Introduction. 1.1 Surround sound

Size: px
Start display at page:

Download "Introduction. 1.1 Surround sound"

Transcription

1 Introduction 1 This chapter introduces the project. First a brief description of surround sound is presented. A problem statement is defined which leads to the goal of the project. Finally the scope of the project is defined. 1.1 Surround sound Origins of surround systems lie in the movie industry, where the reproduced sound is tightly connected to the action on a movie screen. In this respect, the goal of any surround system is to place the listener at the scene with the sound arriving from all around him, hence the term surround. In order to produce such an impression for a listener, a surround recording needs to contain two main aspects: Sound source localization: Render impression of spatially distributed sound sources. Ambience impression: Render impression of presence in an acoustical environment. Giving the feeling of spaciousness and envelopment. Therefore, it is not only necessary to correctly position sound sources or to depict their movement, but also to render a particular environment (ambience) with all of its acoustical properties (early reflections, reverberation, existence of echoes, to name a few). For example, if a movie scene takes place in a cathedral, the listener needs to feel the ambience, in this case the usual long reverberation of the cathedral. This is as important as being able to correctly determine positions of a choir and, say, a priest in such a scene. To sum up, if the mentioned aspects are captured and with a proper mixing recorded on a soundtrack, then a listener perceives a convincing spatial image with the correct impression of ambience. Nowadays it is also common to find music produced as a multichannel surround track. In the case of music, the sound sources (instruments) do not change their positions, but proper localization of parts of an orchestra is important in order to have a perception of the ensemble width of the orchestra. Furthermore, using more than two channels it is possible to make a more convincing environment impression than with a conventional stereo setup. A multichannel setup enables room reflections to be perceived from all directions, like in a real concert hall. However, a surround track is intended to be reproduced in a room (living room, for example) with a certain number of loudspeakers. Therefore, the question arises how to reproduce a surround track in full quality with spatial and ambient information preserved when a surround setup is not available or when it is unsuitable to be used. These situations can be, for example, watching a movie with a surround track in an airplane, or when for proper enjoyment high sound levels are required that may be annoying to others. Group 963 October 12,

2 Chapter 1. Introduction In such situations a logical and most obvious approach would be to use a convenient sound reproduction device, namely headphones. One such solution for surround sound via headphones is developed and evaluated in this project, and presented in this report. 1.2 Problem statement The problem addressed in this project arises when it is either impossible or inconvenient to use a regular surround sound setup for reproduction of the surround track. Thus, the surround track needs to be reproduced in a different way preserving spatial and ambience information encoded in the surround track. An approach to solve this problem is considered to be via headphones. 1.3 Goal of the project Based on the problem statement a hypothesis can be defined in order to solve the problem using headphones: It is possible, by separately controlling signals sent to each ear via headphones, to recreate in two headphone channels the spatial and ambience information encoded in a multichannel surround track. Therefore, the goal of the project is to construct a system as shown in Fig. 1.1 and see to which degree the sign of equivalence in this figure is correct. Surround Source Our system Figure 1.1: Block diagram representation of the goal of this project. 2 Group 963, October 12,

3 1.4. Scope of the project 1.4 Scope of the project This project addresses methods for preserving both spatial and ambience aspects of a surround recording, while listening via headphones. Data necessary for acquiring all of the surround information will be identified in an analysis of the problem. The data will either be found by experimental measurements or by following recommendations or standards in the applicable field. These data will be the input into the core technology of the project, the binaural technology. The implemented system will be evaluated by listening tests. The scope of the project does not include the combined loudspeaker/room equalization. Moreover, the assumption is that the surround track is recorded properly, with all of the spatial and ambience information. If this is not the case, no attempts will be made to correct the recorded spatial/ambience image. 1.5 Binaural reproduction and recording This section describes the idea behind the binaural technology. The aim is to justify that the binaural principle will be able to give an impression of surround sound in headphones General principle As descriped in section?? the direction of a sound is determined by analyzing the pressure signal on the left and right eardrum. This directional perception is a result of the HRTF s from the source to the left and right ear, respectively. Therefore the auditory event in a real environment can be duplicated if it is possible to recreate the exact same pressure signal on the eardrums. Therefore the task of binaural recording and reproduction is the one shown in figure 1.2. This setup produces ITD, ILD and spectral cues as one would have with direct listening. Listener Dummy head Figure 1.2: General principle of the binaural reproduction technique. In order to make the spatial perception correct several conditions need to be fulfilled. The artificial head has to be equal to the head of the listener since the shape of the head and the pinnaes determines a specific transfer function to which the signal processing in the brain has adapted. Since there are individual differences between every human being it is only possible to make a correct binaural signal for one person. Fortunately it has been shown that it is possible to obtain credible binaural signals using an average ear [Minnaar et al, 2001]. Group 963 October 12,

4 Chapter 1. Introduction In order to record the pressure at the earcanal it is necessary that the earcanal and the eardrum of the artificial head are identical to the earcanal and eardrum of the listener. In this matter it has been shown that the pressure at the entrance of a blocked earcanal contains the full directional information [Møller, 1992]. Therefore it is possible to record binaural signals at the entrance of a blocked earcanal and it is not necessary to take the earcanal into account. Hence it is possible to perform binaural playback without taking the human listener into consideration. Furthermore a possibility is to use an artificial head by which recordings can be made with a totally steady head and without human noise such as heartbeats and swallowing. Regarding the use of artificial heads Aalborg University has the artificial head Valdemar which proved to be among the best considering localization [Christensen, 2001]. In this context it should be noted that a well-selected human head still gives a better performance. By using headphones for the reproduction crosstalk is avoided since the ear signals are only sent to the specific ear. However, it is important to note that the headphone transfer function should be flat in order to assure that the correct pressure signal is present at the eardrum. This is especially important for the median plane, as there are no ITD nor ILD (front and back). Since this is rarely the case, an equalization of the headphones is necessary in order to achieve the best spatial impression Electrical considerations Source HRTF Microphone Electrical system PTF Possible storage Figure 1.3: Block diagram of the binaural recording/reproduction scenario. The binaural reproduction scenario shown in figure 1.2 can hence be described by the block diagram in figure 1.3. The sound source is filtered through a specific HRTF to each ear. These two pressure signals are picked up by the microphones and hereby converted into an electrical signal. This signal can either be stored or played back directly in the headphones. The headphones transfer function (PTF) describes the relation from the input to the pressure at the entrance of the earcanal. The transfer function from the source to the ears of the listener H STE (s) is hereby: H STE (s) = H HRTF (s)h Mic (s)h El (s)h PTF (s) (1.1) To attain an ideal binaural reproduction the source to ears transfer function should equal the HRTF. Therefore the ideal electrical system should equalize the microphone and the headphones. The electrical transfer function is hereby ideally: H El (s) = 1 H Mic (s)h PTF (s) (1.2) 4 Group 963, October 12,

5 1.6. Summary and conclusion In this context it is important to mention that it might not be possible to make this transfer function due to the introduction of an unstable system. Using a electrical system like this it is possible to reproduce the spatial information of the recording situation Recording of binaural surround sound The binaural recording using Valdemar gives the possibility of recording ambient sound and reproducing the same situation using headphones. Therefore it is possible to create surround in headphones by placing Valdemar as the listener in a surround sound setup. 1.6 Summary and conclusion This chapter discussed the two most important aspects of a surround sound: localization and environment impression. These aspects are responsible for creating a convincing illusion of being at the scene. Furthermore, different surround sound reproduction setups were presented. It was shown that any incoming direction of a sound can be characterized by the following directional cues: interaural time differences (ITD), interaural level differences (ILD) and the spectral content of the sound entering the ear canal (head and pinna filtering - HRTF). Moreover, it was concluded all of the directional cues are combined in the pairs of HRTFs. It was also shown that, by creating time and/or level differences between different sound sources (loudspeakers), it is possible to create virtual sources, where the physical ones are not perceived any longer. Impression of an environment is created by the direct sound, early reflections and reverberation. Assuming that these are correctly recorded in a surround soundtrack it is essential that they are retained during listening. Since the listening room is also a closed environment it can alter the total perception of the recorded environments. For the case of reverberation the case of coupled rooms was discussed, and for the relation between direct and reflected sound it was concluded that it depends on the position of the listener. In a surround sound reproduction system positional information mainly lies in the front speakers whereas ambience is placed in both front and rear speakers. Dialog is placed in the center channel. A recommendation of a 3/1 and a 3/2 surround setup was presented. If was found that the LFE channel essentially is non-directional. The ambient sound of a surround sound setup can be recreated using headphones by recording the sound in the ears of an artificial or real head. If using the right equalization of the recorded signals the pressure at the eardrums is the same and hence the ambient information is the same. Hereby surround sound is created using a regular pair of headphones Project scope To create these binaural signals a surround setup and an artificial or real head is needed. However, it would be expedient to create the binaural surround without the need of the surround setup and the recording equipment. Therefore the scope of the project is to develope a system able Group 963 October 12,

6 Chapter 1. Introduction to convert the channels of a surround setup into two binaural signals. To test the performance the reference is the recorded signals of a real setup in the ears of the artificial head Valdemar [Christensen, 2001]. This situation is shown in Fig It is chosen to use Valdemar even though a better performance could be achieved using a well selected real head. The reason is the uncertainty in the choice of a real head and the problems accompanying a real head: Use of miniature microphones, human noise in measurements and the stationarity of a human being. Equalization Surround Source Our system Figure 1.4: General scope of the project. The Valdemar recording is meant to serve as a reference for the developed system. In the developement of the system several issues need to be taken into account: Human perception of spatial information The influence of reverberations in the playback scenario Different surround systems The problems occuring when using the binaural reproduction technique Calculation complexity of the system When the system has been developed it is desirable to compare it to the reference recording of Valdemar in a listening test. This test should be a subjective test showing if a representive selection of subjects prefers the recordings or the processed solution. 6 Group 963, October 12,

7 Bibliography [Christensen, 2001] Flemming Christensen. recording and playback. AAU, Binaural Technique with special emphasis on [Minnaar et al, 2001] J. Audio Eng. Soc. Localization with binaural recordings from artificial and human heads. Pauli Minnaar, Søren Krarup Olesen, Flemming Christensen and Henrik Møller. number 5. May page [Møller, 1992] Applied Acoustics. Fundamentals of binaural technology. Henrik Møller page Group 963 October 12,

Sound source localization and its use in multimedia applications

Sound source localization and its use in multimedia applications Notes for lecture/ Zack Settel, McGill University Sound source localization and its use in multimedia applications Introduction With the arrival of real-time binaural or "3D" digital audio processing,

More information

A Virtual Audio Environment for Testing Dummy- Head HRTFs modeling Real Life Situations

A Virtual Audio Environment for Testing Dummy- Head HRTFs modeling Real Life Situations A Virtual Audio Environment for Testing Dummy- Head HRTFs modeling Real Life Situations György Wersényi Széchenyi István University, Hungary. József Répás Széchenyi István University, Hungary. Summary

More information

Multichannel Audio Technologies. More on Surround Sound Microphone Techniques:

Multichannel Audio Technologies. More on Surround Sound Microphone Techniques: Multichannel Audio Technologies More on Surround Sound Microphone Techniques: In the last lecture we focused on recording for accurate stereophonic imaging using the LCR channels. Today, we look at the

More information

Auditory Localization

Auditory Localization Auditory Localization CMPT 468: Sound Localization Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University November 15, 2013 Auditory locatlization is the human perception

More information

Surround: The Current Technological Situation. David Griesinger Lexicon 3 Oak Park Bedford, MA

Surround: The Current Technological Situation. David Griesinger Lexicon 3 Oak Park Bedford, MA Surround: The Current Technological Situation David Griesinger Lexicon 3 Oak Park Bedford, MA 01730 www.world.std.com/~griesngr There are many open questions 1. What is surround sound 2. Who will listen

More information

3D sound in the telepresence project BEAMING Olesen, Søren Krarup; Markovic, Milos; Madsen, Esben; Hoffmann, Pablo Francisco F.; Hammershøi, Dorte

3D sound in the telepresence project BEAMING Olesen, Søren Krarup; Markovic, Milos; Madsen, Esben; Hoffmann, Pablo Francisco F.; Hammershøi, Dorte Aalborg Universitet 3D sound in the telepresence project BEAMING Olesen, Søren Krarup; Markovic, Milos; Madsen, Esben; Hoffmann, Pablo Francisco F.; Hammershøi, Dorte Published in: Proceedings of BNAM2012

More information

URBANA-CHAMPAIGN. CS 498PS Audio Computing Lab. 3D and Virtual Sound. Paris Smaragdis. paris.cs.illinois.

URBANA-CHAMPAIGN. CS 498PS Audio Computing Lab. 3D and Virtual Sound. Paris Smaragdis. paris.cs.illinois. UNIVERSITY ILLINOIS @ URBANA-CHAMPAIGN OF CS 498PS Audio Computing Lab 3D and Virtual Sound Paris Smaragdis paris@illinois.edu paris.cs.illinois.edu Overview Human perception of sound and space ITD, IID,

More information

Listening with Headphones

Listening with Headphones Listening with Headphones Main Types of Errors Front-back reversals Angle error Some Experimental Results Most front-back errors are front-to-back Substantial individual differences Most evident in elevation

More information

Speech Compression. Application Scenarios

Speech Compression. Application Scenarios Speech Compression Application Scenarios Multimedia application Live conversation? Real-time network? Video telephony/conference Yes Yes Business conference with data sharing Yes Yes Distance learning

More information

Acoustics II: Kurt Heutschi recording technique. stereo recording. microphone positioning. surround sound recordings.

Acoustics II: Kurt Heutschi recording technique. stereo recording. microphone positioning. surround sound recordings. demo Acoustics II: recording Kurt Heutschi 2013-01-18 demo Stereo recording: Patent Blumlein, 1931 demo in a real listening experience in a room, different contributions are perceived with directional

More information

Binaural Hearing. Reading: Yost Ch. 12

Binaural Hearing. Reading: Yost Ch. 12 Binaural Hearing Reading: Yost Ch. 12 Binaural Advantages Sounds in our environment are usually complex, and occur either simultaneously or close together in time. Studies have shown that the ability to

More information

INVESTIGATING BINAURAL LOCALISATION ABILITIES FOR PROPOSING A STANDARDISED TESTING ENVIRONMENT FOR BINAURAL SYSTEMS

INVESTIGATING BINAURAL LOCALISATION ABILITIES FOR PROPOSING A STANDARDISED TESTING ENVIRONMENT FOR BINAURAL SYSTEMS 20-21 September 2018, BULGARIA 1 Proceedings of the International Conference on Information Technologies (InfoTech-2018) 20-21 September 2018, Bulgaria INVESTIGATING BINAURAL LOCALISATION ABILITIES FOR

More information

Audio Engineering Society. Convention Paper. Presented at the 129th Convention 2010 November 4 7 San Francisco, CA, USA. Why Ambisonics Does Work

Audio Engineering Society. Convention Paper. Presented at the 129th Convention 2010 November 4 7 San Francisco, CA, USA. Why Ambisonics Does Work Audio Engineering Society Convention Paper Presented at the 129th Convention 2010 November 4 7 San Francisco, CA, USA The papers at this Convention have been selected on the basis of a submitted abstract

More information

THE PERCEPTION OF ALL-PASS COMPONENTS IN TRANSFER FUNCTIONS

THE PERCEPTION OF ALL-PASS COMPONENTS IN TRANSFER FUNCTIONS PACS Reference: 43.66.Pn THE PERCEPTION OF ALL-PASS COMPONENTS IN TRANSFER FUNCTIONS Pauli Minnaar; Jan Plogsties; Søren Krarup Olesen; Flemming Christensen; Henrik Møller Department of Acoustics Aalborg

More information

Spatial Audio Reproduction: Towards Individualized Binaural Sound

Spatial Audio Reproduction: Towards Individualized Binaural Sound Spatial Audio Reproduction: Towards Individualized Binaural Sound WILLIAM G. GARDNER Wave Arts, Inc. Arlington, Massachusetts INTRODUCTION The compact disc (CD) format records audio with 16-bit resolution

More information

University of Huddersfield Repository

University of Huddersfield Repository University of Huddersfield Repository Lee, Hyunkook Capturing and Rendering 360º VR Audio Using Cardioid Microphones Original Citation Lee, Hyunkook (2016) Capturing and Rendering 360º VR Audio Using Cardioid

More information

Computational Perception. Sound localization 2

Computational Perception. Sound localization 2 Computational Perception 15-485/785 January 22, 2008 Sound localization 2 Last lecture sound propagation: reflection, diffraction, shadowing sound intensity (db) defining computational problems sound lateralization

More information

Reproduction of Surround Sound in Headphones

Reproduction of Surround Sound in Headphones Reproduction of Surround Sound in Headphones December 24 Group 96 Department of Acoustics Faculty of Engineering and Science Aalborg University Institute of Electronic Systems - Department of Acoustics

More information

Multichannel Audio In Cars (Tim Nind)

Multichannel Audio In Cars (Tim Nind) Multichannel Audio In Cars (Tim Nind) Presented by Wolfgang Zieglmeier Tonmeister Symposium 2005 Page 1 Reproducing Source Position and Space SOURCE SOUND Direct sound heard first - note different time

More information

The psychoacoustics of reverberation

The psychoacoustics of reverberation The psychoacoustics of reverberation Steven van de Par Steven.van.de.Par@uni-oldenburg.de July 19, 2016 Thanks to Julian Grosse and Andreas Häußler 2016 AES International Conference on Sound Field Control

More information

Waves Nx VIRTUAL REALITY AUDIO

Waves Nx VIRTUAL REALITY AUDIO Waves Nx VIRTUAL REALITY AUDIO WAVES VIRTUAL REALITY AUDIO THE FUTURE OF AUDIO REPRODUCTION AND CREATION Today s entertainment is on a mission to recreate the real world. Just as VR makes us feel like

More information

Approaching Static Binaural Mixing with AMBEO Orbit

Approaching Static Binaural Mixing with AMBEO Orbit Approaching Static Binaural Mixing with AMBEO Orbit If you experience any bugs with AMBEO Orbit or would like to give feedback, please reach out to us at ambeo-info@sennheiser.com 1 Contents Section Page

More information

Accurate sound reproduction from two loudspeakers in a living room

Accurate sound reproduction from two loudspeakers in a living room Accurate sound reproduction from two loudspeakers in a living room Siegfried Linkwitz 13-Apr-08 (1) D M A B Visual Scene 13-Apr-08 (2) What object is this? 19-Apr-08 (3) Perception of sound 13-Apr-08 (4)

More information

Envelopment and Small Room Acoustics

Envelopment and Small Room Acoustics Envelopment and Small Room Acoustics David Griesinger Lexicon 3 Oak Park Bedford, MA 01730 Copyright 9/21/00 by David Griesinger Preview of results Loudness isn t everything! At least two additional perceptions:

More information

Perceptual effects of visual images on out-of-head localization of sounds produced by binaural recording and reproduction.

Perceptual effects of visual images on out-of-head localization of sounds produced by binaural recording and reproduction. Perceptual effects of visual images on out-of-head localization of sounds produced by binaural recording and reproduction Eiichi Miyasaka 1 1 Introduction Large-screen HDTV sets with the screen sizes over

More information

Synthesised Surround Sound Department of Electronics and Computer Science University of Southampton, Southampton, SO17 2GQ

Synthesised Surround Sound Department of Electronics and Computer Science University of Southampton, Southampton, SO17 2GQ Synthesised Surround Sound Department of Electronics and Computer Science University of Southampton, Southampton, SO17 2GQ Author Abstract This paper discusses the concept of producing surround sound with

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Psychological and Physiological Acoustics Session 2aPPa: Binaural Hearing

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 213 http://acousticalsociety.org/ IA 213 Montreal Montreal, anada 2-7 June 213 Psychological and Physiological Acoustics Session 3pPP: Multimodal Influences

More information

Acoustics Research Institute

Acoustics Research Institute Austrian Academy of Sciences Acoustics Research Institute Spatial SpatialHearing: Hearing: Single SingleSound SoundSource Sourcein infree FreeField Field Piotr PiotrMajdak Majdak&&Bernhard BernhardLaback

More information

Spatial audio is a field that

Spatial audio is a field that [applications CORNER] Ville Pulkki and Matti Karjalainen Multichannel Audio Rendering Using Amplitude Panning Spatial audio is a field that investigates techniques to reproduce spatial attributes of sound

More information

Evaluation of a new stereophonic reproduction method with moving sweet spot using a binaural localization model

Evaluation of a new stereophonic reproduction method with moving sweet spot using a binaural localization model Evaluation of a new stereophonic reproduction method with moving sweet spot using a binaural localization model Sebastian Merchel and Stephan Groth Chair of Communication Acoustics, Dresden University

More information

From Binaural Technology to Virtual Reality

From Binaural Technology to Virtual Reality From Binaural Technology to Virtual Reality Jens Blauert, D-Bochum Prominent Prominent Features of of Binaural Binaural Hearing Hearing - Localization Formation of positions of the auditory events (azimuth,

More information

Wave field synthesis: The future of spatial audio

Wave field synthesis: The future of spatial audio Wave field synthesis: The future of spatial audio Rishabh Ranjan and Woon-Seng Gan We all are used to perceiving sound in a three-dimensional (3-D) world. In order to reproduce real-world sound in an enclosed

More information

Binaural auralization based on spherical-harmonics beamforming

Binaural auralization based on spherical-harmonics beamforming Binaural auralization based on spherical-harmonics beamforming W. Song a, W. Ellermeier b and J. Hald a a Brüel & Kjær Sound & Vibration Measurement A/S, Skodsborgvej 7, DK-28 Nærum, Denmark b Institut

More information

3D Sound System with Horizontally Arranged Loudspeakers

3D Sound System with Horizontally Arranged Loudspeakers 3D Sound System with Horizontally Arranged Loudspeakers Keita Tanno A DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE AND ENGINEERING

More information

Capturing 360 Audio Using an Equal Segment Microphone Array (ESMA)

Capturing 360 Audio Using an Equal Segment Microphone Array (ESMA) H. Lee, Capturing 360 Audio Using an Equal Segment Microphone Array (ESMA), J. Audio Eng. Soc., vol. 67, no. 1/2, pp. 13 26, (2019 January/February.). DOI: https://doi.org/10.17743/jaes.2018.0068 Capturing

More information

Upper hemisphere sound localization using head-related transfer functions in the median plane and interaural differences

Upper hemisphere sound localization using head-related transfer functions in the median plane and interaural differences Acoust. Sci. & Tech. 24, 5 (23) PAPER Upper hemisphere sound localization using head-related transfer functions in the median plane and interaural differences Masayuki Morimoto 1;, Kazuhiro Iida 2;y and

More information

THE DEVELOPMENT OF A DESIGN TOOL FOR 5-SPEAKER SURROUND SOUND DECODERS

THE DEVELOPMENT OF A DESIGN TOOL FOR 5-SPEAKER SURROUND SOUND DECODERS THE DEVELOPMENT OF A DESIGN TOOL FOR 5-SPEAKER SURROUND SOUND DECODERS by John David Moore A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for the degree

More information

SOPA version 2. Revised July SOPA project. September 21, Introduction 2. 2 Basic concept 3. 3 Capturing spatial audio 4

SOPA version 2. Revised July SOPA project. September 21, Introduction 2. 2 Basic concept 3. 3 Capturing spatial audio 4 SOPA version 2 Revised July 7 2014 SOPA project September 21, 2014 Contents 1 Introduction 2 2 Basic concept 3 3 Capturing spatial audio 4 4 Sphere around your head 5 5 Reproduction 7 5.1 Binaural reproduction......................

More information

University of Huddersfield Repository

University of Huddersfield Repository University of Huddersfield Repository Moore, David J. and Wakefield, Jonathan P. Surround Sound for Large Audiences: What are the Problems? Original Citation Moore, David J. and Wakefield, Jonathan P.

More information

Audio Engineering Society. Convention Paper. Presented at the 115th Convention 2003 October New York, New York

Audio Engineering Society. Convention Paper. Presented at the 115th Convention 2003 October New York, New York Audio Engineering Society Convention Paper Presented at the 115th Convention 2003 October 10 13 New York, New York This convention paper has been reproduced from the author's advance manuscript, without

More information

Measuring impulse responses containing complete spatial information ABSTRACT

Measuring impulse responses containing complete spatial information ABSTRACT Measuring impulse responses containing complete spatial information Angelo Farina, Paolo Martignon, Andrea Capra, Simone Fontana University of Parma, Industrial Eng. Dept., via delle Scienze 181/A, 43100

More information

Click to edit Master title style

Click to edit Master title style Interaction speciality Computer Science Master - University Paris-Sud Mixed Reality and Tangible Interfaces Click to edit Master title style 3D Mixed and Augmented Reality Jean-Marc Vezien Vezien@limsi.fr

More information

3D Sound Simulation over Headphones

3D Sound Simulation over Headphones Lorenzo Picinali (lorenzo@limsi.fr or lpicinali@dmu.ac.uk) Paris, 30 th September, 2008 Chapter for the Handbook of Research on Computational Art and Creative Informatics Chapter title: 3D Sound Simulation

More information

Aalborg Universitet. Binaural Technique Hammershøi, Dorte; Møller, Henrik. Published in: Communication Acoustics. Publication date: 2005

Aalborg Universitet. Binaural Technique Hammershøi, Dorte; Møller, Henrik. Published in: Communication Acoustics. Publication date: 2005 Aalborg Universitet Binaural Technique Hammershøi, Dorte; Møller, Henrik Published in: Communication Acoustics Publication date: 25 Link to publication from Aalborg University Citation for published version

More information

A binaural auditory model and applications to spatial sound evaluation

A binaural auditory model and applications to spatial sound evaluation A binaural auditory model and applications to spatial sound evaluation Ma r k o Ta k a n e n 1, Ga ë ta n Lo r h o 2, a n d Mat t i Ka r ja l a i n e n 1 1 Helsinki University of Technology, Dept. of Signal

More information

The Spatial Soundscape. James L. Barbour Swinburne University of Technology, Melbourne, Australia

The Spatial Soundscape. James L. Barbour Swinburne University of Technology, Melbourne, Australia The Spatial Soundscape 1 James L. Barbour Swinburne University of Technology, Melbourne, Australia jbarbour@swin.edu.au Abstract While many people have sought to capture and document sounds for posterity,

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Architectural Acoustics Session 2aAAa: Adapting, Enhancing, and Fictionalizing

More information

3D audio overview : from 2.0 to N.M (?)

3D audio overview : from 2.0 to N.M (?) 3D audio overview : from 2.0 to N.M (?) Orange Labs Rozenn Nicol, Research & Development, 10/05/2012, Journée de printemps de la Société Suisse d Acoustique "Audio 3D" SSA, AES, SFA Signal multicanal 3D

More information

6-channel recording/reproduction system for 3-dimensional auralization of sound fields

6-channel recording/reproduction system for 3-dimensional auralization of sound fields Acoust. Sci. & Tech. 23, 2 (2002) TECHNICAL REPORT 6-channel recording/reproduction system for 3-dimensional auralization of sound fields Sakae Yokoyama 1;*, Kanako Ueno 2;{, Shinichi Sakamoto 2;{ and

More information

Externalization in binaural synthesis: effects of recording environment and measurement procedure

Externalization in binaural synthesis: effects of recording environment and measurement procedure Externalization in binaural synthesis: effects of recording environment and measurement procedure F. Völk, F. Heinemann and H. Fastl AG Technische Akustik, MMK, TU München, Arcisstr., 80 München, Germany

More information

APPLICATIONS OF A DIGITAL AUDIO-SIGNAL PROCESSOR IN T.V. SETS

APPLICATIONS OF A DIGITAL AUDIO-SIGNAL PROCESSOR IN T.V. SETS Philips J. Res. 39, 94-102, 1984 R 1084 APPLICATIONS OF A DIGITAL AUDIO-SIGNAL PROCESSOR IN T.V. SETS by W. J. W. KITZEN and P. M. BOERS Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

More information

VIRTUAL ACOUSTICS: OPPORTUNITIES AND LIMITS OF SPATIAL SOUND REPRODUCTION

VIRTUAL ACOUSTICS: OPPORTUNITIES AND LIMITS OF SPATIAL SOUND REPRODUCTION ARCHIVES OF ACOUSTICS 33, 4, 413 422 (2008) VIRTUAL ACOUSTICS: OPPORTUNITIES AND LIMITS OF SPATIAL SOUND REPRODUCTION Michael VORLÄNDER RWTH Aachen University Institute of Technical Acoustics 52056 Aachen,

More information

Sound Source Localization using HRTF database

Sound Source Localization using HRTF database ICCAS June -, KINTEX, Gyeonggi-Do, Korea Sound Source Localization using HRTF database Sungmok Hwang*, Youngjin Park and Younsik Park * Center for Noise and Vibration Control, Dept. of Mech. Eng., KAIST,

More information

Convention Paper 9870 Presented at the 143 rd Convention 2017 October 18 21, New York, NY, USA

Convention Paper 9870 Presented at the 143 rd Convention 2017 October 18 21, New York, NY, USA Audio Engineering Society Convention Paper 987 Presented at the 143 rd Convention 217 October 18 21, New York, NY, USA This convention paper was selected based on a submitted abstract and 7-word precis

More information

New acoustical techniques for measuring spatial properties in concert halls

New acoustical techniques for measuring spatial properties in concert halls New acoustical techniques for measuring spatial properties in concert halls LAMBERTO TRONCHIN and VALERIO TARABUSI DIENCA CIARM, University of Bologna, Italy http://www.ciarm.ing.unibo.it Abstract: - The

More information

24. TONMEISTERTAGUNG VDT INTERNATIONAL CONVENTION, November Alexander Lindau*, Stefan Weinzierl*

24. TONMEISTERTAGUNG VDT INTERNATIONAL CONVENTION, November Alexander Lindau*, Stefan Weinzierl* FABIAN - An instrument for software-based measurement of binaural room impulse responses in multiple degrees of freedom (FABIAN Ein Instrument zur softwaregestützten Messung binauraler Raumimpulsantworten

More information

HRTF adaptation and pattern learning

HRTF adaptation and pattern learning HRTF adaptation and pattern learning FLORIAN KLEIN * AND STEPHAN WERNER Electronic Media Technology Lab, Institute for Media Technology, Technische Universität Ilmenau, D-98693 Ilmenau, Germany The human

More information

The Why and How of With-Height Surround Sound

The Why and How of With-Height Surround Sound The Why and How of With-Height Surround Sound Jörn Nettingsmeier freelance audio engineer Essen, Germany 1 Your next 45 minutes on the graveyard shift this lovely Saturday

More information

Enhancing 3D Audio Using Blind Bandwidth Extension

Enhancing 3D Audio Using Blind Bandwidth Extension Enhancing 3D Audio Using Blind Bandwidth Extension (PREPRINT) Tim Habigt, Marko Ðurković, Martin Rothbucher, and Klaus Diepold Institute for Data Processing, Technische Universität München, 829 München,

More information

Introducing Twirling720 VR Audio Recorder

Introducing Twirling720 VR Audio Recorder Introducing Twirling720 VR Audio Recorder The Twirling720 VR Audio Recording system works with ambisonics, a multichannel audio recording technique that lets you capture 360 of sound at one single point.

More information

BINAURAL RECORDING SYSTEM AND SOUND MAP OF MALAGA

BINAURAL RECORDING SYSTEM AND SOUND MAP OF MALAGA EUROPEAN SYMPOSIUM ON UNDERWATER BINAURAL RECORDING SYSTEM AND SOUND MAP OF MALAGA PACS: Rosas Pérez, Carmen; Luna Ramírez, Salvador Universidad de Málaga Campus de Teatinos, 29071 Málaga, España Tel:+34

More information

III. Publication III. c 2005 Toni Hirvonen.

III. Publication III. c 2005 Toni Hirvonen. III Publication III Hirvonen, T., Segregation of Two Simultaneously Arriving Narrowband Noise Signals as a Function of Spatial and Frequency Separation, in Proceedings of th International Conference on

More information

Improving 5.1 and Stereophonic Mastering/Monitoring by Using Ambiophonic Techniques

Improving 5.1 and Stereophonic Mastering/Monitoring by Using Ambiophonic Techniques International Tonmeister Symposium, Oct. 31, 2005 Schloss Hohenkammer Improving 5.1 and Stereophonic Mastering/Monitoring by Using Ambiophonic Techniques By Ralph Glasgal Ambiophonic Institute 4 Piermont

More information

EE1.el3 (EEE1023): Electronics III. Acoustics lecture 20 Sound localisation. Dr Philip Jackson.

EE1.el3 (EEE1023): Electronics III. Acoustics lecture 20 Sound localisation. Dr Philip Jackson. EE1.el3 (EEE1023): Electronics III Acoustics lecture 20 Sound localisation Dr Philip Jackson www.ee.surrey.ac.uk/teaching/courses/ee1.el3 Sound localisation Objectives: calculate frequency response of

More information

Personalized 3D sound rendering for content creation, delivery, and presentation

Personalized 3D sound rendering for content creation, delivery, and presentation Personalized 3D sound rendering for content creation, delivery, and presentation Federico Avanzini 1, Luca Mion 2, Simone Spagnol 1 1 Dep. of Information Engineering, University of Padova, Italy; 2 TasLab

More information

HRIR Customization in the Median Plane via Principal Components Analysis

HRIR Customization in the Median Plane via Principal Components Analysis 한국소음진동공학회 27 년춘계학술대회논문집 KSNVE7S-6- HRIR Customization in the Median Plane via Principal Components Analysis 주성분분석을이용한 HRIR 맞춤기법 Sungmok Hwang and Youngjin Park* 황성목 박영진 Key Words : Head-Related Transfer

More information

Predicting localization accuracy for stereophonic downmixes in Wave Field Synthesis

Predicting localization accuracy for stereophonic downmixes in Wave Field Synthesis Predicting localization accuracy for stereophonic downmixes in Wave Field Synthesis Hagen Wierstorf Assessment of IP-based Applications, T-Labs, Technische Universität Berlin, Berlin, Germany. Sascha Spors

More information

PERSONAL 3D AUDIO SYSTEM WITH LOUDSPEAKERS

PERSONAL 3D AUDIO SYSTEM WITH LOUDSPEAKERS PERSONAL 3D AUDIO SYSTEM WITH LOUDSPEAKERS Myung-Suk Song #1, Cha Zhang 2, Dinei Florencio 3, and Hong-Goo Kang #4 # Department of Electrical and Electronic, Yonsei University Microsoft Research 1 earth112@dsp.yonsei.ac.kr,

More information

THE use of 3D sound technology is gaining ground on

THE use of 3D sound technology is gaining ground on Estimation and Evaluation of Reduced Length Equalization Filters for Binaural Sound Reproduction Esben Theill Christiansen, Jakob Sandholt Klemmensen, Michael Mørkeberg Løngaa, Daniel Klokmose Nielsen,

More information

CONTROL OF PERCEIVED ROOM SIZE USING SIMPLE BINAURAL TECHNOLOGY. Densil Cabrera

CONTROL OF PERCEIVED ROOM SIZE USING SIMPLE BINAURAL TECHNOLOGY. Densil Cabrera CONTROL OF PERCEIVED ROOM SIZE USING SIMPLE BINAURAL TECHNOLOGY Densil Cabrera Faculty of Architecture, Design and Planning University of Sydney NSW 26, Australia densil@usyd.edu.au ABSTRACT The localization

More information

Spatial Audio & The Vestibular System!

Spatial Audio & The Vestibular System! ! Spatial Audio & The Vestibular System! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 13! stanford.edu/class/ee267/!! Updates! lab this Friday will be released as a video! TAs

More information

Waves C360 SurroundComp. Software Audio Processor. User s Guide

Waves C360 SurroundComp. Software Audio Processor. User s Guide Waves C360 SurroundComp Software Audio Processor User s Guide Waves C360 software guide page 1 of 10 Introduction and Overview Introducing Waves C360, a Surround Soft Knee Compressor for 5 or 5.1 channels.

More information

INTRODUCTION Headphone virtualizers are systems that aim at giving the user the illusion that the sound is coming from loudspeakers rather then from t

INTRODUCTION Headphone virtualizers are systems that aim at giving the user the illusion that the sound is coming from loudspeakers rather then from t Audio Engineering Society Convention Paper Presented at the 3th Convention October 5 8 Los Angeles, CA, USA This convention paper has been reproduced from the author's advance manuscript, without editing,

More information

Outline. Context. Aim of our projects. Framework

Outline. Context. Aim of our projects. Framework Cédric André, Marc Evrard, Jean-Jacques Embrechts, Jacques Verly Laboratory for Signal and Image Exploitation (INTELSIG), Department of Electrical Engineering and Computer Science, University of Liège,

More information

Psychoacoustic Cues in Room Size Perception

Psychoacoustic Cues in Room Size Perception Audio Engineering Society Convention Paper Presented at the 116th Convention 2004 May 8 11 Berlin, Germany 6084 This convention paper has been reproduced from the author s advance manuscript, without editing,

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 1, 21 http://acousticalsociety.org/ ICA 21 Montreal Montreal, Canada 2 - June 21 Psychological and Physiological Acoustics Session appb: Binaural Hearing (Poster

More information

Analysis of Frontal Localization in Double Layered Loudspeaker Array System

Analysis of Frontal Localization in Double Layered Loudspeaker Array System Proceedings of 20th International Congress on Acoustics, ICA 2010 23 27 August 2010, Sydney, Australia Analysis of Frontal Localization in Double Layered Loudspeaker Array System Hyunjoo Chung (1), Sang

More information

The analysis of multi-channel sound reproduction algorithms using HRTF data

The analysis of multi-channel sound reproduction algorithms using HRTF data The analysis of multichannel sound reproduction algorithms using HRTF data B. Wiggins, I. PatersonStephens, P. Schillebeeckx Processing Applications Research Group University of Derby Derby, United Kingdom

More information

3D AUDIO AR/VR CAPTURE AND REPRODUCTION SETUP FOR AURALIZATION OF SOUNDSCAPES

3D AUDIO AR/VR CAPTURE AND REPRODUCTION SETUP FOR AURALIZATION OF SOUNDSCAPES 3D AUDIO AR/VR CAPTURE AND REPRODUCTION SETUP FOR AURALIZATION OF SOUNDSCAPES Rishabh Gupta, Bhan Lam, Joo-Young Hong, Zhen-Ting Ong, Woon-Seng Gan, Shyh Hao Chong, Jing Feng Nanyang Technological University,

More information

A triangulation method for determining the perceptual center of the head for auditory stimuli

A triangulation method for determining the perceptual center of the head for auditory stimuli A triangulation method for determining the perceptual center of the head for auditory stimuli PACS REFERENCE: 43.66.Qp Brungart, Douglas 1 ; Neelon, Michael 2 ; Kordik, Alexander 3 ; Simpson, Brian 4 1

More information

Speaker placement, externalization, and envelopment in home listening rooms

Speaker placement, externalization, and envelopment in home listening rooms Speaker placement, externalization, and envelopment in home listening rooms David Griesinger Lexicon 3 Oak Park Bedford, MA 01730 dg@lexicon.com Abstract The ideal number and placement of low frequency

More information

Is My Decoder Ambisonic?

Is My Decoder Ambisonic? Is My Decoder Ambisonic? Aaron J. Heller SRI International, Menlo Park, CA, US Richard Lee Pandit Litoral, Cooktown, QLD, AU Eric M. Benjamin Dolby Labs, San Francisco, CA, US 125 th AES Convention, San

More information

DC-1 Theory and Design

DC-1 Theory and Design DC-1 Theory and Design Lexicon Acknowledgements The DC-1 is manufactured under license from Dolby Laboratories Licensing Corporation. "Dolby", "AC-3", "Pro Logic", and the double-d symbol are trademarks

More information

396 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 2, FEBRUARY 2011

396 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 2, FEBRUARY 2011 396 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 2, FEBRUARY 2011 Obtaining Binaural Room Impulse Responses From B-Format Impulse Responses Using Frequency-Dependent Coherence

More information

Psychoacoustics of 3D Sound Recording: Research and Practice

Psychoacoustics of 3D Sound Recording: Research and Practice Psychoacoustics of 3D Sound Recording: Research and Practice Dr Hyunkook Lee University of Huddersfield, UK h.lee@hud.ac.uk www.hyunkooklee.com www.hud.ac.uk/apl About me Senior Lecturer (i.e. Associate

More information

Aalborg Universitet. Audibility of time switching in dynamic binaural synthesis Hoffmann, Pablo Francisco F.; Møller, Henrik

Aalborg Universitet. Audibility of time switching in dynamic binaural synthesis Hoffmann, Pablo Francisco F.; Møller, Henrik Aalborg Universitet Audibility of time switching in dynamic binaural synthesis Hoffmann, Pablo Francisco F.; Møller, Henrik Published in: Journal of the Audio Engineering Society Publication date: 2005

More information

MULTICHANNEL CONTROL OF SPATIAL EXTENT THROUGH SINUSOIDAL PARTIAL MODULATION (SPM)

MULTICHANNEL CONTROL OF SPATIAL EXTENT THROUGH SINUSOIDAL PARTIAL MODULATION (SPM) MULTICHANNEL CONTROL OF SPATIAL EXTENT THROUGH SINUSOIDAL PARTIAL MODULATION (SPM) Andrés Cabrera Media Arts and Technology University of California Santa Barbara, USA andres@mat.ucsb.edu Gary Kendall

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 A MODEL OF THE HEAD-RELATED TRANSFER FUNCTION BASED ON SPECTRAL CUES

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 A MODEL OF THE HEAD-RELATED TRANSFER FUNCTION BASED ON SPECTRAL CUES 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, -7 SEPTEMBER 007 A MODEL OF THE HEAD-RELATED TRANSFER FUNCTION BASED ON SPECTRAL CUES PACS: 43.66.Qp, 43.66.Pn, 43.66Ba Iida, Kazuhiro 1 ; Itoh, Motokuni

More information

DECORRELATION TECHNIQUES FOR THE RENDERING OF APPARENT SOUND SOURCE WIDTH IN 3D AUDIO DISPLAYS. Guillaume Potard, Ian Burnett

DECORRELATION TECHNIQUES FOR THE RENDERING OF APPARENT SOUND SOURCE WIDTH IN 3D AUDIO DISPLAYS. Guillaume Potard, Ian Burnett 04 DAFx DECORRELATION TECHNIQUES FOR THE RENDERING OF APPARENT SOUND SOURCE WIDTH IN 3D AUDIO DISPLAYS Guillaume Potard, Ian Burnett School of Electrical, Computer and Telecommunications Engineering University

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 VIRTUAL AUDIO REPRODUCED IN A HEADREST

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 VIRTUAL AUDIO REPRODUCED IN A HEADREST 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 VIRTUAL AUDIO REPRODUCED IN A HEADREST PACS: 43.25.Lj M.Jones, S.J.Elliott, T.Takeuchi, J.Beer Institute of Sound and Vibration Research;

More information

Chapter 6: Room Acoustics and 3D Sound Processing

Chapter 6: Room Acoustics and 3D Sound Processing Chapter 6: Room Acoustics and 3D Sound Processing Sound in rooms The shapes, dimensions and wall's surface structure of rooms have effect on sounds. How these affect sound is the subject of room acoustics.

More information

Sound localization with multi-loudspeakers by usage of a coincident microphone array

Sound localization with multi-loudspeakers by usage of a coincident microphone array PAPER Sound localization with multi-loudspeakers by usage of a coincident microphone array Jun Aoki, Haruhide Hokari and Shoji Shimada Nagaoka University of Technology, 1603 1, Kamitomioka-machi, Nagaoka,

More information

Finding the Prototype for Stereo Loudspeakers

Finding the Prototype for Stereo Loudspeakers Finding the Prototype for Stereo Loudspeakers The following presentation slides from the AES 51st Conference on Loudspeakers and Headphones summarize my activities and observations for the design of loudspeakers

More information

Sound Processing Technologies for Realistic Sensations in Teleworking

Sound Processing Technologies for Realistic Sensations in Teleworking Sound Processing Technologies for Realistic Sensations in Teleworking Takashi Yazu Makoto Morito In an office environment we usually acquire a large amount of information without any particular effort

More information

Three-dimensional sound field simulation using the immersive auditory display system Sound Cask for stage acoustics

Three-dimensional sound field simulation using the immersive auditory display system Sound Cask for stage acoustics Stage acoustics: Paper ISMRA2016-34 Three-dimensional sound field simulation using the immersive auditory display system Sound Cask for stage acoustics Kanako Ueno (a), Maori Kobayashi (b), Haruhito Aso

More information

Master MVA Analyse des signaux Audiofréquences Audio Signal Analysis, Indexing and Transformation

Master MVA Analyse des signaux Audiofréquences Audio Signal Analysis, Indexing and Transformation Master MVA Analyse des signaux Audiofréquences Audio Signal Analysis, Indexing and Transformation Lecture on 3D sound rendering Gaël RICHARD February 2018 «Licence de droits d'usage" http://formation.enst.fr/licences/pedago_sans.html

More information

A five-microphone method to measure the reflection coefficients of headsets

A five-microphone method to measure the reflection coefficients of headsets A five-microphone method to measure the reflection coefficients of headsets Jinlin Liu, Huiqun Deng, Peifeng Ji and Jun Yang Key Laboratory of Noise and Vibration Research Institute of Acoustics, Chinese

More information

THE TEMPORAL and spectral structure of a sound signal

THE TEMPORAL and spectral structure of a sound signal IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 13, NO. 1, JANUARY 2005 105 Localization of Virtual Sources in Multichannel Audio Reproduction Ville Pulkki and Toni Hirvonen Abstract The localization

More information

ROOM AND CONCERT HALL ACOUSTICS MEASUREMENTS USING ARRAYS OF CAMERAS AND MICROPHONES

ROOM AND CONCERT HALL ACOUSTICS MEASUREMENTS USING ARRAYS OF CAMERAS AND MICROPHONES ROOM AND CONCERT HALL ACOUSTICS The perception of sound by human listeners in a listening space, such as a room or a concert hall is a complicated function of the type of source sound (speech, oration,

More information