximum Marks : 30 Note : (i) (ii) (iii) (iv) There

More information

Why learn about photography in this course?

Why learn about photography in this course? Why learn about photography in this course? Geri's Game: Note the background is blurred. - photography: model of image formation - Many computer graphics methods use existing photographs e.g. texture &

More information

A Comprehensive Review on Image Restoration Techniques

A Comprehensive Review on Image Restoration Techniques International Journal of Research in Advent Technology, Vol., No.3, March 014 E-ISSN: 31-9637 A Comprehensive Review on Image Restoration Techniques Biswa Ranjan Mohapatra, Ansuman Mishra, Sarat Kumar

More information

lecture 24 image capture - photography: model of image formation - image blur - camera settings (f-number, shutter speed) - exposure - camera response

lecture 24 image capture - photography: model of image formation - image blur - camera settings (f-number, shutter speed) - exposure - camera response lecture 24 image capture - photography: model of image formation - image blur - camera settings (f-number, shutter speed) - exposure - camera response - application: high dynamic range imaging Why learn

More information

Resolution. [from the New Merriam-Webster Dictionary, 1989 ed.]:

Resolution. [from the New Merriam-Webster Dictionary, 1989 ed.]: Resolution [from the New Merriam-Webster Dictionary, 1989 ed.]: resolve v : 1 to break up into constituent parts: ANALYZE; 2 to find an answer to : SOLVE; 3 DETERMINE, DECIDE; 4 to make or pass a formal

More information

Multi Focus Structured Light for Recovering Scene Shape and Global Illumination

Multi Focus Structured Light for Recovering Scene Shape and Global Illumination Multi Focus Structured Light for Recovering Scene Shape and Global Illumination Supreeth Achar and Srinivasa G. Narasimhan Robotics Institute, Carnegie Mellon University Abstract. Illumination defocus

More information

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7)

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7) Lenses- Worksheet 1. Look at the lenses in front of you and try to distinguish the different types of lenses? Describe each type and record its characteristics. 2. Using the lenses in front of you, look

More information

Deblurring. Basics, Problem definition and variants

Deblurring. Basics, Problem definition and variants Deblurring Basics, Problem definition and variants Kinds of blur Hand-shake Defocus Credit: Kenneth Josephson Motion Credit: Kenneth Josephson Kinds of blur Spatially invariant vs. Spatially varying

More information

Supplementary Information

Supplementary Information Supplementary Information Simultaneous whole- animal 3D- imaging of neuronal activity using light field microscopy Robert Prevedel 1-3,10, Young- Gyu Yoon 4,5,10, Maximilian Hoffmann,1-3, Nikita Pak 5,6,

More information

Simple Figures and Perceptions in Depth (2): Stereo Capture

Simple Figures and Perceptions in Depth (2): Stereo Capture 59 JSL, Volume 2 (2006), 59 69 Simple Figures and Perceptions in Depth (2): Stereo Capture Kazuo OHYA Following previous paper the purpose of this paper is to collect and publish some useful simple stimuli

More information

Blind Deconvolution Algorithm based on Filter and PSF Estimation for Image Restoration

Blind Deconvolution Algorithm based on Filter and PSF Estimation for Image Restoration Blind Deconvolution Algorithm based on Filter and PSF Estimation for Image Restoration Mansi Badiyanee 1, Dr. A. C. Suthar 2 1 PG Student, Computer Engineering, L.J. Institute of Engineering and Technology,

More information

Multispectral imaging and image processing

Multispectral imaging and image processing Multispectral imaging and image processing Julie Klein Institute of Imaging and Computer Vision RWTH Aachen University, D-52056 Aachen, Germany ABSTRACT The color accuracy of conventional RGB cameras is

More information

DEPTH FUSED FROM INTENSITY RANGE AND BLUR ESTIMATION FOR LIGHT-FIELD CAMERAS. Yatong Xu, Xin Jin and Qionghai Dai

DEPTH FUSED FROM INTENSITY RANGE AND BLUR ESTIMATION FOR LIGHT-FIELD CAMERAS. Yatong Xu, Xin Jin and Qionghai Dai DEPTH FUSED FROM INTENSITY RANGE AND BLUR ESTIMATION FOR LIGHT-FIELD CAMERAS Yatong Xu, Xin Jin and Qionghai Dai Shenhen Key Lab of Broadband Network and Multimedia, Graduate School at Shenhen, Tsinghua

More information

Last time: Built a telescope (1 each!)

Last time: Built a telescope (1 each!) Last time: Built a telescope (1 each!) 1. Got parts: TWO lenses, cardboard tubes, two red caps, foam, little tube, white paper disk. 2. Assembled the parts into a useful optical instrument, a telescope!

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 2: Imaging 1 the Telescope Original Version: Prof. McLeod SUMMARY: In this lab you will become familiar with the use of one or more lenses to create images of distant

More information

IV: Visual Organization and Interpretation

IV: Visual Organization and Interpretation IV: Visual Organization and Interpretation Describe Gestalt psychologists understanding of perceptual organization, and explain how figure-ground and grouping principles contribute to our perceptions Explain

More information

Perceptual Organization

Perceptual Organization PSYCHOLOGY (8th Edition, in Modules) David Myers PowerPoint Slides Aneeq Ahmad Henderson State University Worth Publishers, 2007 1 Perceptual Organization Module 16 2 Perceptual Organization Perceptual

More information

Three dimensional moving pictures with a single imager and microfluidic lens

Three dimensional moving pictures with a single imager and microfluidic lens Purdue University Purdue e-pubs Open Access Dissertations Theses and Dissertations 8-2016 Three dimensional moving pictures with a single imager and microfluidic lens Chao Liu Purdue University Follow

More information

Image Deblurring with Blurred/Noisy Image Pairs

Image Deblurring with Blurred/Noisy Image Pairs Image Deblurring with Blurred/Noisy Image Pairs Huichao Ma, Buping Wang, Jiabei Zheng, Menglian Zhou April 26, 2013 1 Abstract Photos taken under dim lighting conditions by a handheld camera are usually

More information

Image Deblurring and Noise Reduction in Python TJHSST Senior Research Project Computer Systems Lab

Image Deblurring and Noise Reduction in Python TJHSST Senior Research Project Computer Systems Lab Image Deblurring and Noise Reduction in Python TJHSST Senior Research Project Computer Systems Lab 2009-2010 Vincent DeVito June 16, 2010 Abstract In the world of photography and machine vision, blurry

More information

Intro to Virtual Reality (Cont)

Intro to Virtual Reality (Cont) Lecture 37: Intro to Virtual Reality (Cont) Computer Graphics and Imaging UC Berkeley CS184/284A Overview of VR Topics Areas we will discuss over next few lectures VR Displays VR Rendering VR Imaging CS184/284A

More information

Intelligent Sensor systems

Intelligent Sensor systems Intelligent Sensor systems Kiril Alexiev alexiev@bas.bg 25A, Acad. G. Bonchev Str., Sofia 1113, Bulgaria Brazil 21 1 Intelligent surveillance system (our old definition) The system solves different tasks

More information

Modeling and Synthesis of Aperture Effects in Cameras

Modeling and Synthesis of Aperture Effects in Cameras Modeling and Synthesis of Aperture Effects in Cameras Douglas Lanman, Ramesh Raskar, and Gabriel Taubin Computational Aesthetics 2008 20 June, 2008 1 Outline Introduction and Related Work Modeling Vignetting

More information