Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing

Size: px
Start display at page:

Download "Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing"

Transcription

1 Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing Ashok Veeraraghavan, Ramesh Raskar, Ankit Mohan & Jack Tumblin Amit Agrawal, Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA Northwestern University, IL

2 Coded Exposure [Raskar, Agrawal, Tumblin SIGGRAPH 2006]

3 Coded Exposure (Flutter Shutter) Camera Raskar, Agrawal, Tumblin [Siggraph2006] Coding in Time: Shutter is opened and closed

4 Blurring == Convolution Sharp Photo Blurred Photo PSF == Sinc Function Traditional Camera: Shutter is OPEN: Box Filter ω

5 Coded Exposure Sharp Photo Blurred Photo PSF == Broadband Function Preserves High Spatial Frequencies Flutter Shutter: Shutter is OPEN and CLOSED

6 Traditional Coded Exposure Deblurred Image Deblurred Image Image of Static Object

7 How to handle focus blur?

8 Coded Exposure Coded Aperture Temporal 1-D broadband code: Motion Deblurring Spatial 2-D broadband mask: Focus Deblurring

9 In Focus Photo Point light source (LED)

10 Out of Focus Photo: Open Aperture

11 Lens and defocus Lens aperture Image of a point light source Lens Camera sensor Point spread function Focal plane Slide Credit: Levin et. al

12 Lens and defocus Lens aperture Image of a defocused point light source Object Lens Camera sensor Point spread function Focal plane Slide Credit: Levin et. al

13 Lens and defocus Lens aperture Image of a defocused point light source Object Lens Camera sensor Point spread function Focal plane Slide Credit: Levin et. al

14 Lens and defocus Lens aperture Image of a defocused point light source Object Lens Camera sensor Point spread function Focal plane Slide Credit: Levin et. al

15 Lens and defocus Lens aperture Image of a defocused point light source Object Lens Camera sensor Point spread function Focal plane Slide Credit: Levin et. al

16 Out of Focus Photo: Coded Aperture

17 Blurred Photos Open Aperture Coded Aperture, 7 * 7 Mask

18 Deblurred Photos Open Aperture Coded Aperture, 7 * 7 Mask

19 Captured Blurred Photo

20 Full Resolution Digital Refocusing

21 Blur Estimation & Segmentation Defocus blur dependent on depth Assumptions Layered Lambertian Scene Constant blur within each layer Deblur at different blur sizes k k = 1 Captured Blurred Photo k = 10

22 Define Cost Function k = 1 k = 1 k = 10 Deblurred Images k = 10 Cost Function Images Likelihood Error: (Blurred image - Sharp Image * PSF k ) 2 Gradient Error: Natural Image Statistics, Gradient Kurtosis

23 Blur Estimation & Segmentation == Labeling Graph cuts for labeling k = 1 K = 1 k = 10 Error Images K = 7

24 Captured Photo Reblur Deblur, k = 7 Fusion

25

26 Less is More Blocking Light == More Information Coded Exposure Coding in Time Coded Aperture Coding in Space

27 Flexible Depth of Field Photography Nagahara, Kuthirammal, Zhou, and Nayar ECCV 2008 Slide-deck credit: Nagahara et al.

28

29 Hardware Setup

30 Captured Image Aperture f/1.4, Exposure 0.36 sec

31 Deblurred EDOF image

32 Single traditional Image Aperture f/1.4, Exposure 0.36 sec

33 Single image with same EDOF Aperture f/8, Exposure 0.36 sec

34 Captured Image Aperture f/1.4, Exposure 0.36 sec

35 Deblurred EDOF image

36 Single traditional Image Aperture f/1.4, Exposure 0.36 sec

37 Single image with same EDOF Aperture f/8, Exposure 0.36 sec

38 Tunable focus ring

39 Discontinuous DOF

40 Discontinuous DOF Aperture f/11

41 Discontinuous DOF Aperture f/1.4

42 Tilted DOF

43 Image from normal camera Aperture f/1.4

44 Tilted DOF Aperture f/1.4

45 Non-planar DOF

46 Image from a normal camera Aperture f/1.4

47 Non-planar DOF Aperture f/1.4

48 Multi-Aperture Photography Paul Green MIT CSAIL Wenyang Sun MERL Wojciech Matusik MERL Frédo Durand MIT CSAIL

49 Motivation Depth of Field Control Portrait Landscape Large Aperture Shallow Depth of Field Small Aperture Large Field Depth of

50 Depth and Defocus Blur sensor lens plane of focus circle of confusion subject rays from point in focus converge to single pixel defocus blur depends on distance from plane of focus

51 Defocus Blur & Aperture sensor lens aperture plane of focus circle of confusion subject defocus blur depends on aperture size

52 Goals Aperture size is a critical parameter for photographers post-exposure depth of field control extrapolate shallow depth of field beyond physical aperture

53 Outline Multi-Aperture Camera New camera design Capture multiple aperture settings simultaneously Applications Depth of field control Depth of field extrapolation (Limited) refocusing

54 Related Work Computational Cameras Plenoptic Cameras Adelson and Wang 92 Ng et al 05 Georgiev et al 06 Split-Aperture Camera Aggarwal and Ahuja 04 Optical Splitting Trees McGuire et al 07 Coded Aperture Levin et al 07 Veeraraghavan et al 07 Wavefront Coding Dowski and Cathey 95 Depth from Defocus Pentland 87 Adelson and Wang 92 McGuire et al 07 Georgiev et al 06 Aggarwal and Ahuja 04 Levin et al 07 Veeraraghavan et al 07

55 Plenoptic Cameras Capture 4D LightField 2D Spatial (x,y) 2D Angular (u,v Aperture) Lens Aperture v Trade resolution for flexibility after capture Refocusing Depth of field control Improved Noise Characteristics Lenslet Array u Subject Sensor (x,y) Lens (u,v)

56 1D vs 2D Aperture Sampling Aperture v u 2D Grid Sampling

57 1D vs. 2D Aperture Sampling Aperture Aperture 45 Samples v 4 Samples u 2D Grid Sampling 1D Ring Sampling

58 Optical Design Principles 3D sampling 2D spatial 1D aperture size 1 image for each ring Aperture Sensor

59 Aperture Splitting Goal: Split aperture into 4 separate optical paths concentric tilted mirrors at aperture plane Tilted Mirrors

60 Aperture Splitting Mirrors Focusing lenses Sensor Incoming light Tilted Mirrors

61 Aperture Splitting Ideally at aperture plane, but not physically possible! Solution: Relay Optics to create virtual aperture plane Photographic Relay Lens system Aperture splitting optics X Aperture Plane New Aperture Plane

62 Optical Prototype mirrors lenses SLR Camera main lens relay optics tilted mirrors Mirror Close-up

63 Sample Data Raw data from our camera

64 Point Spread Function Occlusion inner ring 1 ring 2 outer combined Ideally would be rings Gaps are from occlusion

65 Outline Multi-Aperture Camera New camera design Capture multiple aperture settings simultaneously Applications Depth of field control Depth of field extrapolation Refocusing

66 DOF Navigation I0 I2 I I 1 3

67 DOF Extrapolation? Approximate defocus blur as convolution I n I K ( 0 n I 0 I 1 I 2 I 3 ) I E Depends on depth and aperture size What is at each pixel in?? E I E K ( n ) - Circular aperture blurring kernel

68 Blur size DOF Extrapolation Roadmap capture estimate blur fit model extrapolate blur Largest physical aperture I E I I I 3 2 I 1 0 Aperture Diameter

69 Blur size Defocus Gradient Defocus blur σ D σ Blur proportional to aperture diameter I 1 I I 3 2 I 0 Largest physical aperture I E d s sensor distance G ( d Defocus Gradient s (d s f ) d fd G f ) d fd o o d o focal length fd object distance s o o fd s D Aperture Diameter D G is slope of this line Defocus Gradient Map aperture diameter

70 Optimization solve for discrete defocus gradient values G at each pixel Data term 1 D ( G) I I K ( G ) Graph Cuts with spatial regularization term i i 0 N i Smallest Aperture Image Defocus Gradient Map

71 Depth of Field Extrapolation

72 Synthetic Refocusing Modify gradient labels and re-synthesize image gradient map refocused map extrapolated f/1.8 refocused synthetic f/1.8

73 Discussion Occlusion Could help depth discrimination (coded aperture) Difficult alignment process Mostly because prototype Refocusing limited by Depth of Field helped by depth-guided deconvolution Texture required for accurate defocus gradient map Not critical for depth of field and refocus

74 74 4D Frequency Analysis of Computational Cameras for Depth of Field Extension Anat Levin 1,2 Sam Hasinoff 1 Paul Green 1 Frédo Durand 1 Bill Freeman 1 1 MIT CSAIL 2 Weizmann Institute

75 Defocus blur in a standard lens 75 At focus depth, sharp Away from focus depth, blurred

76 Small aperture increased depth of field but noisy 76 Depth 1: sharp but noisy Depth 2: sharp but noisy

77 Extended depth of field cameras 77 input output odified optics Deconvolution Extended DOF cameras: remove blur computationally and design optics to make that easy

78 In this talk 78 How much can depth of field be extended? New lens extending depth of field

79 The lattice-focal lens 79 Our design: assembly of subsquares with different focal powers each element focuses on a different depth toy lattice-focal lens with 4 elements E s ( x, y ) 2 S 4 / 3 A 8/ 3 1/ 3 x, y

80 Hardware construction 80 Proof of concept 12 subsquares cut from plano-convex spherical lenses Attached to main lens extra focal power needed very low Modest DOF extension with only 12 subsquares

81 Depth estimation 81 Defocus kernels vary with depth defocus kernels at different depths Depth estimation as for the coded aperture camera [Levin et al. 07] input depth map

82 Standard lens reference 82

83 Lattice-focal lens

84 Standard lens reference 84

85 Lattice-focal lens

86 Standard lens reference 86

87 Results Lattice-focal lens

88 Application: Refocusing from single captured image 88

89 Application: Refocusing from single captured image 89

90 Application: Refocusing from single captured image 90

91 The lattice-focal lens limitations 91 Depth estimation needed for deblurring Only capture part of the 4D light field spectrum Subsquare size and focal power optimized for a given focusing range Higher spectrum than previous designs, but does not reach the upper bound

Computational Cameras. Rahul Raguram COMP

Computational Cameras. Rahul Raguram COMP Computational Cameras Rahul Raguram COMP 790-090 What is a computational camera? Camera optics Camera sensor 3D scene Traditional camera Final image Modified optics Camera sensor Image Compute 3D scene

More information

Computational Camera & Photography: Coded Imaging

Computational Camera & Photography: Coded Imaging Computational Camera & Photography: Coded Imaging Camera Culture Ramesh Raskar MIT Media Lab http://cameraculture.media.mit.edu/ Image removed due to copyright restrictions. See Fig. 1, Eight major types

More information

Coded photography , , Computational Photography Fall 2018, Lecture 14

Coded photography , , Computational Photography Fall 2018, Lecture 14 Coded photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 14 Overview of today s lecture The coded photography paradigm. Dealing with

More information

Coded photography , , Computational Photography Fall 2017, Lecture 18

Coded photography , , Computational Photography Fall 2017, Lecture 18 Coded photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 18 Course announcements Homework 5 delayed for Tuesday. - You will need cameras

More information

Coded Computational Photography!

Coded Computational Photography! Coded Computational Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 9! Gordon Wetzstein! Stanford University! Coded Computational Photography - Overview!!

More information

Project 4 Results http://www.cs.brown.edu/courses/cs129/results/proj4/jcmace/ http://www.cs.brown.edu/courses/cs129/results/proj4/damoreno/ http://www.cs.brown.edu/courses/csci1290/results/proj4/huag/

More information

Coding and Modulation in Cameras

Coding and Modulation in Cameras Coding and Modulation in Cameras Amit Agrawal June 2010 Mitsubishi Electric Research Labs (MERL) Cambridge, MA, USA Coded Computational Imaging Agrawal, Veeraraghavan, Narasimhan & Mohan Schedule Introduction

More information

To Do. Advanced Computer Graphics. Outline. Computational Imaging. How do we see the world? Pinhole camera

To Do. Advanced Computer Graphics. Outline. Computational Imaging. How do we see the world? Pinhole camera Advanced Computer Graphics CSE 163 [Spring 2017], Lecture 14 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 2 due May 19 Any last minute issues or questions? Next two lectures: Imaging,

More information

Near-Invariant Blur for Depth and 2D Motion via Time-Varying Light Field Analysis

Near-Invariant Blur for Depth and 2D Motion via Time-Varying Light Field Analysis Near-Invariant Blur for Depth and 2D Motion via Time-Varying Light Field Analysis Yosuke Bando 1,2 Henry Holtzman 2 Ramesh Raskar 2 1 Toshiba Corporation 2 MIT Media Lab Defocus & Motion Blur PSF Depth

More information

Computational Approaches to Cameras

Computational Approaches to Cameras Computational Approaches to Cameras 11/16/17 Magritte, The False Mirror (1935) Computational Photography Derek Hoiem, University of Illinois Announcements Final project proposal due Monday (see links on

More information

Deblurring. Basics, Problem definition and variants

Deblurring. Basics, Problem definition and variants Deblurring Basics, Problem definition and variants Kinds of blur Hand-shake Defocus Credit: Kenneth Josephson Motion Credit: Kenneth Josephson Kinds of blur Spatially invariant vs. Spatially varying

More information

A Framework for Analysis of Computational Imaging Systems

A Framework for Analysis of Computational Imaging Systems A Framework for Analysis of Computational Imaging Systems Kaushik Mitra, Oliver Cossairt, Ashok Veeraghavan Rice University Northwestern University Computational imaging CI systems that adds new functionality

More information

Wavefront coding. Refocusing & Light Fields. Wavefront coding. Final projects. Is depth of field a blur? Frédo Durand Bill Freeman MIT - EECS

Wavefront coding. Refocusing & Light Fields. Wavefront coding. Final projects. Is depth of field a blur? Frédo Durand Bill Freeman MIT - EECS 6.098 Digital and Computational Photography 6.882 Advanced Computational Photography Final projects Send your slides by noon on Thrusday. Send final report Refocusing & Light Fields Frédo Durand Bill Freeman

More information

Coded Aperture and Coded Exposure Photography

Coded Aperture and Coded Exposure Photography Coded Aperture and Coded Exposure Photography Martin Wilson University of Cape Town Cape Town, South Africa Email: Martin.Wilson@uct.ac.za Fred Nicolls University of Cape Town Cape Town, South Africa Email:

More information

Implementation of Adaptive Coded Aperture Imaging using a Digital Micro-Mirror Device for Defocus Deblurring

Implementation of Adaptive Coded Aperture Imaging using a Digital Micro-Mirror Device for Defocus Deblurring Implementation of Adaptive Coded Aperture Imaging using a Digital Micro-Mirror Device for Defocus Deblurring Ashill Chiranjan and Bernardt Duvenhage Defence, Peace, Safety and Security Council for Scientific

More information

Deconvolution , , Computational Photography Fall 2018, Lecture 12

Deconvolution , , Computational Photography Fall 2018, Lecture 12 Deconvolution http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 12 Course announcements Homework 3 is out. - Due October 12 th. - Any questions?

More information

Deconvolution , , Computational Photography Fall 2017, Lecture 17

Deconvolution , , Computational Photography Fall 2017, Lecture 17 Deconvolution http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 17 Course announcements Homework 4 is out. - Due October 26 th. - There was another

More information

Lecture 18: Light field cameras. (plenoptic cameras) Visual Computing Systems CMU , Fall 2013

Lecture 18: Light field cameras. (plenoptic cameras) Visual Computing Systems CMU , Fall 2013 Lecture 18: Light field cameras (plenoptic cameras) Visual Computing Systems Continuing theme: computational photography Cameras capture light, then extensive processing produces the desired image Today:

More information

Introduction to Light Fields

Introduction to Light Fields MIT Media Lab Introduction to Light Fields Camera Culture Ramesh Raskar MIT Media Lab http://cameraculture.media.mit.edu/ Introduction to Light Fields Ray Concepts for 4D and 5D Functions Propagation of

More information

Less Is More: Coded Computational Photography

Less Is More: Coded Computational Photography Less Is More: Coded Computational Photography Ramesh Raskar Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA Abstract. Computational photography combines plentiful computing, digital sensors,

More information

Coded Aperture for Projector and Camera for Robust 3D measurement

Coded Aperture for Projector and Camera for Robust 3D measurement Coded Aperture for Projector and Camera for Robust 3D measurement Yuuki Horita Yuuki Matugano Hiroki Morinaga Hiroshi Kawasaki Satoshi Ono Makoto Kimura Yasuo Takane Abstract General active 3D measurement

More information

When Does Computational Imaging Improve Performance?

When Does Computational Imaging Improve Performance? When Does Computational Imaging Improve Performance? Oliver Cossairt Assistant Professor Northwestern University Collaborators: Mohit Gupta, Changyin Zhou, Daniel Miau, Shree Nayar (Columbia University)

More information

Computational Photography

Computational Photography Computational photography Computational Photography Digital Visual Effects Yung-Yu Chuang wikipedia: Computational photography h refers broadly to computational imaging techniques that enhance or extend

More information

Lenses, exposure, and (de)focus

Lenses, exposure, and (de)focus Lenses, exposure, and (de)focus http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 15 Course announcements Homework 4 is out. - Due October 26

More information

Transfer Efficiency and Depth Invariance in Computational Cameras

Transfer Efficiency and Depth Invariance in Computational Cameras Transfer Efficiency and Depth Invariance in Computational Cameras Jongmin Baek Stanford University IEEE International Conference on Computational Photography 2010 Jongmin Baek (Stanford University) Transfer

More information

Modeling and Synthesis of Aperture Effects in Cameras

Modeling and Synthesis of Aperture Effects in Cameras Modeling and Synthesis of Aperture Effects in Cameras Douglas Lanman, Ramesh Raskar, and Gabriel Taubin Computational Aesthetics 2008 20 June, 2008 1 Outline Introduction and Related Work Modeling Vignetting

More information

Computational Photography and Video. Prof. Marc Pollefeys

Computational Photography and Video. Prof. Marc Pollefeys Computational Photography and Video Prof. Marc Pollefeys Today s schedule Introduction of Computational Photography Course facts Syllabus Digital Photography What is computational photography Convergence

More information

Simulated Programmable Apertures with Lytro

Simulated Programmable Apertures with Lytro Simulated Programmable Apertures with Lytro Yangyang Yu Stanford University yyu10@stanford.edu Abstract This paper presents a simulation method using the commercial light field camera Lytro, which allows

More information

Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing

Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing Ashok Veeraraghavan, Ramesh Raskar, Amit

More information

Point Spread Function Engineering for Scene Recovery. Changyin Zhou

Point Spread Function Engineering for Scene Recovery. Changyin Zhou Point Spread Function Engineering for Scene Recovery Changyin Zhou Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences

More information

A Review over Different Blur Detection Techniques in Image Processing

A Review over Different Blur Detection Techniques in Image Processing A Review over Different Blur Detection Techniques in Image Processing 1 Anupama Sharma, 2 Devarshi Shukla 1 E.C.E student, 2 H.O.D, Department of electronics communication engineering, LR College of engineering

More information

Flexible Depth of Field Photography

Flexible Depth of Field Photography TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Flexible Depth of Field Photography Sujit Kuthirummal, Hajime Nagahara, Changyin Zhou, and Shree K. Nayar Abstract The range of scene depths

More information

The ultimate camera. Computational Photography. Creating the ultimate camera. The ultimate camera. What does it do?

The ultimate camera. Computational Photography. Creating the ultimate camera. The ultimate camera. What does it do? Computational Photography The ultimate camera What does it do? Image from Durand & Freeman s MIT Course on Computational Photography Today s reading Szeliski Chapter 9 The ultimate camera Infinite resolution

More information

Sensing Increased Image Resolution Using Aperture Masks

Sensing Increased Image Resolution Using Aperture Masks Sensing Increased Image Resolution Using Aperture Masks Ankit Mohan, Xiang Huang, Jack Tumblin Northwestern University Ramesh Raskar MIT Media Lab CVPR 2008 Supplemental Material Contributions Achieve

More information

Coded Exposure Deblurring: Optimized Codes for PSF Estimation and Invertibility

Coded Exposure Deblurring: Optimized Codes for PSF Estimation and Invertibility Coded Exposure Deblurring: Optimized Codes for PSF Estimation and Invertibility Amit Agrawal Yi Xu Mitsubishi Electric Research Labs (MERL) 201 Broadway, Cambridge, MA, USA [agrawal@merl.com,xu43@cs.purdue.edu]

More information

Computational Photography Introduction

Computational Photography Introduction Computational Photography Introduction Jongmin Baek CS 478 Lecture Jan 9, 2012 Background Sales of digital cameras surpassed sales of film cameras in 2004. Digital cameras are cool Free film Instant display

More information

Raskar, Camera Culture, MIT Media Lab. Ramesh Raskar. Camera Culture. Associate Professor, MIT Media Lab

Raskar, Camera Culture, MIT Media Lab. Ramesh Raskar. Camera Culture. Associate Professor, MIT Media Lab Raskar, Camera Culture, MIT Media Lab Camera Culture Ramesh Raskar C C lt Camera Culture Associate Professor, MIT Media Lab Where are the camera s? Where are the camera s? We focus on creating tools to

More information

Admin Deblurring & Deconvolution Different types of blur

Admin Deblurring & Deconvolution Different types of blur Admin Assignment 3 due Deblurring & Deconvolution Lecture 10 Last lecture Move to Friday? Projects Come and see me Different types of blur Camera shake User moving hands Scene motion Objects in the scene

More information

4D Frequency Analysis of Computational Cameras for Depth of Field Extension

4D Frequency Analysis of Computational Cameras for Depth of Field Extension 4D Frequency Analysis of Computational Cameras for Depth of Field Extension Anat Levin1,2 Samuel W. Hasinoff1 Paul Green1 Fre do Durand1 1 MIT CSAIL 2 Weizmann Institute Standard lens image Our lattice-focal

More information

Optimal Single Image Capture for Motion Deblurring

Optimal Single Image Capture for Motion Deblurring Optimal Single Image Capture for Motion Deblurring Amit Agrawal Mitsubishi Electric Research Labs (MERL) 1 Broadway, Cambridge, MA, USA agrawal@merl.com Ramesh Raskar MIT Media Lab Ames St., Cambridge,

More information

What are Good Apertures for Defocus Deblurring?

What are Good Apertures for Defocus Deblurring? What are Good Apertures for Defocus Deblurring? Changyin Zhou, Shree Nayar Abstract In recent years, with camera pixels shrinking in size, images are more likely to include defocused regions. In order

More information

6.A44 Computational Photography

6.A44 Computational Photography Add date: Friday 6.A44 Computational Photography Depth of Field Frédo Durand We allow for some tolerance What happens when we close the aperture by two stop? Aperture diameter is divided by two is doubled

More information

6.098 Digital and Computational Photography Advanced Computational Photography. Bill Freeman Frédo Durand MIT - EECS

6.098 Digital and Computational Photography Advanced Computational Photography. Bill Freeman Frédo Durand MIT - EECS 6.098 Digital and Computational Photography 6.882 Advanced Computational Photography Bill Freeman Frédo Durand MIT - EECS Administrivia PSet 1 is out Due Thursday February 23 Digital SLR initiation? During

More information

To Denoise or Deblur: Parameter Optimization for Imaging Systems

To Denoise or Deblur: Parameter Optimization for Imaging Systems To Denoise or Deblur: Parameter Optimization for Imaging Systems Kaushik Mitra, Oliver Cossairt and Ashok Veeraraghavan 1 ECE, Rice University 2 EECS, Northwestern University 3/3/2014 1 Capture moving

More information

Flexible Depth of Field Photography

Flexible Depth of Field Photography TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Flexible Depth of Field Photography Sujit Kuthirummal, Hajime Nagahara, Changyin Zhou, and Shree K. Nayar Abstract The range of scene depths

More information

Computational Photography: Principles and Practice

Computational Photography: Principles and Practice Computational Photography: Principles and Practice HCI & Robotics (HCI 및로봇응용공학 ) Ig-Jae Kim, Korea Institute of Science and Technology ( 한국과학기술연구원김익재 ) Jaewon Kim, Korea Institute of Science and Technology

More information

Agenda. Fusion and Reconstruction. Image Fusion & Reconstruction. Image Fusion & Reconstruction. Dr. Yossi Rubner.

Agenda. Fusion and Reconstruction. Image Fusion & Reconstruction. Image Fusion & Reconstruction. Dr. Yossi Rubner. Fusion and Reconstruction Dr. Yossi Rubner yossi@rubner.co.il Some slides stolen from: Jack Tumblin 1 Agenda We ve seen Panorama (from different FOV) Super-resolution (from low-res) HDR (from different

More information

Extended Depth of Field Catadioptric Imaging Using Focal Sweep

Extended Depth of Field Catadioptric Imaging Using Focal Sweep Extended Depth of Field Catadioptric Imaging Using Focal Sweep Ryunosuke Yokoya Columbia University New York, NY 10027 yokoya@cs.columbia.edu Shree K. Nayar Columbia University New York, NY 10027 nayar@cs.columbia.edu

More information

Blur and Recovery with FTVd. By: James Kerwin Zhehao Li Shaoyi Su Charles Park

Blur and Recovery with FTVd. By: James Kerwin Zhehao Li Shaoyi Su Charles Park Blur and Recovery with FTVd By: James Kerwin Zhehao Li Shaoyi Su Charles Park Blur and Recovery with FTVd By: James Kerwin Zhehao Li Shaoyi Su Charles Park Online: < http://cnx.org/content/col11395/1.1/

More information

Coded Aperture Pairs for Depth from Defocus

Coded Aperture Pairs for Depth from Defocus Coded Aperture Pairs for Depth from Defocus Changyin Zhou Columbia University New York City, U.S. changyin@cs.columbia.edu Stephen Lin Microsoft Research Asia Beijing, P.R. China stevelin@microsoft.com

More information

Capturing Light. The Light Field. Grayscale Snapshot 12/1/16. P(q, f)

Capturing Light. The Light Field. Grayscale Snapshot 12/1/16. P(q, f) Capturing Light Rooms by the Sea, Edward Hopper, 1951 The Penitent Magdalen, Georges de La Tour, c. 1640 Some slides from M. Agrawala, F. Durand, P. Debevec, A. Efros, R. Fergus, D. Forsyth, M. Levoy,

More information

Modeling the calibration pipeline of the Lytro camera for high quality light-field image reconstruction

Modeling the calibration pipeline of the Lytro camera for high quality light-field image reconstruction 2013 IEEE International Conference on Computer Vision Modeling the calibration pipeline of the Lytro camera for high quality light-field image reconstruction Donghyeon Cho Minhaeng Lee Sunyeong Kim Yu-Wing

More information

To Denoise or Deblur: Parameter Optimization for Imaging Systems

To Denoise or Deblur: Parameter Optimization for Imaging Systems To Denoise or Deblur: Parameter Optimization for Imaging Systems Kaushik Mitra a, Oliver Cossairt b and Ashok Veeraraghavan a a Electrical and Computer Engineering, Rice University, Houston, TX 77005 b

More information

Toward Non-stationary Blind Image Deblurring: Models and Techniques

Toward Non-stationary Blind Image Deblurring: Models and Techniques Toward Non-stationary Blind Image Deblurring: Models and Techniques Ji, Hui Department of Mathematics National University of Singapore NUS, 30-May-2017 Outline of the talk Non-stationary Image blurring

More information

Coded Aperture Flow. Anita Sellent and Paolo Favaro

Coded Aperture Flow. Anita Sellent and Paolo Favaro Coded Aperture Flow Anita Sellent and Paolo Favaro Institut für Informatik und angewandte Mathematik, Universität Bern, Switzerland http://www.cvg.unibe.ch/ Abstract. Real cameras have a limited depth

More information

Focal Sweep Videography with Deformable Optics

Focal Sweep Videography with Deformable Optics Focal Sweep Videography with Deformable Optics Daniel Miau Columbia University dmiau@cs.columbia.edu Oliver Cossairt Northwestern University ollie@eecs.northwestern.edu Shree K. Nayar Columbia University

More information

Implementation of Image Deblurring Techniques in Java

Implementation of Image Deblurring Techniques in Java Implementation of Image Deblurring Techniques in Java Peter Chapman Computer Systems Lab 2007-2008 Thomas Jefferson High School for Science and Technology Alexandria, Virginia January 22, 2008 Abstract

More information

Ultra-shallow DoF imaging using faced paraboloidal mirrors

Ultra-shallow DoF imaging using faced paraboloidal mirrors Ultra-shallow DoF imaging using faced paraboloidal mirrors Ryoichiro Nishi, Takahito Aoto, Norihiko Kawai, Tomokazu Sato, Yasuhiro Mukaigawa, Naokazu Yokoya Graduate School of Information Science, Nara

More information

Removal of Glare Caused by Water Droplets

Removal of Glare Caused by Water Droplets 2009 Conference for Visual Media Production Removal of Glare Caused by Water Droplets Takenori Hara 1, Hideo Saito 2, Takeo Kanade 3 1 Dai Nippon Printing, Japan hara-t6@mail.dnp.co.jp 2 Keio University,

More information

Improved motion invariant imaging with time varying shutter functions

Improved motion invariant imaging with time varying shutter functions Improved motion invariant imaging with time varying shutter functions Steve Webster a and Andrew Dorrell b Canon Information Systems Research, Australia (CiSRA), Thomas Holt Drive, North Ryde, Australia

More information

Single Digital Image Multi-focusing Using Point to Point Blur Model Based Depth Estimation

Single Digital Image Multi-focusing Using Point to Point Blur Model Based Depth Estimation Single Digital mage Multi-focusing Using Point to Point Blur Model Based Depth Estimation Praveen S S, Aparna P R Abstract The proposed paper focuses on Multi-focusing, a technique that restores all-focused

More information

Lecture 22: Cameras & Lenses III. Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017

Lecture 22: Cameras & Lenses III. Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017 Lecture 22: Cameras & Lenses III Computer Graphics and Imaging UC Berkeley, Spring 2017 F-Number For Lens vs. Photo A lens s F-Number is the maximum for that lens E.g. 50 mm F/1.4 is a high-quality telephoto

More information

On the Recovery of Depth from a Single Defocused Image

On the Recovery of Depth from a Single Defocused Image On the Recovery of Depth from a Single Defocused Image Shaojie Zhuo and Terence Sim School of Computing National University of Singapore Singapore,747 Abstract. In this paper we address the challenging

More information

Topic 6 - Optics Depth of Field and Circle Of Confusion

Topic 6 - Optics Depth of Field and Circle Of Confusion Topic 6 - Optics Depth of Field and Circle Of Confusion Learning Outcomes In this lesson, we will learn all about depth of field and a concept known as the Circle of Confusion. By the end of this lesson,

More information

Extended depth of field for visual measurement systems with depth-invariant magnification

Extended depth of field for visual measurement systems with depth-invariant magnification Extended depth of field for visual measurement systems with depth-invariant magnification Yanyu Zhao a and Yufu Qu* a,b a School of Instrument Science and Opto-Electronic Engineering, Beijing University

More information

THE depth of field (DOF) of an imaging system is the

THE depth of field (DOF) of an imaging system is the 58 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 1, JANUARY 2011 Flexible Depth of Field Photography Sujit Kuthirummal, Member, IEEE, Hajime Nagahara, Changyin Zhou, Student

More information

Sensing Increased Image Resolution Using Aperture Masks

Sensing Increased Image Resolution Using Aperture Masks Sensing Increased Image Resolution Using Aperture Masks Ankit Mohan, Xiang Huang, Jack Tumblin EECS Department, Northwestern University http://www.cs.northwestern.edu/ amohan Ramesh Raskar Mitsubishi Electric

More information

Light field sensing. Marc Levoy. Computer Science Department Stanford University

Light field sensing. Marc Levoy. Computer Science Department Stanford University Light field sensing Marc Levoy Computer Science Department Stanford University The scalar light field (in geometrical optics) Radiance as a function of position and direction in a static scene with fixed

More information

Admin. Lightfields. Overview. Overview 5/13/2008. Idea. Projects due by the end of today. Lecture 13. Lightfield representation of a scene

Admin. Lightfields. Overview. Overview 5/13/2008. Idea. Projects due by the end of today. Lecture 13. Lightfield representation of a scene Admin Lightfields Projects due by the end of today Email me source code, result images and short report Lecture 13 Overview Lightfield representation of a scene Unified representation of all rays Overview

More information

Improving Film-Like Photography. aka, Epsilon Photography

Improving Film-Like Photography. aka, Epsilon Photography Improving Film-Like Photography aka, Epsilon Photography Ankit Mohan Courtesy of Ankit Mohan. Used with permission. Film-like like Optics: Imaging Intuition Angle(θ,ϕ) Ray Center of Projection Position

More information

Dynamically Reparameterized Light Fields & Fourier Slice Photography. Oliver Barth, 2009 Max Planck Institute Saarbrücken

Dynamically Reparameterized Light Fields & Fourier Slice Photography. Oliver Barth, 2009 Max Planck Institute Saarbrücken Dynamically Reparameterized Light Fields & Fourier Slice Photography Oliver Barth, 2009 Max Planck Institute Saarbrücken Background What we are talking about? 2 / 83 Background What we are talking about?

More information

Reinterpretable Imager: Towards Variable Post-Capture Space, Angle and Time Resolution in Photography

Reinterpretable Imager: Towards Variable Post-Capture Space, Angle and Time Resolution in Photography Reinterpretable Imager: Towards Variable Post-Capture Space, Angle and Time Resolution in Photography The MIT Faculty has made this article openly available. Please share how this access benefits you.

More information

CVPR Easter School. Michael S. Brown. School of Computing National University of Singapore

CVPR Easter School. Michael S. Brown. School of Computing National University of Singapore Computational Photography CVPR Easter School March 14 18 18 th, 2011, ANU Kioloa Coastal Campus Michael S. Brown School of Computing National University of Singapore Goal of this tutorial Introduce you

More information

Defocus Map Estimation from a Single Image

Defocus Map Estimation from a Single Image Defocus Map Estimation from a Single Image Shaojie Zhuo Terence Sim School of Computing, National University of Singapore, Computing 1, 13 Computing Drive, Singapore 117417, SINGAPOUR Abstract In this

More information

A Mathematical model for the determination of distance of an object in a 2D image

A Mathematical model for the determination of distance of an object in a 2D image A Mathematical model for the determination of distance of an object in a 2D image Deepu R 1, Murali S 2,Vikram Raju 3 Maharaja Institute of Technology Mysore, Karnataka, India rdeepusingh@mitmysore.in

More information

Recent Advances in Image Deblurring. Seungyong Lee (Collaboration w/ Sunghyun Cho)

Recent Advances in Image Deblurring. Seungyong Lee (Collaboration w/ Sunghyun Cho) Recent Advances in Image Deblurring Seungyong Lee (Collaboration w/ Sunghyun Cho) Disclaimer Many images and figures in this course note have been copied from the papers and presentation materials of previous

More information

Motion-invariant Coding Using a Programmable Aperture Camera

Motion-invariant Coding Using a Programmable Aperture Camera [DOI: 10.2197/ipsjtcva.6.25] Research Paper Motion-invariant Coding Using a Programmable Aperture Camera Toshiki Sonoda 1,a) Hajime Nagahara 1,b) Rin-ichiro Taniguchi 1,c) Received: October 22, 2013, Accepted:

More information

High dynamic range imaging and tonemapping

High dynamic range imaging and tonemapping High dynamic range imaging and tonemapping http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 12 Course announcements Homework 3 is out. - Due

More information

Understanding camera trade-offs through a Bayesian analysis of light field projections Anat Levin, William T. Freeman, and Fredo Durand

Understanding camera trade-offs through a Bayesian analysis of light field projections Anat Levin, William T. Freeman, and Fredo Durand Computer Science and Artificial Intelligence Laboratory Technical Report MIT-CSAIL-TR-2008-021 April 16, 2008 Understanding camera trade-offs through a Bayesian analysis of light field projections Anat

More information

Light-Field Database Creation and Depth Estimation

Light-Field Database Creation and Depth Estimation Light-Field Database Creation and Depth Estimation Abhilash Sunder Raj abhisr@stanford.edu Michael Lowney mlowney@stanford.edu Raj Shah shahraj@stanford.edu Abstract Light-field imaging research has been

More information

Full Resolution Lightfield Rendering

Full Resolution Lightfield Rendering Full Resolution Lightfield Rendering Andrew Lumsdaine Indiana University lums@cs.indiana.edu Todor Georgiev Adobe Systems tgeorgie@adobe.com Figure 1: Example of lightfield, normally rendered image, and

More information

Analysis of Coded Apertures for Defocus Deblurring of HDR Images

Analysis of Coded Apertures for Defocus Deblurring of HDR Images CEIG - Spanish Computer Graphics Conference (2012) Isabel Navazo and Gustavo Patow (Editors) Analysis of Coded Apertures for Defocus Deblurring of HDR Images Luis Garcia, Lara Presa, Diego Gutierrez and

More information

Computational Illumination

Computational Illumination Computational Illumination Course WebPage : http://www.merl.com/people/raskar/photo/ Ramesh Raskar Mitsubishi Electric Research Labs Ramesh Raskar, Computational Illumination Computational Illumination

More information

Cameras and Sensors. Today. Today. It receives light from all directions. BIL721: Computational Photography! Spring 2015, Lecture 2!

Cameras and Sensors. Today. Today. It receives light from all directions. BIL721: Computational Photography! Spring 2015, Lecture 2! !! Cameras and Sensors Today Pinhole camera! Lenses! Exposure! Sensors! photo by Abelardo Morell BIL721: Computational Photography! Spring 2015, Lecture 2! Aykut Erdem! Hacettepe University! Computer Vision

More information

multiframe visual-inertial blur estimation and removal for unmodified smartphones

multiframe visual-inertial blur estimation and removal for unmodified smartphones multiframe visual-inertial blur estimation and removal for unmodified smartphones, Severin Münger, Carlo Beltrame, Luc Humair WSCG 2015, Plzen, Czech Republic images taken by non-professional photographers

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department. 2.71/2.710 Final Exam. May 21, Duration: 3 hours (9 am-12 noon)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department. 2.71/2.710 Final Exam. May 21, Duration: 3 hours (9 am-12 noon) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department 2.71/2.710 Final Exam May 21, 2013 Duration: 3 hours (9 am-12 noon) CLOSED BOOK Total pages: 5 Name: PLEASE RETURN THIS BOOKLET WITH

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part : Image Enhancement in the Spatial Domain AASS Learning Systems Lab, Dep. Teknik Room T9 (Fr, - o'clock) achim.lilienthal@oru.se Course Book Chapter 3-4- Contents. Image Enhancement

More information

Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design

Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design Computer Aided Design Several CAD tools use Ray Tracing (see

More information

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics IMAGE FORMATION Light source properties Sensor characteristics Surface Exposure shape Optics Surface reflectance properties ANALOG IMAGES An image can be understood as a 2D light intensity function f(x,y)

More information

PTC School of Photography. Beginning Course Class 2 - Exposure

PTC School of Photography. Beginning Course Class 2 - Exposure PTC School of Photography Beginning Course Class 2 - Exposure Today s Topics: What is Exposure Shutter Speed for Exposure Shutter Speed for Motion Aperture for Exposure Aperture for Depth of Field Exposure

More information

Film Cameras Digital SLR Cameras Point and Shoot Bridge Compact Mirror less

Film Cameras Digital SLR Cameras Point and Shoot Bridge Compact Mirror less Film Cameras Digital SLR Cameras Point and Shoot Bridge Compact Mirror less Portraits Landscapes Macro Sports Wildlife Architecture Fashion Live Music Travel Street Weddings Kids Food CAMERA SENSOR

More information

Optical image stabilization (IS)

Optical image stabilization (IS) Optical image stabilization (IS) CS 178, Spring 2010 Marc Levoy Computer Science Department Stanford University Outline! what are the causes of camera shake? how can you avoid it (without having an IS

More information

Mastering Y our Your Digital Camera

Mastering Y our Your Digital Camera Mastering Your Digital Camera The Exposure Triangle The ISO setting on your camera defines how sensitive it is to light. Normally ISO 100 is the least sensitive setting on your camera and as the ISO numbers

More information

Why learn about photography in this course?

Why learn about photography in this course? Why learn about photography in this course? Geri's Game: Note the background is blurred. - photography: model of image formation - Many computer graphics methods use existing photographs e.g. texture &

More information

Recent advances in deblurring and image stabilization. Michal Šorel Academy of Sciences of the Czech Republic

Recent advances in deblurring and image stabilization. Michal Šorel Academy of Sciences of the Czech Republic Recent advances in deblurring and image stabilization Michal Šorel Academy of Sciences of the Czech Republic Camera shake stabilization Alternative to OIS (optical image stabilization) systems Should work

More information

Building a Real Camera. Slides Credit: Svetlana Lazebnik

Building a Real Camera. Slides Credit: Svetlana Lazebnik Building a Real Camera Slides Credit: Svetlana Lazebnik Home-made pinhole camera Slide by A. Efros http://www.debevec.org/pinhole/ Shrinking the aperture Why not make the aperture as small as possible?

More information

lecture 24 image capture - photography: model of image formation - image blur - camera settings (f-number, shutter speed) - exposure - camera response

lecture 24 image capture - photography: model of image formation - image blur - camera settings (f-number, shutter speed) - exposure - camera response lecture 24 image capture - photography: model of image formation - image blur - camera settings (f-number, shutter speed) - exposure - camera response - application: high dynamic range imaging Why learn

More information

Announcement A total of 5 (five) late days are allowed for projects. Office hours

Announcement A total of 5 (five) late days are allowed for projects. Office hours Announcement A total of 5 (five) late days are allowed for projects. Office hours Me: 3:50-4:50pm Thursday (or by appointment) Jake: 12:30-1:30PM Monday and Wednesday Image Formation Digital Camera Film

More information

NTU CSIE. Advisor: Wu Ja Ling, Ph.D.

NTU CSIE. Advisor: Wu Ja Ling, Ph.D. An Interactive Background Blurring Mechanism and Its Applications NTU CSIE Yan Chih Yu Advisor: Wu Ja Ling, Ph.D. 1 2 Outline Introduction Related Work Method Object Segmentation Depth Map Generation Image

More information

Cameras. Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26. with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros

Cameras. Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26. with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Cameras Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26 with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Camera trial #1 scene film Put a piece of film in front of

More information