Assessing the perceptual consequences of non Earth environments

Size: px
Start display at page:

Download "Assessing the perceptual consequences of non Earth environments"

Transcription

1 WHITE PAPER DECADAL SURVEY ON BIOLOGICAL AND PHYSICAL SCIENCES IN SPACE NATIONAL RESEARCH COUNCIL/NATIONAL ACADEMY OF SCIENCES Assessing the perceptual consequences of non Earth environments Laurence R. Harris, Michael Jenkin, Richard T. Dyde, Heather Jenkin, James E. Zacher Centre for Vision Research, York University, Toronto, Ontario M3J 1P3 Canada > Summary: This white paper summarizes the need to measure the perceptual consequences of long term exposure to reduced gravity environments. Such information is essential to establish astronaut comfort, optimum operational performance and for the design of appropriate living spaces. As part of the human spaceflight program, humans will live and perform in the challenging environments that space travel and visits to mars and the moon present. Our perceptual systems have evolved to operate with the constants and constraints that exist on Earth. It is important that we understand the limitations and changes that result from living in these unusual environments. Our normal Earth bound lives have provided a set of constants such as the continuous pull of gravity, the fact that the sky is generally lighter than the ground, that trees grow roughly vertically, that the horizon is level with our eyes and many more. Perception takes place in the context of these constants. As a demonstration, figure 1 shows an example of the well known Thatcher illusion [1]. First view the figure with the page held upright. The two images appear normal and relatively similar when viewed in this orientation but when the page is rotated 180 degrees structural differences become readily apparent. Recognition of faces is dependent on their orientation relative to the viewer. Now rotate the page until it just becomes apparent which face is distorted. This angle will change depending on the orientation of the body relative to gravity. Even recognizing when a face is distorted depends on the context provided by gravity! The perceptual conundrum that an astronaut faces when operating in microgravity is illustrated in Figure 2. Many of the natural perceptual cues that underlie our everyday existence are lost in outer space. Here an astronaut is operating in the Shuttle payload bay. The astronaut s field of view is limited by the space suit. The lack of gravity leads to unusual activity in the various gravitoreceptors within their body. The space suit also limits haptic feedback normally felt 1

2 Figure 1. The Thatcher illusion. Large structural changes are easily overlooked in upsidedown faces but become readily apparent when viewed in their normal orientation. through the skin, and the lack of gravity provides unusual perceptual cues to the idiotropic (literally introspective ) senses including those associated with joint weighting and normal muscle tension. Finally, the visual environment itself is unnatural. The normal visual cues (ground, sky, surroundings) are missing, but more even more subtle effects are present. For example, the lack of an atmosphere in space or on the moon eliminates the normal scattering of blue light from the atmosphere which changes the apparent colour of objects with depth. Given the critical nature of gravity to a wide range of perceptual systems it is perhaps not surprising that astronauts operating in microgravity have reported a wide range of perceptual effects [2]. One important perceptual effect that is often reported in microgravity is the visual reorientation illusion (VRI) in which astronauts suddenly experience walls, ceiling and floor surfaces changing identities [3]. VRI s have been reported on Skylab [4], Spacelab [5] and continue to be reported to this day. A related perceptual effect is that the perceived direction of up may vary with head tilt differently to how it varies under normal gravity (see below). Illusions of this type can be dangerous because they can lead to errors in operating equipment (misinterpreting the orientation of a toggle switch) or navigating to emergency stations (turning left instead of right). However, we still cannot predict these perceptual phenomena or completely minimize their effects. Figure 2. An astronaut floating in the Shuttle payload bay. Probes for measuring perceived orientation. Long before the development of spaceflight and the need to understand the perceptual effects of living in outer space, it was recognized that the definition of up, or equivalently down, or which surface is the floor, were fundamental questions on Earth. For example, in our normal 2

3 day to day environment, one could imagine asking subjects a very simple question like where is the floor? [6] and use this to measure the perceived direction of up, but other probes are possible too including the use of luminous lines [7], shaded disks [8], and ambiguous characters [9]. These can all be used to assess the effect of combined environmental cues to the perception of up on broader perceptual tasks. Each of these probes has advantages and disadvantages. For example, the luminous line probe requires the subject to judge the orientation of a line relative to the perceived direction of gravity a judgement that is meaningless when gravity is absent. But to illustrate perhaps the simplest of these consider the probe that asks a subject to indicate which surface in their environment is the floor. The floor is that surface in an environment that provides physical support. In a normal environment the floor might be sensibly defined as the surface most closely aligned with the gravity defined horizontal. It turns out that this is not the only factor taken into account in making this decision. Given a probe, or a set of probes, it is then possible to quantify the processes that underlie our perception of which way is up, and from this begin to understand the conditions that lead to VRI s and similar perceptual problems in unusual gravity environments. Which way is up? The direction of up can be modeled in a number of ways. Perhaps the most straightforward is to amalgamate the various perceptual systems that transduce information about the direction of up into three broad categories; a measure of the direction of up obtained from the visual sense, a measure of the direction of up obtained from gravity defined cues and most importantly the otolithic division of the vestibular system which in collaboration with somatosensory cues provides cues as to the direction of gravity, and body centric (idiotropic) cues, cues obtained from the frame of reference anchored in the long axis of the body. Mittelstaedt [10], and more recently Dyde et al. [9], have argued that the direction of up can be modeled in terms of a weighted vector sum of cues as to the direction of up provided by these three broadly defined sources of information (see Figure 3). Figure 3. Predicting the perceived direction of up from its contributing factors. This weighted vector sum model has proven to be effective in modeling the perceived up direction and assessing the significance attached to each cue under a range of conditions including ground based [9], short duration microgravity [11] and neutral buoyancy [12]. Different environmental conditions result in different emphases being placed on the three components that make up the model. Within the context of this model, illusions such as VRI can be seen as a consequence of a change in weighting of the available vectors. 3

4 When the body, visual cues and gravity are misaligned, the perceived direction of up is not aligned exactly with any one of these cues but is a compromise best guess derived from the weighted sum (figure 3). Changes in the weighting of the cues, such as can occur when gravity is not present or is present at an unusual level, can lead to a distorted perception of upright and potentially disastrous consequences. In space, which way is up? Surprisingly little is known about the full effects of the range of unnatural perceptual cues that can be encountered in space travel and how they act and interact with the perception of up. Visual cues. Astronauts operating in space habitats are presented with unusual and often uniformly textured environments. Rack space is always a premium in spacecraft and as a consequence cues provided by consistent alignment of equipment are often sacrificed. Highly polarized scenes with natural objects are key to providing a visual up [13, 14]. The lack (or at least reduction) of intrinsically polarized objects [15] in the artificial environment found within spacecraft further reduces the visual cues available to define a coherent direction of up. When inferring 3D structure from shading information, the brain exploits the fact that on Earth light comes from above [16]. Lighting in the interior of space habitats is often designed to provide equal illumination on all surfaces and in all directions thus providing no coherent cue to up based on lighting. The lack of a coherent lighting direction means that shape from shading judgements are likely to be inconsistent with the judgements that would have been made on Earth of the same object. Indeed, this is the basic premise behind the use of shape fromshading judgements as a probe to determine the direction of up [8, 17]. As astronauts move outside of their habitat onto the surface of planets or float above space structures, further complications come into play. In addition to many of the effects that occur indoors, astronauts are now faced with views of long distances that are not coloured naturally by the blue shift found on Earth. Astronauts are also faced with the significantly reduced field of view provided by their environmental suits. Given the critical importance of visual cues in the perception of self orientation when gravity is not present, the limited field of view found in space suits is likely to further reduce the ability of vision to provide an effective cue as to the direction of up [18]. Haptic cues. The haptic system contributes to the sense of orientation on Earth by indicating pressure points where the body touches support surfaces. The microgravity environment reduces such cutaneous pressure and also unloads joints which can result in a loss of limb position awareness [19] and contribute to disorientation [20]. The effect of such a reduction can be assessed from the weighting assigned to body cues in the determination of up. Body cues. The body provides a frame within which questions like which way is up? can be answered. Normally we have at least a partial view of our body and we can usually find where our feet are. It takes an unusual environment indeed to break this fundamental idiotropic 4

5 representation. Wearing a space suit, unfortunately, provides such an environment in which an astronaut cannot see their body and where visual cues to the floor may not be useable. Disorientation is induced when this situation is simulated on earth [21]. Gravity cues. Short duration microgravity studies have demonstrated that when gravity is effectively removed for short periods of time humans tend to rely more on the perceived orientation of their body rather than visual cues [11]. Surprisingly, this also appears to be true during periods of hypergravity as well. Human performance under long duration microgravity is less well understood, primarily due to the small subject pool of astronauts who have experienced long duration periods of microgravity [22]. The Bodies in the Space Environment (BISE) project, sponsored by the Canadian Space Agency, currently underway on the International Space Station is studying the long terms effects of exposure to microgravity on the perception of up. Although the BISE project will answer critical questions about the adaptation of self orientation perception to microgravity conditions, the question of human performance under other gravity states is not as well studied. Our preliminary experiments using parabolic flights to simulate other gravity conditions suggest that lunar gravity conditions are more similar to Earth gravity conditions. Given that zero gravity conditions (and hypergravity conditions) are significantly different from earth gravity, what is the minimum gravity state that is necessary to provide Earth like performance? Perceptual measurements will help us live and work in space. As we move from our constant one gravity environment to the harsh realities of outer space, the moon and mars, we leave behind our normal gravity conditions. We will also leave behind a range of perceptual cues that underlie much of human perception. We must expect that these differences will have both short term and long term perceptual consequences. Ground based and short duration microgravity experiments have demonstrated a range of systemic and reproducible effects on our perception of self orientation. Many of the experiments needed to investigate perceptual phenomena can be carried out using a laptop with controlled viewing conditions, currently available on the International Space Station in the form of Neurospat, with appropriate software to control the display. For humans to function properly in space it is critical that the effects of operating in that environment be properly quantified. Such knowledge can be used to train space travelers to understand the effects of the unnatural environment on their perception of self orientation and to aid in their training. The information may also be of value in terms of designing appropriate countermeasures for these effects and in the design of habitats and equipment that reduces or minimizes the severity of the effects. 5

6 References [1] Thompson P (1980) Margaret Thatcher: a new illusion. Perception 9: [2] Oman, C. M. (1987) The role of static visual orientation cues in the etiology of space motion sickness. Proc. of Symp. on Vestibular Organs. Houston, TX [3] Oman, C. M. (2007) Spatial orientation and navigation in microgravity. in Mast, F. and Jancke, L. Spatial processing in navigation, imagery and perception. Springer; [4] Cooper Jr., H. (1976) A House in Space. Holt, Rinehart and Winston, Austin, TX [5] Oman CM, et al. (1986) M.I.T./Canadian vestibular experiments on the spacelab 1 mission: 4. Space motion sickness: symptoms, stimuli, and predictability. Exp. Brain Res. 64: [6] Harris LR, et al. (2009) Where's the floor? submitted for publication [7] Aubert H (1861) Eine scheinbare Drehung von Objekten bei Neigung des Kopfes nach rechts oder links. Virchows Archiven 20: [8] Jenkin, H. L., et al. (2004) Shape from shading depends on visual, gravitational, and bodyorientation cues. Perception 33: [9] Dyde RT, et al. (2006) The subjective visual vertical and the perceptual upright. Exp Brain Res 173: [10] Mittelstaedt H (1991) The role of the otoliths in the perception of the orientation of self and world to the vertical. Zoologische Jahrbucher Abteilung fur Allgemeine Zoologie und Physiologie der Tiere 95: [11] Dyde RT et al. (2009) The effect of altered gravity states on the perception of orientation. Exp Brain Res. 194: [12] Jenkin HL, et al. (2009) How do SCUBA divers know which way is up? The influence of buoyancy on orientation judgements. Journal of Vision 9: 716a [13] Harris LR, et al. (2007) The relative contributions of the visual components of a natural scene in defining the perceptual upright. J. Vision 7: 303 [14] Oman, C. M. (2003) Human visual orientation in weightlessness. In Harris, L. R. and Jenkin, M. R. Levels of Perception. New York: Springer Verlag; [15] Howard, I. P. (1982) Human Visual Orientation. John Wiley, New York [16] Howard IP, et al. (1990) Shape from shading in different frames of reference. Perception 19: [17] Jenkin HL et al. (2003) Multi sensory contributions to the perception of up: Evidence from illumination judgements. J. Vision 3: 638a [18] Jenkin HL et al. (2007) Effect of field of view on the levitation illusion. J Vest Res17: [19] Watt D, et al. (1985) Effects of Weightlessness on an Otolith Spinal Reflex. Canadian J. Neurol. Sci. 12: [20] Gentaz E, et al. (1996) Role of gravitational cues in the haptic perception of orientation. Percept. and Psychophys. 58: [21] Howard, I. P. et al. (2005) Visual orientation in a mirror world tilted 90 degrees. Perception. 34:7 15. [22] Young LR, et al. (1986) M.I.T./Canadian vestibular experiments on the spacelab 1 mission: 1. sensory adaptation to weightlessness and readaptation to one g: an overview. Exp. Brain Res. 64:

Where s the Floor? L. R. Harris 1,2,, M. R. M. Jenkin 1,3, H. L. M. Jenkin 1,2, R. T. Dyde 1 and C. M. Oman 4

Where s the Floor? L. R. Harris 1,2,, M. R. M. Jenkin 1,3, H. L. M. Jenkin 1,2, R. T. Dyde 1 and C. M. Oman 4 Seeing and Perceiving 23 (2010) 81 88 brill.nl/sp Where s the Floor? L. R. Harris 1,2,, M. R. M. Jenkin 1,3, H. L. M. Jenkin 1,2, R. T. Dyde 1 and C. M. Oman 4 1 Centre for Vision Research, York University,

More information

THE PERCEPTION OF UPRIGHT UNDER LUNAR GRAVITY. L. R. Harris 1, 2, M. R. M. Jenkin 1, 3, R. T. Dyde 1. Centre for Vision Research, 2

THE PERCEPTION OF UPRIGHT UNDER LUNAR GRAVITY. L. R. Harris 1, 2, M. R. M. Jenkin 1, 3, R. T. Dyde 1. Centre for Vision Research, 2 THE PERCEPTION OF UPRIGHT UNDER LUNAR GRAVITY L. R. Harris 1, 2, M. R. M. Jenkin 1, 3, R. T. Dyde 1 1 Centre for Vision Research, 2 Departments of Psychology, and 3 Computer Science and Engineering, York

More information

THE PERCEPTION OF UPRIGHT UNDER LUNAR GRAVITY. L. R. Harris 1, 2, M. R. M. Jenkin 1, 3, R. T. Dyde 1. Centre for Vision Research, 2

THE PERCEPTION OF UPRIGHT UNDER LUNAR GRAVITY. L. R. Harris 1, 2, M. R. M. Jenkin 1, 3, R. T. Dyde 1. Centre for Vision Research, 2 THE PERCEPTION OF UPRIGHT UNDER LUNAR GRAVITY L. R. Harris 1, 2, M. R. M. Jenkin 1, 3, R. T. Dyde 1 1 Centre for Vision Research, 2 Departments of Psychology, and 3 Computer Science and Engineering, York

More information

Perception of the Spatial Vertical During Centrifugation and Static Tilt

Perception of the Spatial Vertical During Centrifugation and Static Tilt Perception of the Spatial Vertical During Centrifugation and Static Tilt Authors Gilles Clément, Alain Berthoz, Bernard Cohen, Steven Moore, Ian Curthoys, Mingjia Dai, Izumi Koizuka, Takeshi Kubo, Theodore

More information

What has been learnt from space

What has been learnt from space What has been learnt from space Gilles Clément Director of Research, CNRS Laboratoire Cerveau et Cognition, Toulouse, France Oliver Angerer ESA Directorate of Strategy and External Relations, ESTEC, Noordwijk,

More information

A Three-Channel Model for Generating the Vestibulo-Ocular Reflex in Each Eye

A Three-Channel Model for Generating the Vestibulo-Ocular Reflex in Each Eye A Three-Channel Model for Generating the Vestibulo-Ocular Reflex in Each Eye LAURENCE R. HARRIS, a KARL A. BEYKIRCH, b AND MICHAEL FETTER c a Department of Psychology, York University, Toronto, Canada

More information

Human Vision and Human-Computer Interaction. Much content from Jeff Johnson, UI Wizards, Inc.

Human Vision and Human-Computer Interaction. Much content from Jeff Johnson, UI Wizards, Inc. Human Vision and Human-Computer Interaction Much content from Jeff Johnson, UI Wizards, Inc. are these guidelines grounded in perceptual psychology and how can we apply them intelligently? Mach bands:

More information

COPYRIGHTED MATERIAL. Overview

COPYRIGHTED MATERIAL. Overview In normal experience, our eyes are constantly in motion, roving over and around objects and through ever-changing environments. Through this constant scanning, we build up experience data, which is manipulated

More information

COPYRIGHTED MATERIAL OVERVIEW 1

COPYRIGHTED MATERIAL OVERVIEW 1 OVERVIEW 1 In normal experience, our eyes are constantly in motion, roving over and around objects and through ever-changing environments. Through this constant scanning, we build up experiential data,

More information

A Vestibular Sensation: Probabilistic Approaches to Spatial Perception (II) Presented by Shunan Zhang

A Vestibular Sensation: Probabilistic Approaches to Spatial Perception (II) Presented by Shunan Zhang A Vestibular Sensation: Probabilistic Approaches to Spatial Perception (II) Presented by Shunan Zhang Vestibular Responses in Dorsal Visual Stream and Their Role in Heading Perception Recent experiments

More information

Neurovestibular/Ocular Physiology

Neurovestibular/Ocular Physiology Neurovestibular/Ocular Physiology Anatomy of the vestibular organs Proprioception and Exteroception Vestibular illusions Space Motion Sickness Artificial gravity issues Eye issues in space flight 1 2017

More information

Human Visual Orientation in Weightlessness Charles M. Oman

Human Visual Orientation in Weightlessness Charles M. Oman York Conference 2001: Levels of Perception, L. Harris and M. Jenkin, Eds., Springer Verlag Human Visual Orientation in Weightlessness Charles M. Oman Man Vehicle Laboratory, Massachusetts Institute of

More information

Proprioception & force sensing

Proprioception & force sensing Proprioception & force sensing Roope Raisamo Tampere Unit for Computer-Human Interaction (TAUCHI) School of Information Sciences University of Tampere, Finland Based on material by Jussi Rantala, Jukka

More information

2/3/2016. How We Move... Ecological View. Ecological View. Ecological View. Ecological View. Ecological View. Sensory Processing.

2/3/2016. How We Move... Ecological View. Ecological View. Ecological View. Ecological View. Ecological View. Sensory Processing. How We Move Sensory Processing 2015 MFMER slide-4 2015 MFMER slide-7 Motor Processing 2015 MFMER slide-5 2015 MFMER slide-8 Central Processing Vestibular Somatosensation Visual Macular Peri-macular 2015

More information

Chapter 9. Orientation in 3D, part A

Chapter 9. Orientation in 3D, part A Chapter 9. Orientation in 3D, part A Chapter 9. Orientation in 3D, part A 33 abstract In the previous chapter, we concluded that a TTTD is an effective instrument to control one s orientation in 2D. Here,

More information

Human Vision. Human Vision - Perception

Human Vision. Human Vision - Perception 1 Human Vision SPATIAL ORIENTATION IN FLIGHT 2 Limitations of the Senses Visual Sense Nonvisual Senses SPATIAL ORIENTATION IN FLIGHT 3 Limitations of the Senses Visual Sense Nonvisual Senses Sluggish source

More information

Module 2. Lecture-1. Understanding basic principles of perception including depth and its representation.

Module 2. Lecture-1. Understanding basic principles of perception including depth and its representation. Module 2 Lecture-1 Understanding basic principles of perception including depth and its representation. Initially let us take the reference of Gestalt law in order to have an understanding of the basic

More information

Chapter SPATIAL ORIENTATION AND NAVIGATION IN MICROGRAVITY

Chapter SPATIAL ORIENTATION AND NAVIGATION IN MICROGRAVITY Chapter Invited chapter in: Spatial Processing in Navigation, Imagery and Perception F. Mast and L. Jancke, eds. Springer, to be published 2006 Manuscript: Feb 24, 2006; Revised Aug 1, 2006. coman@mit.edu

More information

Cameras have finite depth of field or depth of focus

Cameras have finite depth of field or depth of focus Robert Allison, Laurie Wilcox and James Elder Centre for Vision Research York University Cameras have finite depth of field or depth of focus Quantified by depth that elicits a given amount of blur Typically

More information

Psychophysics of night vision device halo

Psychophysics of night vision device halo University of Wollongong Research Online Faculty of Health and Behavioural Sciences - Papers (Archive) Faculty of Science, Medicine and Health 2009 Psychophysics of night vision device halo Robert S Allison

More information

Introduction to Vision. Alan L. Yuille. UCLA.

Introduction to Vision. Alan L. Yuille. UCLA. Introduction to Vision Alan L. Yuille. UCLA. IPAM Summer School 2013 3 weeks of online lectures on Vision. What papers do I read in computer vision? There are so many and they are so different. Main Points

More information

Haptic presentation of 3D objects in virtual reality for the visually disabled

Haptic presentation of 3D objects in virtual reality for the visually disabled Haptic presentation of 3D objects in virtual reality for the visually disabled M Moranski, A Materka Institute of Electronics, Technical University of Lodz, Wolczanska 211/215, Lodz, POLAND marcin.moranski@p.lodz.pl,

More information

Object Perception. 23 August PSY Object & Scene 1

Object Perception. 23 August PSY Object & Scene 1 Object Perception Perceiving an object involves many cognitive processes, including recognition (memory), attention, learning, expertise. The first step is feature extraction, the second is feature grouping

More information

Distance and Size Perception in Astronauts during Long-Duration Spaceflight

Distance and Size Perception in Astronauts during Long-Duration Spaceflight Life 2013, 3, 524-537; doi:10.3390/life3040524 Article OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Distance and Size Perception in Astronauts during Long-Duration Spaceflight Gilles Clément

More information

DESIGN FOR MICROGRAVITY - TOOLS FOR THE DESIGN OF HABITATS WITH NO GRAVITY

DESIGN FOR MICROGRAVITY - TOOLS FOR THE DESIGN OF HABITATS WITH NO GRAVITY INTERNATIONAL DESIGN CONFERENCE - DESIGN 2004 Dubrovnik, May 18-21, 2004. DESIGN FOR MICROGRAVITY - TOOLS FOR THE DESIGN OF HABITATS WITH NO GRAVITY S. D. Ferraris Keywords: design for space, microgravity,

More information

Augmented Home. Integrating a Virtual World Game in a Physical Environment. Serge Offermans and Jun Hu

Augmented Home. Integrating a Virtual World Game in a Physical Environment. Serge Offermans and Jun Hu Augmented Home Integrating a Virtual World Game in a Physical Environment Serge Offermans and Jun Hu Eindhoven University of Technology Department of Industrial Design The Netherlands {s.a.m.offermans,j.hu}@tue.nl

More information

Robot: Robonaut 2 The first humanoid robot to go to outer space

Robot: Robonaut 2 The first humanoid robot to go to outer space ProfileArticle Robot: Robonaut 2 The first humanoid robot to go to outer space For the complete profile with media resources, visit: http://education.nationalgeographic.org/news/robot-robonaut-2/ Program

More information

Vision. Biological vision and image processing

Vision. Biological vision and image processing Vision Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image processing academic year 2017 2018 Biological vision and image processing The human visual perception

More information

the human chapter 1 Traffic lights the human User-centred Design Light Vision part 1 (modified extract for AISD 2005) Information i/o

the human chapter 1 Traffic lights the human User-centred Design Light Vision part 1 (modified extract for AISD 2005) Information i/o Traffic lights chapter 1 the human part 1 (modified extract for AISD 2005) http://www.baddesigns.com/manylts.html User-centred Design Bad design contradicts facts pertaining to human capabilities Usability

More information

The Persistence of Vision in Spatio-Temporal Illusory Contours formed by Dynamically-Changing LED Arrays

The Persistence of Vision in Spatio-Temporal Illusory Contours formed by Dynamically-Changing LED Arrays The Persistence of Vision in Spatio-Temporal Illusory Contours formed by Dynamically-Changing LED Arrays Damian Gordon * and David Vernon Department of Computer Science Maynooth College Ireland ABSTRACT

More information

Appendix E. Gulf Air Flight GF-072 Perceptual Study 23 AUGUST 2000 Gulf Air Airbus A (A40-EK) NIGHT LANDING

Appendix E. Gulf Air Flight GF-072 Perceptual Study 23 AUGUST 2000 Gulf Air Airbus A (A40-EK) NIGHT LANDING Appendix E E1 A320 (A40-EK) Accident Investigation Appendix E Gulf Air Flight GF-072 Perceptual Study 23 AUGUST 2000 Gulf Air Airbus A320-212 (A40-EK) NIGHT LANDING Naval Aerospace Medical Research Laboratory

More information

Virtual and Augmented Reality: Applications and Issues in a Smart City Context

Virtual and Augmented Reality: Applications and Issues in a Smart City Context Virtual and Augmented Reality: Applications and Issues in a Smart City Context A/Prof Stuart Perry, Faculty of Engineering and IT, University of Technology Sydney 2 Overview VR and AR Fundamentals How

More information

Optimizing color reproduction of natural images

Optimizing color reproduction of natural images Optimizing color reproduction of natural images S.N. Yendrikhovskij, F.J.J. Blommaert, H. de Ridder IPO, Center for Research on User-System Interaction Eindhoven, The Netherlands Abstract The paper elaborates

More information

Perception. What We Will Cover in This Section. Perception. How we interpret the information our senses receive. Overview Perception

Perception. What We Will Cover in This Section. Perception. How we interpret the information our senses receive. Overview Perception Perception 10/3/2002 Perception.ppt 1 What We Will Cover in This Section Overview Perception Visual perception. Organizing principles. 10/3/2002 Perception.ppt 2 Perception How we interpret the information

More information

Measurement of oscillopsia induced by vestibular Coriolis stimulation

Measurement of oscillopsia induced by vestibular Coriolis stimulation Journal of Vestibular Research 17 (2007) 289 299 289 IOS Press Measurement of oscillopsia induced by vestibular Coriolis stimulation Jeffrey Sanderson a, Charles M. Oman b and Laurence R. Harris a, a Department

More information

Orbital Views: defying gravity

Orbital Views: defying gravity EPiC Series in Engineering Volume 1, 2018, Pages 31 35 ReVo 2017: Laval Virtual ReVolution 2017 Transhumanism++ Engineering Orbital Views: defying gravity I.C.E.B.E.R.G. as@iceberg.expert, vr@iceberg.expert

More information

Thinking About Psychology: The Science of Mind and Behavior 2e. Charles T. Blair-Broeker Randal M. Ernst

Thinking About Psychology: The Science of Mind and Behavior 2e. Charles T. Blair-Broeker Randal M. Ernst Thinking About Psychology: The Science of Mind and Behavior 2e Charles T. Blair-Broeker Randal M. Ernst Sensation and Perception Chapter Module 9 Perception Perception While sensation is the process by

More information

3, 2, 1... Blast Off!

3, 2, 1... Blast Off! 3, 2, 1... Blast Off! NASA Now you can take a trip to Mars without ever leaving Earth. A kid reporter journeyed to Mars aboard Disney's space ride. Find out how close her ride was to the real thing. Weekly

More information

Sensing self motion. Key points: Why robots need self-sensing Sensors for proprioception in biological systems in robot systems

Sensing self motion. Key points: Why robots need self-sensing Sensors for proprioception in biological systems in robot systems Sensing self motion Key points: Why robots need self-sensing Sensors for proprioception in biological systems in robot systems Position sensing Velocity and acceleration sensing Force sensing Vision based

More information

You ve heard about the different types of lines that can appear in line drawings. Now we re ready to talk about how people perceive line drawings.

You ve heard about the different types of lines that can appear in line drawings. Now we re ready to talk about how people perceive line drawings. You ve heard about the different types of lines that can appear in line drawings. Now we re ready to talk about how people perceive line drawings. 1 Line drawings bring together an abundance of lines to

More information

IV: Visual Organization and Interpretation

IV: Visual Organization and Interpretation IV: Visual Organization and Interpretation Describe Gestalt psychologists understanding of perceptual organization, and explain how figure-ground and grouping principles contribute to our perceptions Explain

More information

Muscular Torque Can Explain Biases in Haptic Length Perception: A Model Study on the Radial-Tangential Illusion

Muscular Torque Can Explain Biases in Haptic Length Perception: A Model Study on the Radial-Tangential Illusion Muscular Torque Can Explain Biases in Haptic Length Perception: A Model Study on the Radial-Tangential Illusion Nienke B. Debats, Idsart Kingma, Peter J. Beek, and Jeroen B.J. Smeets Research Institute

More information

Exploring 3D in Flash

Exploring 3D in Flash 1 Exploring 3D in Flash We live in a three-dimensional world. Objects and spaces have width, height, and depth. Various specialized immersive technologies such as special helmets, gloves, and 3D monitors

More information

PSY 310: Sensory and Perceptual Processes 1

PSY 310: Sensory and Perceptual Processes 1 Size perception PSY 310 Greg Francis Lecture 22 Why the cars look like toys. Our visual system is useful for identifying the properties of objects in the world Surface (color, texture) Location (depth)

More information

Designing Pseudo-Haptic Feedback Mechanisms for Communicating Weight in Decision Making Tasks

Designing Pseudo-Haptic Feedback Mechanisms for Communicating Weight in Decision Making Tasks Appeared in the Proceedings of Shikakeology: Designing Triggers for Behavior Change, AAAI Spring Symposium Series 2013 Technical Report SS-12-06, pp.107-112, Palo Alto, CA., March 2013. Designing Pseudo-Haptic

More information

Introduction to Psychology Prof. Braj Bhushan Department of Humanities and Social Sciences Indian Institute of Technology, Kanpur

Introduction to Psychology Prof. Braj Bhushan Department of Humanities and Social Sciences Indian Institute of Technology, Kanpur Introduction to Psychology Prof. Braj Bhushan Department of Humanities and Social Sciences Indian Institute of Technology, Kanpur Lecture - 10 Perception Role of Culture in Perception Till now we have

More information

Two Different Views of the Engineering Problem Space Station

Two Different Views of the Engineering Problem Space Station 1 Introduction The idea of a space station, i.e. a permanently habitable orbital structure, has existed since the very early ideas of spaceflight itself were conceived. As early as 1903 the father of cosmonautics,

More information

Occlusion. Atmospheric Perspective. Height in the Field of View. Seeing Depth The Cue Approach. Monocular/Pictorial

Occlusion. Atmospheric Perspective. Height in the Field of View. Seeing Depth The Cue Approach. Monocular/Pictorial Seeing Depth The Cue Approach Occlusion Monocular/Pictorial Cues that are available in the 2D image Height in the Field of View Atmospheric Perspective 1 Linear Perspective Linear Perspective & Texture

More information

Cinematography Cheat Sheet

Cinematography Cheat Sheet Where is our eye attracted first? Why? Size. Focus. Lighting. Color. Size. Mr. White (Harvey Keitel) on the right. Focus. He's one of the two objects in focus. Lighting. Mr. White is large and in focus

More information

Dan Kersten Computational Vision Lab Psychology Department, U. Minnesota SUnS kersten.org

Dan Kersten Computational Vision Lab Psychology Department, U. Minnesota SUnS kersten.org How big is it? Dan Kersten Computational Vision Lab Psychology Department, U. Minnesota SUnS 2009 kersten.org NIH R01 EY015261 NIH P41 008079, P30 NS057091 and the MIND Institute Huseyin Boyaci Bilkent

More information

Effects of Visual-Vestibular Interactions on Navigation Tasks in Virtual Environments

Effects of Visual-Vestibular Interactions on Navigation Tasks in Virtual Environments Effects of Visual-Vestibular Interactions on Navigation Tasks in Virtual Environments Date of Report: September 1 st, 2016 Fellow: Heather Panic Advisors: James R. Lackner and Paul DiZio Institution: Brandeis

More information

Algebraic functions describing the Zöllner illusion

Algebraic functions describing the Zöllner illusion Algebraic functions describing the Zöllner illusion W.A. Kreiner Faculty of Natural Sciences University of Ulm . Introduction There are several visual illusions where geometric figures are distorted when

More information

The light and colour significance in urban environment perception. Peter Kardoš, Slovak Technical University in Bratislava, Slovakia

The light and colour significance in urban environment perception. Peter Kardoš, Slovak Technical University in Bratislava, Slovakia The light and colour significance in urban environment perception Peter Kardoš, Slovak Technical University in Bratislava, Slovakia Abstract My contribution deals with light and colour effects in wider

More information

CAN WE BELIEVE OUR OWN EYES?

CAN WE BELIEVE OUR OWN EYES? Reading Practice CAN WE BELIEVE OUR OWN EYES? A. An optical illusion refers to a visually perceived image that is deceptive or misleading in that information transmitted from the eye to the brain is processed

More information

TAKING A WALK IN THE NEUROSCIENCE LABORATORIES

TAKING A WALK IN THE NEUROSCIENCE LABORATORIES TAKING A WALK IN THE NEUROSCIENCE LABORATORIES Instructional Objectives Students will analyze acceleration data and make predictions about velocity and use Riemann sums to find velocity and position. Degree

More information

THE RELATIVE IMPORTANCE OF PICTORIAL AND NONPICTORIAL DISTANCE CUES FOR DRIVER VISION. Michael J. Flannagan Michael Sivak Julie K.

THE RELATIVE IMPORTANCE OF PICTORIAL AND NONPICTORIAL DISTANCE CUES FOR DRIVER VISION. Michael J. Flannagan Michael Sivak Julie K. THE RELATIVE IMPORTANCE OF PICTORIAL AND NONPICTORIAL DISTANCE CUES FOR DRIVER VISION Michael J. Flannagan Michael Sivak Julie K. Simpson The University of Michigan Transportation Research Institute Ann

More information

Vision V Perceiving Movement

Vision V Perceiving Movement Vision V Perceiving Movement Overview of Topics Chapter 8 in Goldstein (chp. 9 in 7th ed.) Movement is tied up with all other aspects of vision (colour, depth, shape perception...) Differentiating self-motion

More information

Part One: Presented by Matranga, North, & Ottinger Part Two: Backup for discussions and archival.

Part One: Presented by Matranga, North, & Ottinger Part Two: Backup for discussions and archival. 2/24/2008 1 Go For Lunar Landing Conference, March 4-5, 2008, Tempe, AZ This Presentation is a collaboration of the following Apollo team members (Panel #1): Dean Grimm, NASA MSC LLRV/LLTV Program Manager

More information

Vision V Perceiving Movement

Vision V Perceiving Movement Vision V Perceiving Movement Overview of Topics Chapter 8 in Goldstein (chp. 9 in 7th ed.) Movement is tied up with all other aspects of vision (colour, depth, shape perception...) Differentiating self-motion

More information

CSE 165: 3D User Interaction. Lecture #14: 3D UI Design

CSE 165: 3D User Interaction. Lecture #14: 3D UI Design CSE 165: 3D User Interaction Lecture #14: 3D UI Design 2 Announcements Homework 3 due tomorrow 2pm Monday: midterm discussion Next Thursday: midterm exam 3D UI Design Strategies 3 4 Thus far 3DUI hardware

More information

P rcep e t p i t on n a s a s u n u c n ons n c s ious u s i nf n e f renc n e L ctur u e 4 : Recogni n t i io i n

P rcep e t p i t on n a s a s u n u c n ons n c s ious u s i nf n e f renc n e L ctur u e 4 : Recogni n t i io i n Lecture 4: Recognition and Identification Dr. Tony Lambert Reading: UoA text, Chapter 5, Sensation and Perception (especially pp. 141-151) 151) Perception as unconscious inference Hermann von Helmholtz

More information

COMPUTATIONAL ERGONOMICS A POSSIBLE EXTENSION OF COMPUTATIONAL NEUROSCIENCE? DEFINITIONS, POTENTIAL BENEFITS, AND A CASE STUDY ON CYBERSICKNESS

COMPUTATIONAL ERGONOMICS A POSSIBLE EXTENSION OF COMPUTATIONAL NEUROSCIENCE? DEFINITIONS, POTENTIAL BENEFITS, AND A CASE STUDY ON CYBERSICKNESS COMPUTATIONAL ERGONOMICS A POSSIBLE EXTENSION OF COMPUTATIONAL NEUROSCIENCE? DEFINITIONS, POTENTIAL BENEFITS, AND A CASE STUDY ON CYBERSICKNESS Richard H.Y. So* and Felix W.K. Lor Computational Ergonomics

More information

B.A. II Psychology Paper A MOVEMENT PERCEPTION. Dr. Neelam Rathee Department of Psychology G.C.G.-11, Chandigarh

B.A. II Psychology Paper A MOVEMENT PERCEPTION. Dr. Neelam Rathee Department of Psychology G.C.G.-11, Chandigarh B.A. II Psychology Paper A MOVEMENT PERCEPTION Dr. Neelam Rathee Department of Psychology G.C.G.-11, Chandigarh 2 The Perception of Movement Where is it going? 3 Biological Functions of Motion Perception

More information

BEYOND LOW-EARTH ORBIT

BEYOND LOW-EARTH ORBIT SCIENTIFIC OPPORTUNITIES ENABLED BY HUMAN EXPLORATION BEYOND LOW-EARTH ORBIT THE SUMMARY The Global Exploration Roadmap reflects a coordinated international effort to prepare for space exploration missions

More information

Aviation Medicine Seminar Series. Aviation Medicine Seminar Series

Aviation Medicine Seminar Series. Aviation Medicine Seminar Series Aviation Medicine Seminar Series Aviation Medicine Seminar Series Bruce R. Gilbert, M.D., Ph.D. Associate Clinical Professor of Urology Weill Cornell Medical College Stony Brook University Medical College

More information

Digitizing Color. Place Value in a Decimal Number. Place Value in a Binary Number. Chapter 11: Light, Sound, Magic: Representing Multimedia Digitally

Digitizing Color. Place Value in a Decimal Number. Place Value in a Binary Number. Chapter 11: Light, Sound, Magic: Representing Multimedia Digitally Chapter 11: Light, Sound, Magic: Representing Multimedia Digitally Fluency with Information Technology Third Edition by Lawrence Snyder Digitizing Color RGB Colors: Binary Representation Giving the intensities

More information

The Amalgamation Product Design Aspects for the Development of Immersive Virtual Environments

The Amalgamation Product Design Aspects for the Development of Immersive Virtual Environments The Amalgamation Product Design Aspects for the Development of Immersive Virtual Environments Mario Doulis, Andreas Simon University of Applied Sciences Aargau, Schweiz Abstract: Interacting in an immersive

More information

Detection of external stimuli Response to the stimuli Transmission of the response to the brain

Detection of external stimuli Response to the stimuli Transmission of the response to the brain Sensation Detection of external stimuli Response to the stimuli Transmission of the response to the brain Perception Processing, organizing and interpreting sensory signals Internal representation of the

More information

A RENEWED SPIRIT OF DISCOVERY

A RENEWED SPIRIT OF DISCOVERY A RENEWED SPIRIT OF DISCOVERY The President s Vision for U.S. Space Exploration PRESIDENT GEORGE W. BUSH JANUARY 2004 Table of Contents I. Background II. Goal and Objectives III. Bringing the Vision to

More information

Sensation and Perception. What We Will Cover in This Section. Sensation

Sensation and Perception. What We Will Cover in This Section. Sensation Sensation and Perception Dr. Dennis C. Sweeney 2/18/2009 Sensation.ppt 1 What We Will Cover in This Section Overview Psychophysics Sensations Hearing Vision Touch Taste Smell Kinesthetic Perception 2/18/2009

More information

1. Bonestell, Chelsey. Rocket Blitz from the Moon. Collier s Magazine 23 Oct

1. Bonestell, Chelsey. Rocket Blitz from the Moon. Collier s Magazine 23 Oct James Caputo May 13, 2003 PWR 3 Section 5 Dr. Alyssa O Brien Visually Annotated Bibliography From Sputnik to Mir: American Images of the U.S.-Soviet Space Race and Their Legacies Primary Sources: 1. Bonestell,

More information

Prof. Riyadh Al_Azzawi F.R.C.Psych

Prof. Riyadh Al_Azzawi F.R.C.Psych Prof. Riyadh Al_Azzawi F.R.C.Psych Perception: is the study of how we integrate sensory information into percepts of objects and how we then use these percepts to get around in the world (a percept is

More information

Pinch-the-Sky Dome: Freehand Multi-Point Interactions with Immersive Omni-Directional Data

Pinch-the-Sky Dome: Freehand Multi-Point Interactions with Immersive Omni-Directional Data Pinch-the-Sky Dome: Freehand Multi-Point Interactions with Immersive Omni-Directional Data Hrvoje Benko Microsoft Research One Microsoft Way Redmond, WA 98052 USA benko@microsoft.com Andrew D. Wilson Microsoft

More information

Face Perception. The Thatcher Illusion. The Thatcher Illusion. Can you recognize these upside-down faces? The Face Inversion Effect

Face Perception. The Thatcher Illusion. The Thatcher Illusion. Can you recognize these upside-down faces? The Face Inversion Effect The Thatcher Illusion Face Perception Did you notice anything odd about the upside-down image of Margaret Thatcher that you saw before? Can you recognize these upside-down faces? The Thatcher Illusion

More information

Lecture 4 Foundations and Cognitive Processes in Visual Perception From the Retina to the Visual Cortex

Lecture 4 Foundations and Cognitive Processes in Visual Perception From the Retina to the Visual Cortex Lecture 4 Foundations and Cognitive Processes in Visual Perception From the Retina to the Visual Cortex 1.Vision Science 2.Visual Performance 3.The Human Visual System 4.The Retina 5.The Visual Field and

More information

Feeding human senses through Immersion

Feeding human senses through Immersion Virtual Reality Feeding human senses through Immersion 1. How many human senses? 2. Overview of key human senses 3. Sensory stimulation through Immersion 4. Conclusion Th3.1 1. How many human senses? [TRV

More information

5/17/2009. Digitizing Color. Place Value in a Binary Number. Place Value in a Decimal Number. Place Value in a Binary Number

5/17/2009. Digitizing Color. Place Value in a Binary Number. Place Value in a Decimal Number. Place Value in a Binary Number Chapter 11: Light, Sound, Magic: Representing Multimedia Digitally Digitizing Color Fluency with Information Technology Third Edition by Lawrence Snyder RGB Colors: Binary Representation Giving the intensities

More information

ESA Human Spaceflight Capability Development and Future Perspectives International Lunar Conference September Toronto, Canada

ESA Human Spaceflight Capability Development and Future Perspectives International Lunar Conference September Toronto, Canada ESA Human Spaceflight Capability Development and Future Perspectives International Lunar Conference 2005 19-23 September Toronto, Canada Scott Hovland Head of Systems Unit, System and Strategy Division,

More information

From Encoding Sound to Encoding Touch

From Encoding Sound to Encoding Touch From Encoding Sound to Encoding Touch Toktam Mahmoodi King s College London, UK http://www.ctr.kcl.ac.uk/toktam/index.htm ETSI STQ Workshop, May 2017 Immersing a person into the real environment with Very

More information

Exploring Surround Haptics Displays

Exploring Surround Haptics Displays Exploring Surround Haptics Displays Ali Israr Disney Research 4615 Forbes Ave. Suite 420, Pittsburgh, PA 15213 USA israr@disneyresearch.com Ivan Poupyrev Disney Research 4615 Forbes Ave. Suite 420, Pittsburgh,

More information

Collaboration in Multimodal Virtual Environments

Collaboration in Multimodal Virtual Environments Collaboration in Multimodal Virtual Environments Eva-Lotta Sallnäs NADA, Royal Institute of Technology evalotta@nada.kth.se http://www.nada.kth.se/~evalotta/ Research question How is collaboration in a

More information

IAC-02-P A.Charania J. Bradford SpaceWorks Engineering, Inc. (SEI) Atlanta, GA U.S.A.

IAC-02-P A.Charania J. Bradford SpaceWorks Engineering, Inc. (SEI) Atlanta, GA U.S.A. IAC-02-P.4.05 PAST REALITIES VERSUS HYPOTHETICAL FUTURES: BRIDGING ACCURATE PERCEPTIONS AND INDIVIDUAL EXPECTATION GAPS IN RELATION TO FUTURE SPACE EXPLORATION AT ENTERTAINMENT ATTRACTIONS A.Charania J.

More information

James Turrell - Perceptual Art. induces introspection, causing the viewer to look at their own viewing process, 1 creating completely

James Turrell - Perceptual Art. induces introspection, causing the viewer to look at their own viewing process, 1 creating completely Rhett Nichols 4.209 5-7-01 James Turrell - Perceptual Art Artists have continually used new techniques and new media to represent a viewer s experience of the world. James Turrell moves even one step closer

More information

Credits. National Aeronautics and Space Administration. United Space Alliance, LLC. John Frassanito and Associates Strategic Visualization

Credits. National Aeronautics and Space Administration. United Space Alliance, LLC. John Frassanito and Associates Strategic Visualization A New Age in Space The Vision for Space Exploration Credits National Aeronautics and Space Administration United Space Alliance, LLC John Frassanito and Associates Strategic Visualization Coalition for

More information

Vertical Shaft Plumbness Using a Laser Alignment System. By Daus Studenberg, Ludeca, Inc.

Vertical Shaft Plumbness Using a Laser Alignment System. By Daus Studenberg, Ludeca, Inc. ABSTRACT Vertical Shaft Plumbness Using a Laser Alignment System By Daus Studenberg, Ludeca, Inc. Traditionally, plumbness measurements on a vertical hydro-turbine/generator shaft involved stringing a

More information

Welcome to this course on «Natural Interactive Walking on Virtual Grounds»!

Welcome to this course on «Natural Interactive Walking on Virtual Grounds»! Welcome to this course on «Natural Interactive Walking on Virtual Grounds»! The speaker is Anatole Lécuyer, senior researcher at Inria, Rennes, France; More information about him at : http://people.rennes.inria.fr/anatole.lecuyer/

More information

Salient features make a search easy

Salient features make a search easy Chapter General discussion This thesis examined various aspects of haptic search. It consisted of three parts. In the first part, the saliency of movability and compliance were investigated. In the second

More information

Touch. Touch & the somatic senses. Josh McDermott May 13,

Touch. Touch & the somatic senses. Josh McDermott May 13, The different sensory modalities register different kinds of energy from the environment. Touch Josh McDermott May 13, 2004 9.35 The sense of touch registers mechanical energy. Basic idea: we bump into

More information

Visual Effects of Light. Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana

Visual Effects of Light. Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Visual Effects of Light Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Light is life If sun would turn off the life on earth would

More information

Perceived depth is enhanced with parallax scanning

Perceived depth is enhanced with parallax scanning Perceived Depth is Enhanced with Parallax Scanning March 1, 1999 Dennis Proffitt & Tom Banton Department of Psychology University of Virginia Perceived depth is enhanced with parallax scanning Background

More information

Constancy PSY 310 Greg Francis. Lecture 19. Brightness illusions

Constancy PSY 310 Greg Francis. Lecture 19. Brightness illusions Constancy PSY 310 Greg Francis Lecture 19 It s all an illusion! Brightness illusions Most people think of visual perception as a measurement of light As it reflects off of objects 1 Object identification

More information

INTERACTIVE SKETCHING OF THE URBAN-ARCHITECTURAL SPATIAL DRAFT Peter Kardoš Slovak University of Technology in Bratislava

INTERACTIVE SKETCHING OF THE URBAN-ARCHITECTURAL SPATIAL DRAFT Peter Kardoš Slovak University of Technology in Bratislava INTERACTIVE SKETCHING OF THE URBAN-ARCHITECTURAL SPATIAL DRAFT Peter Kardoš Slovak University of Technology in Bratislava Abstract The recent innovative information technologies and the new possibilities

More information

KEY CONCEPTS How GLEs are assessed on LEAP. BENCHMARKS Delineate what students should be able to do at the end of a grade cluster (K 4)

KEY CONCEPTS How GLEs are assessed on LEAP. BENCHMARKS Delineate what students should be able to do at the end of a grade cluster (K 4) Grade 4 Science Assessment Structure The grade 4 LEAP test continues to assess Louisiana s science benchmarks. The design of the test remains the same as in previous administrations. The purpose of this

More information

Avionics, Software, and Simulation ENAE483 Fall 2012

Avionics, Software, and Simulation ENAE483 Fall 2012 Avionics, Software, and Simulation ENAE483 Fall 2012 Team D7: Michael Cunningham Matthew Rich Michelle Sultzman Scott Wingate Presentation Overview Project Specifications Crew Capsule Design Choice Communications

More information

Visual computation of surface lightness: Local contrast vs. frames of reference

Visual computation of surface lightness: Local contrast vs. frames of reference 1 Visual computation of surface lightness: Local contrast vs. frames of reference Alan L. Gilchrist 1 & Ana Radonjic 2 1 Rutgers University, Newark, USA 2 University of Pennsylvania, Philadelphia, USA

More information

Sound rendering in Interactive Multimodal Systems. Federico Avanzini

Sound rendering in Interactive Multimodal Systems. Federico Avanzini Sound rendering in Interactive Multimodal Systems Federico Avanzini Background Outline Ecological Acoustics Multimodal perception Auditory visual rendering of egocentric distance Binaural sound Auditory

More information

Contest Overview, Rules & Guidelines

Contest Overview, Rules & Guidelines Contest Overview, Rules & Guidelines OVERVIEW The Honeywell Fiesta Bowl Aerospace Challenge presented by US Airways is a competition designed to enhance the knowledge of space exploration and technology.

More information

Haptic Holography/Touching the Ethereal

Haptic Holography/Touching the Ethereal Journal of Physics: Conference Series Haptic Holography/Touching the Ethereal To cite this article: Michael Page 2013 J. Phys.: Conf. Ser. 415 012041 View the article online for updates and enhancements.

More information

A Call for Boldness. President Kennedy September 1962

A Call for Boldness. President Kennedy September 1962 A Call for Boldness If I were to say, we shall send to the moon a giant rocket on an untried mission, to an unknown celestial body, and return it safely to earth, and do it right and do it first before

More information

Rocking or Rolling Perception of Ambiguous Motion after Returning from Space

Rocking or Rolling Perception of Ambiguous Motion after Returning from Space Rocking or Rolling Perception of Ambiguous Motion after Returning from Space Gilles Clément 1,2 *, Scott J. Wood 3 1 International Space University, Illkirch-Graffenstaden, France, 2 Lyon Neuroscience

More information