Haptic presentation of 3D objects in virtual reality for the visually disabled

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Haptic presentation of 3D objects in virtual reality for the visually disabled"

Transcription

1 Haptic presentation of 3D objects in virtual reality for the visually disabled M Moranski, A Materka Institute of Electronics, Technical University of Lodz, Wolczanska 211/215, Lodz, POLAND ABSTRACT The paper presents an initial research on haptic perception of 3D objects in a virtual reality environment for aiding the visually disabled persons in learning new routes and obstacle identification. The study spans a number of fields, from the very technical, such as scene segmentation and obstacle detection algorithms to psychological aspects such as the effectiveness in utilizing haptic information. The authors constructed a prototype system for the tactile presentation of real objects in a virtual reality. 1. INTRODUCTION Research concerning the application of haptic force feedback devices for the blind are worth further development as sight cannot be substituted by the auditory information channel alone. Information concerning the living environment can be complemented in this case by the sense of touch. Furthermore, designing the tactile system dedicated to people with visual disabilities would allow them to access information from the virtual 3D world simply by touching it. The system should consist of three major elements: a camera (provides information about the distance from obstacles in a scene a depth map), a computer (the depth map is segmented and the virtual scene is created) and a haptic device (the interface for a tactile presentation of the acquired scene). A haptic device is the interface used for communication between a human and a virtual reality. Thanks to the force feedback it produces, a user can feel the shape, density and texture of 3D objects created in a virtual world. The touching experience when using this interface is quite close to reality. Haptic perception incorporates both kinaesthetic sensing, (i.e. of the position and movement of joints and limbs), and tactile sensing, (i.e. through the skin) (Loomis and Lederman, 1986). The most popular haptic devices available are the Phantom Sensable (Sensable Corp.) and a range of touching manipulators from Force Dimension (Force Dimension Corp.). The systems define one contact point at a time between the observer and the virtual object. They do not stimulate cutaneous receptors responding to temperature, pressure and pain. The mentioned devices have great potential and they were considered for use by the blind to familiarize themselves with obstacles inside buildings and for learning new routes and shapes. However, their high cost limits their availability to the average user. Since haptic force feedback technology has entered the world of computer games, a new low-cost device called Falcon Novint (Novint Corp.) has appeared on the market. Although the device has only 3 degrees of freedom, compared to that of the Phantom Sensable with 6, this is enough for the 3D object presentation. The aim of this experimental study is to present a prototype system which allows for real scenes to automatically appear in a virtual reality (by means of a time-of-flight 3D camera) and to be accessed in the haptic form by the usage of Falcon Novint. 2. RELATED WORK Research concerning the application of haptic-force-feedback, stationary devices for navigating the blind can be divided into two categories: building virtual maps and creating simulators where real obstacles and objects are presented virtually. They are made for learning new routes and it seems they have the potential as a tool which the blind can use to acquire knowledge about a place for an intended first time visit. The majority of projects are focused on checking if advanced, expensive devices with a proven quality of performance can be used for such purposes. In the paper (Jansson et al., 1999), two independent studies investigating problems concerning the use of haptic virtual environments for blind people are described. Two 103

2 devices, a Phantom 1.5 and an Impulse Engine 3000 were used to render virtual textures and 3D objects. Experiments proved that objects rendered by these devices can be effectively perceived by both blind and blindfolded sighted observers. However, the investigated scenarios were very simple. In another publication (Jansson, 1998), the usefulness of a haptic force feedback device (the PHANToM) for information without visual guidance was also confirmed. The author of the project tried to find the answers to the following questions: how well blind-folded observers perception of the roughness of real and virtual sandpapers agree and if the 3D forms of virtual objects could be judged accurately and with short exploration times down to a size of 5 mm. Blind-folded sighted observers judged the roughness of real and virtual sandpapers to be nearly the same. The presented experiments were concluded with a statement that a haptic device can present useful information without vision. Considerations using tactile maps for the blind were published. The paper (Kostopoulos et al., 2007) describes a framework of map image analysis and presentation of the semantic information to blind users using alternative modalities (i.e. haptics and audio). The resulting haptic-audio representation of the map is used by the blind for navigation and path planning purposes. However, available literature in the field lacks concrete findings concerning the usage of Falcon Novint game controller. 3. THE PROTOTYPE SYSTEM FOR HAPTIC PRESENTATION OF 3D SCENES The haptic presentation system was built in order to enable the blind people a touching interaction with 3D real objects created in virtual reality. The prototype consists of an SR3000 camera (Mesa Imaging AG), a laptop and a Falcon Novint haptic interface (see Fig. 1). Figure 1. Diagram of the designed system. The camera provides information about the distance from obstacles in a scene by calculating the time of flight of the emitted and reflected back light. A 2.5D depth map is calculated at the output. The camera is connected to the remote computer. Data processing on a laptop is divided into two stages: the scene segmentation and the virtual scene modeling (see Fig. 2). 3.1 Segmentation On a laptop, the depth map is segmented in order to extract all obstacles from the acquired scene. This process allows gathering information (i.e. location and size of objects) that is used to create a virtual scene. First, the point cloud representing the scene is processed in order to find points corresponding to planes. Planes finding procedure is based on normal vector estimation at each point. For a given point p t (x 0,y o,z 0 ) with normal vector: (1) n { a, b, c} the equation of a corresponding plane is given as: The input point cloud data is proceed as follows: a ( x x0) b( y y0) c( z z0) 0 (2) The input point cloud is ordered in a k-d tree data structure (K-D Tree). A normal vector at a each point is estimated from the surrounding point neighborhood. For this purpose k-neighbours are found. Next, the k-neighbours are used to calculate normal vectors (Rusu, 2009). Points which have the same normal vectors are grouped together (a certain deviation angle between normal vectors is assumed). 104

3 RANSAC algorithm (Random Sample Consensus) is applied to each group of points in order to find planes (a given group may include a few parallel planes, therefore certain distance threshold between points and the minimal number of points which form a plane are assumed). The calculated planes are filtered from the input cloud. Figure 2. Diagram of the designed system working principle. Next, the clustering algorithm (Rusu, 2009) is used in order to find points representing objects. Two points from the point cloud form an object when the distance d between them is shorter or equal to the assumed distance threshold d th. 3.2 Scene modeling for the tactile presentation The Falcon Novint haptic game controller is used for presentation of the virtual scenario. Using her/his sense of touch the blind user accesses information about the content of the observed scenes. The procedure of the virtual scene modeling is as follow: The found planes are created in a virtual reality (the background and the ground planes). The real obstacles are substituted by 3D boxes whose sizes and locations correspond to the real sizes and locations of objects. Locations of the boxes are given by the centroids calculated for each point cloud representing obstacles. Sizes of the boxes correspond to the maximum distance between points representing obstacles along the X and Y axis. The haptic and graphic rendering algorithms are applied to the created scene and the Falcon Novint device is activated. For the purpose of a tactile presentation an open source haptics software development platform H3D is used (H3D API). Procedure of segmentation and scene modeling are presented in Fig EXPERIMENTS WITH THE BLIND USERS Experiments were designed and performed in order to examine usability of the tactile presentation of the real environment in a virtual reality, utilizing the designed prototype system for the blind users (see Fig. 4). 4.1 Aim of research Performed experiments had following goals: Check the opportunity of the application of the tactile presentation system for the blind and visually impaired. Examine the usability and potential of the force feedback device, Falcon Novint, for a 3D virtual object presentation without the usage of vision. 105

4 collect the blind participants opinion about their requirements and preferences concerning the design of such a system and learn the potential application areas of it. 4.2 Participants The group of participants consisted of eight blind people, two women and six men. Six of them were born blind and the others lost their sight at different times during their lives. They were chosen as representatives of different educational and occupational backgrounds. They also represent a different ability of tactile perception of the surrounding environment. a) b) c) Figure 3. The virtual scene modeling process: a 2.5D depth map of the scene a), the segmented scene b) (grey found planes, black found obstacles), the reconstructed scene for the tactile presentation c) (the obstacles are replaced by cubes, see the text ). 4.3 Procedure and evaluation The experiments were divided into 4 stages: Figure 4. Prototype system tested by the blind. Stage 1 Training phase Participants were informed about the prototype system. Then its functionality was explored. The practice period with the device was adjusted according to the ability of each participant (15-30 minutes). 106

5 Stage 2 Scene content recognition Experiments were performed for scenes with different number of obstacles (between 2 and 5). Participants were asked to say how many obstacles were presented in each scene. Stage 3 Distance estimation to each obstacle from a chosen point of observation This stage was divided into two scenarios. In the first scenario, three scenes with different location of one object were presented. In the second scenario, one scene consisted of 3 objects was presented. In both cases, participants were asked to estimate objects distances to the chosen point of observation (e.g. the background wall). Stage 4 Estimation of obstacles height Three scenes with different number of objects were presented (between 2 and 5). Users were asked to estimate heights of objects in each scene (the height of an object was estimated in relation to the other objects). The objects in each scene were located on the ground, against a background wall up to 7.5 m (the SR3000 camera measurement range). Exploration time of every scene was measured. Every participant decided themselves when to finish exploration of a given presented scene. After the exploration was finished he/she was asked to describe the scene. The task was carried out successfully when the blind person correctly identified all obstacles in the presented scene. 4.4 Results The results of the second stage are presented in Fig. 5 and Fig. 6. The outcomes of the third stage are shown in Fig. 7. The outputs of the last stage are presented in Fig. 8 and Fig. 9. Figure 5. Results of the second stage of experiments. Figure 6. Exploration time of a scene for the second stage (all users). 107

6 Figure 7. The outcomes of the third stage of experiments. Figure 8. The results of estitamtion of objects height. Figure 9. Exploration time of a scene for the fourth stage. 4.5 Discussion Diverse exploration time of the scenes was measured. It depended on a tactile perception skills of the participants and on the chosen way of the scene exploration. The time of exploration was not lengthen proportionally to the complexity of the scenes, because the participants learnt how to efficiently use the haptic interface in order to identify the scene s content. In the second stage the worst result was obtained for the scene with 5 objects (two object were identified as one, because they were located close to each other). In the third stage two ways of the obstacle s location estimation were compared. In both cases participants were able to find location of objects in relation to a chosen point of observation, but in case where all obstacles were located in one scene the process was faster (the distances could be compared directly without switching between scenes). In the last stage for scenes containing two or three objects nobody had problem to properly 108

7 estimate the heights of the objects. For the scene with five objects three blind persons failed to correctly recognize objects heights. When all the experiments were completed, the blind participants expressed their opinions about the system and its usability in real life scenarios. They were impressed by the system s performance. In their opinion, there are a couple of potential applications where such a system could help the blind in everyday activities. They gave many hints about improving the system. The first suggestion was to add vocal information about the 3D position of the probe (the virtual finger in the system). This would be very helpful in order not to lose themselves in the virtual environment. Furthermore, the sonification of some of the scene points or objects could also be very useful as the volunteers suggested (the presented research concerning the perception of 3D objects by touching it). Special focus is also required when creating virtual objects. They should be as similar to those real ones as possible (size, stiffness, texture, density). When the scene consists of many objects that differ in size, the smaller ones should be created specifically to be noticed. 5. CONCLUSIONS In the article a prototype system for tactile presentation of real objects in a virtually reality was described. The system usability was examined by the blind participants. The performed experiments have proved that the system can be applied for the blind and emphasized the challenges that yet have to be overcome. This kind of application has to meet special requirements in order to be safe and reliable. The challenging issue is to present a real world scenario in a virtual reality. Many requirements need to be met, mainly: choosing the scale of virtual objects in the ratio to the real ones, solving the problem of losing oneself in VR, solving the problem of presenting scenes consisting of many objects/details (each of a different size), as the system s resolution is finite. The above are all the subject of scientific research in terms of the technical and psychological aspects. Acknowledgements: This work has been supported by the Ministry of Science and Higher Education of Poland research grant no. N R in years The described study is carried out with cooperation with Lodz Chapter of the Polish Society for the Blind. 6. REFERENCES J Loomis and S Lederman (1986), Tactual perception. In Handbook of perception and human performance (K Boff & J Thomas, Eds), Wiley/Interscience, New York, pp: Sensable Corp.: last accessed: 30 June Force Dimension Corp.: last accessed: 30 June Novint Corp.: home.novint.com, last accessed: 30 June G Jansson et al. (1999), Haptic virtual Environments for Blind People: Exploratory Experiments With Two Devices International Journal of Virtual Reality, 4, 3, pp G Jansson (1998), Can a haptic force feedback display provide visually impaired people with useful information about texture roughness and 3D form of virtual objects?, The International Journal of Virtual Reality, 4, pp: K Kostopoulos et al. (2007), Haptic Access to conventional 2D maps for the visually impaired, Journal on Multimodal User Interfaces, 2, 1. Mesa Imaging AG: last accessed: 30 June K-D Tree: last accessed: 30 June R Rusu (2009) Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments, Phd Dissertation, Institut für Informatik, der Technischen Universität München. H3D API: last accessed: 30 June

Salient features make a search easy

Salient features make a search easy Chapter General discussion This thesis examined various aspects of haptic search. It consisted of three parts. In the first part, the saliency of movability and compliance were investigated. In the second

More information

Multisensory Virtual Environment for Supporting Blind Persons' Acquisition of Spatial Cognitive Mapping a Case Study

Multisensory Virtual Environment for Supporting Blind Persons' Acquisition of Spatial Cognitive Mapping a Case Study Multisensory Virtual Environment for Supporting Blind Persons' Acquisition of Spatial Cognitive Mapping a Case Study Orly Lahav & David Mioduser Tel Aviv University, School of Education Ramat-Aviv, Tel-Aviv,

More information

Force feedback interfaces & applications

Force feedback interfaces & applications Force feedback interfaces & applications Roope Raisamo Tampere Unit for Computer-Human Interaction (TAUCHI) School of Information Sciences University of Tampere, Finland Based on material by Jukka Raisamo,

More information

Multisensory virtual environment for supporting blind persons acquisition of spatial cognitive mapping, orientation, and mobility skills

Multisensory virtual environment for supporting blind persons acquisition of spatial cognitive mapping, orientation, and mobility skills Multisensory virtual environment for supporting blind persons acquisition of spatial cognitive mapping, orientation, and mobility skills O Lahav and D Mioduser School of Education, Tel Aviv University,

More information

Touch & Haptics. Touch & High Information Transfer Rate. Modern Haptics. Human. Haptics

Touch & Haptics. Touch & High Information Transfer Rate. Modern Haptics. Human. Haptics Touch & Haptics Touch & High Information Transfer Rate Blind and deaf people have been using touch to substitute vision or hearing for a very long time, and successfully. OPTACON Hong Z Tan Purdue University

More information

Sound rendering in Interactive Multimodal Systems. Federico Avanzini

Sound rendering in Interactive Multimodal Systems. Federico Avanzini Sound rendering in Interactive Multimodal Systems Federico Avanzini Background Outline Ecological Acoustics Multimodal perception Auditory visual rendering of egocentric distance Binaural sound Auditory

More information

Leading the Agenda. Everyday technology: A focus group with children, young people and their carers

Leading the Agenda. Everyday technology: A focus group with children, young people and their carers Leading the Agenda Everyday technology: A focus group with children, young people and their carers March 2018 1 1.0 Introduction Assistive technology is an umbrella term that includes assistive, adaptive,

More information

Welcome to this course on «Natural Interactive Walking on Virtual Grounds»!

Welcome to this course on «Natural Interactive Walking on Virtual Grounds»! Welcome to this course on «Natural Interactive Walking on Virtual Grounds»! The speaker is Anatole Lécuyer, senior researcher at Inria, Rennes, France; More information about him at : http://people.rennes.inria.fr/anatole.lecuyer/

More information

23270: AUGMENTED REALITY FOR NAVIGATION AND INFORMATIONAL ADAS. Sergii Bykov Technical Lead Machine Learning 12 Oct 2017

23270: AUGMENTED REALITY FOR NAVIGATION AND INFORMATIONAL ADAS. Sergii Bykov Technical Lead Machine Learning 12 Oct 2017 23270: AUGMENTED REALITY FOR NAVIGATION AND INFORMATIONAL ADAS Sergii Bykov Technical Lead Machine Learning 12 Oct 2017 Product Vision Company Introduction Apostera GmbH with headquarter in Munich, was

More information

PERFORMANCE IN A HAPTIC ENVIRONMENT ABSTRACT

PERFORMANCE IN A HAPTIC ENVIRONMENT ABSTRACT PERFORMANCE IN A HAPTIC ENVIRONMENT Michael V. Doran,William Owen, and Brian Holbert University of South Alabama School of Computer and Information Sciences Mobile, Alabama 36688 (334) 460-6390 doran@cis.usouthal.edu,

More information

1/22/13. Virtual Environments. Virtual Reality. History of Virtual Reality. Virtual Reality. Cinerama. Cinerama

1/22/13. Virtual Environments. Virtual Reality. History of Virtual Reality. Virtual Reality. Cinerama. Cinerama CSCI 480 Computer Graphics Lecture 25 Virtual Environments Apr 29, 2013 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s13/ History of Virtual Reality Immersion,

More information

Flexible Active Touch Using 2.5D Display Generating Tactile and Force Sensations

Flexible Active Touch Using 2.5D Display Generating Tactile and Force Sensations This is the accepted version of the following article: ICIC Express Letters 6(12):2995-3000 January 2012, which has been published in final form at http://www.ijicic.org/el-6(12).htm Flexible Active Touch

More information

Computer Haptics and Applications

Computer Haptics and Applications Computer Haptics and Applications EURON Summer School 2003 Cagatay Basdogan, Ph.D. College of Engineering Koc University, Istanbul, 80910 (http://network.ku.edu.tr/~cbasdogan) Resources: EURON Summer School

More information

Development of K-Touch TM Haptic API for Various Datasets

Development of K-Touch TM Haptic API for Various Datasets Development of K-Touch TM Haptic API for Various Datasets Beom-Chan Lee 1 Jong-Phil Kim 2 Jongeun Cha 3 Jeha Ryu 4 ABSTRACT This paper presents development of a new haptic API (Application Programming

More information

Integrating PhysX and OpenHaptics: Efficient Force Feedback Generation Using Physics Engine and Haptic Devices

Integrating PhysX and OpenHaptics: Efficient Force Feedback Generation Using Physics Engine and Haptic Devices This is the Pre-Published Version. Integrating PhysX and Opens: Efficient Force Feedback Generation Using Physics Engine and Devices 1 Leon Sze-Ho Chan 1, Kup-Sze Choi 1 School of Nursing, Hong Kong Polytechnic

More information

Multimodal Virtual Environments: MAGIC Toolkit and Visual-Haptic Interaction Paradigms. I-Chun Alexandra Hou

Multimodal Virtual Environments: MAGIC Toolkit and Visual-Haptic Interaction Paradigms. I-Chun Alexandra Hou Multimodal Virtual Environments: MAGIC Toolkit and Visual-Haptic Interaction Paradigms by I-Chun Alexandra Hou B.S., Mechanical Engineering (1995) Massachusetts Institute of Technology Submitted to the

More information

Enabling People with Visual Impairments to Navigate Virtual Reality with a Haptic and Auditory Cane Simulation

Enabling People with Visual Impairments to Navigate Virtual Reality with a Haptic and Auditory Cane Simulation Enabling People with Visual Impairments to Navigate Virtual Reality with a Haptic and Auditory Cane Simulation Yuhang Zhao1, 2, Cynthia L. Bennett1, 3, Hrvoje Benko1, Edward Cutrell1, Christian Holz1,

More information

VR-OOS System Architecture Workshop zu interaktiven VR-Technologien für On-Orbit Servicing

VR-OOS System Architecture Workshop zu interaktiven VR-Technologien für On-Orbit Servicing www.dlr.de Chart 1 > VR-OOS System Architecture > Robin Wolff VR-OOS Workshop 09/10.10.2012 VR-OOS System Architecture Workshop zu interaktiven VR-Technologien für On-Orbit Servicing Robin Wolff DLR, and

More information

Multisensory Virtual Environment for Supporting Blind. Persons' Acquisition of Spatial Cognitive Mapping. a Case Study I

Multisensory Virtual Environment for Supporting Blind. Persons' Acquisition of Spatial Cognitive Mapping. a Case Study I 1 Multisensory Virtual Environment for Supporting Blind Persons' Acquisition of Spatial Cognitive Mapping a Case Study I Orly Lahav & David Mioduser Tel Aviv University, School of Education Ramat-Aviv,

More information

A Multimodal Locomotion User Interface for Immersive Geospatial Information Systems

A Multimodal Locomotion User Interface for Immersive Geospatial Information Systems F. Steinicke, G. Bruder, H. Frenz 289 A Multimodal Locomotion User Interface for Immersive Geospatial Information Systems Frank Steinicke 1, Gerd Bruder 1, Harald Frenz 2 1 Institute of Computer Science,

More information

Seminar: Haptic Interaction in Mobile Environments TIEVS63 (4 ECTS)

Seminar: Haptic Interaction in Mobile Environments TIEVS63 (4 ECTS) Seminar: Haptic Interaction in Mobile Environments TIEVS63 (4 ECTS) Jussi Rantala Tampere Unit for Computer-Human Interaction (TAUCHI) School of Information Sciences University of Tampere, Finland Contents

More information

Controlling vehicle functions with natural body language

Controlling vehicle functions with natural body language Controlling vehicle functions with natural body language Dr. Alexander van Laack 1, Oliver Kirsch 2, Gert-Dieter Tuzar 3, Judy Blessing 4 Design Experience Europe, Visteon Innovation & Technology GmbH

More information

tactile perception according to texts of Vincent Hayward, J.J Gibson. florian wille // tactile perception // // 1 of 15

tactile perception according to texts of Vincent Hayward, J.J Gibson. florian wille // tactile perception // // 1 of 15 tactile perception according to texts of Vincent Hayward, J.J Gibson. florian wille // tactile perception // 30.11.2009 // 1 of 15 tactile vs visual sense The two senses complement each other. Where as

More information

HELPING THE DESIGN OF MIXED SYSTEMS

HELPING THE DESIGN OF MIXED SYSTEMS HELPING THE DESIGN OF MIXED SYSTEMS Céline Coutrix Grenoble Informatics Laboratory (LIG) University of Grenoble 1, France Abstract Several interaction paradigms are considered in pervasive computing environments.

More information

Interactive guidance system for railway passengers

Interactive guidance system for railway passengers Interactive guidance system for railway passengers K. Goto, H. Matsubara, N. Fukasawa & N. Mizukami Transport Information Technology Division, Railway Technical Research Institute, Japan Abstract This

More information

Interactive and Immersive 3D Visualization for ATC

Interactive and Immersive 3D Visualization for ATC Interactive and Immersive 3D Visualization for ATC Matt Cooper & Marcus Lange Norrköping Visualization and Interaction Studio University of Linköping, Sweden Summary of last presentation A quick description

More information

Fuzzy Logic Based Force-Feedback for Obstacle Collision Avoidance of Robot Manipulators

Fuzzy Logic Based Force-Feedback for Obstacle Collision Avoidance of Robot Manipulators Fuzzy Logic Based Force-Feedback for Obstacle Collision Avoidance of Robot Manipulators D. Wijayasekara, M. Manic Department of Computer Science University of Idaho Idaho Falls, USA wija2589@vandals.uidaho.edu,

More information

Real Time Word to Picture Translation for Chinese Restaurant Menus

Real Time Word to Picture Translation for Chinese Restaurant Menus Real Time Word to Picture Translation for Chinese Restaurant Menus Michelle Jin, Ling Xiao Wang, Boyang Zhang Email: mzjin12, lx2wang, boyangz @stanford.edu EE268 Project Report, Spring 2014 Abstract--We

More information

Peter Berkelman. ACHI/DigitalWorld

Peter Berkelman. ACHI/DigitalWorld Magnetic Levitation Haptic Peter Berkelman ACHI/DigitalWorld February 25, 2013 Outline: Haptics - Force Feedback Sample devices: Phantoms, Novint Falcon, Force Dimension Inertia, friction, hysteresis/backlash

More information

A Design Study for the Haptic Vest as a Navigation System

A Design Study for the Haptic Vest as a Navigation System Received January 7, 2013; Accepted March 19, 2013 A Design Study for the Haptic Vest as a Navigation System LI Yan 1, OBATA Yuki 2, KUMAGAI Miyuki 3, ISHIKAWA Marina 4, OWAKI Moeki 5, FUKAMI Natsuki 6,

More information

The Use of Virtual Reality System for Education in Rural Areas

The Use of Virtual Reality System for Education in Rural Areas The Use of Virtual Reality System for Education in Rural Areas Iping Supriana Suwardi 1, Victor 2 Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia 1 iping@informatika.org, 2 if13001@students.if.itb.ac.id

More information

Tactile Vision Substitution with Tablet and Electro-Tactile Display

Tactile Vision Substitution with Tablet and Electro-Tactile Display Tactile Vision Substitution with Tablet and Electro-Tactile Display Haruya Uematsu 1, Masaki Suzuki 2, Yonezo Kanno 2, Hiroyuki Kajimoto 1 1 The University of Electro-Communications, 1-5-1 Chofugaoka,

More information

Interactive and Immersive 3D Visualization for ATC. Matt Cooper Norrköping Visualization and Interaction Studio University of Linköping, Sweden

Interactive and Immersive 3D Visualization for ATC. Matt Cooper Norrköping Visualization and Interaction Studio University of Linköping, Sweden Interactive and Immersive 3D Visualization for ATC Matt Cooper Norrköping Visualization and Interaction Studio University of Linköping, Sweden Background Fundamentals: Air traffic expected to increase

More information

Perceptual Overlays for Teaching Advanced Driving Skills

Perceptual Overlays for Teaching Advanced Driving Skills Perceptual Overlays for Teaching Advanced Driving Skills Brent Gillespie Micah Steele ARC Conference May 24, 2000 5/21/00 1 Outline 1. Haptics in the Driver-Vehicle Interface 2. Perceptual Overlays for

More information

The Impact of Haptic Touching Technology on Cultural Applications

The Impact of Haptic Touching Technology on Cultural Applications The Impact of Haptic Touching Technology on Cultural Applications Stephen Brewster Glasgow Interactive Systems Group Department of Computing Science University of Glasgow, Glasgow, G12 8QQ, UK Tel: +44

More information

Force Feedback Input Devices in Three-Dimensional NextGen Cockpit Display

Force Feedback Input Devices in Three-Dimensional NextGen Cockpit Display Force Feedback Input Devices in Three-Dimensional NextGen Cockpit Display Isis Chong and Mei Ling Chan California State University Long Beach Table of Contents Executive Summary... 3 1. Introduction...

More information

Advanced Techniques for Mobile Robotics Location-Based Activity Recognition

Advanced Techniques for Mobile Robotics Location-Based Activity Recognition Advanced Techniques for Mobile Robotics Location-Based Activity Recognition Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Activity Recognition Based on L. Liao, D. J. Patterson, D. Fox,

More information

Intuitive Robot Teleoperation based on Haptic Feedback and 3-D Visualization

Intuitive Robot Teleoperation based on Haptic Feedback and 3-D Visualization Intuitive Robot Teleoperation based on Haptic Feedback and 3-D Visualization Yangjun Chen A thesis submitted in partial fulfilment of the requirements of the University of Hertfordshire for the degree

More information

IED Detailed Outline. Unit 1 Design Process Time Days: 16 days. An engineering design process involves a characteristic set of practices and steps.

IED Detailed Outline. Unit 1 Design Process Time Days: 16 days. An engineering design process involves a characteristic set of practices and steps. IED Detailed Outline Unit 1 Design Process Time Days: 16 days Understandings An engineering design process involves a characteristic set of practices and steps. Research derived from a variety of sources

More information

Mel Spectrum Analysis of Speech Recognition using Single Microphone

Mel Spectrum Analysis of Speech Recognition using Single Microphone International Journal of Engineering Research in Electronics and Communication Mel Spectrum Analysis of Speech Recognition using Single Microphone [1] Lakshmi S.A, [2] Cholavendan M [1] PG Scholar, Sree

More information

Access Invaders: Developing a Universally Accessible Action Game

Access Invaders: Developing a Universally Accessible Action Game ICCHP 2006 Thursday, 13 July 2006 Access Invaders: Developing a Universally Accessible Action Game Dimitris Grammenos, Anthony Savidis, Yannis Georgalis, Constantine Stephanidis Human-Computer Interaction

More information

PROCESS OF PERCEPTION A GUIDING LINE TO SIMULATE MOVING IN A REAL STREET Manfred Walz, Manuela Borg Fachhochschule Dortmund

PROCESS OF PERCEPTION A GUIDING LINE TO SIMULATE MOVING IN A REAL STREET Manfred Walz, Manuela Borg Fachhochschule Dortmund PROCESS OF PERCEPTION A GUIDING LINE TO SIMULATE MOVING IN A REAL STREET Manfred Walz, Manuela Borg Fachhochschule Dortmund Abstract By a special research design we try to find out in which way subjective

More information

Assistant Lecturer Sama S. Samaan

Assistant Lecturer Sama S. Samaan MP3 Not only does MPEG define how video is compressed, but it also defines a standard for compressing audio. This standard can be used to compress the audio portion of a movie (in which case the MPEG standard

More information

A Comparative Study of Structured Light and Laser Range Finding Devices

A Comparative Study of Structured Light and Laser Range Finding Devices A Comparative Study of Structured Light and Laser Range Finding Devices Todd Bernhard todd.bernhard@colorado.edu Anuraag Chintalapally anuraag.chintalapally@colorado.edu Daniel Zukowski daniel.zukowski@colorado.edu

More information

Journal of Theoretical and Applied Mechanics, Sofia, 2014, vol. 44, No. 1, pp ROBONAUT 2: MISSION, TECHNOLOGIES, PERSPECTIVES

Journal of Theoretical and Applied Mechanics, Sofia, 2014, vol. 44, No. 1, pp ROBONAUT 2: MISSION, TECHNOLOGIES, PERSPECTIVES Journal of Theoretical and Applied Mechanics, Sofia, 2014, vol. 44, No. 1, pp. 97 102 SCIENTIFIC LIFE DOI: 10.2478/jtam-2014-0006 ROBONAUT 2: MISSION, TECHNOLOGIES, PERSPECTIVES Galia V. Tzvetkova Institute

More information

Environmental Sound Recognition using MP-based Features

Environmental Sound Recognition using MP-based Features Environmental Sound Recognition using MP-based Features Selina Chu, Shri Narayanan *, and C.-C. Jay Kuo * Speech Analysis and Interpretation Lab Signal & Image Processing Institute Department of Computer

More information

ModaDJ. Development and evaluation of a multimodal user interface. Institute of Computer Science University of Bern

ModaDJ. Development and evaluation of a multimodal user interface. Institute of Computer Science University of Bern ModaDJ Development and evaluation of a multimodal user interface Course Master of Computer Science Professor: Denis Lalanne Renato Corti1 Alina Petrescu2 1 Institute of Computer Science University of Bern

More information

Haptic control in a virtual environment

Haptic control in a virtual environment Haptic control in a virtual environment Gerard de Ruig (0555781) Lourens Visscher (0554498) Lydia van Well (0566644) September 10, 2010 Introduction With modern technological advancements it is entirely

More information

Localized HD Haptics for Touch User Interfaces

Localized HD Haptics for Touch User Interfaces Localized HD Haptics for Touch User Interfaces Turo Keski-Jaskari, Pauli Laitinen, Aito BV Haptic, or tactile, feedback has rapidly become familiar to the vast majority of consumers, mainly through their

More information

COLOR IMAGE SEGMENTATION USING K-MEANS CLASSIFICATION ON RGB HISTOGRAM SADIA BASAR, AWAIS ADNAN, NAILA HABIB KHAN, SHAHAB HAIDER

COLOR IMAGE SEGMENTATION USING K-MEANS CLASSIFICATION ON RGB HISTOGRAM SADIA BASAR, AWAIS ADNAN, NAILA HABIB KHAN, SHAHAB HAIDER COLOR IMAGE SEGMENTATION USING K-MEANS CLASSIFICATION ON RGB HISTOGRAM SADIA BASAR, AWAIS ADNAN, NAILA HABIB KHAN, SHAHAB HAIDER Department of Computer Science, Institute of Management Sciences, 1-A, Sector

More information

Artificial Life Simulation on Distributed Virtual Reality Environments

Artificial Life Simulation on Distributed Virtual Reality Environments Artificial Life Simulation on Distributed Virtual Reality Environments Marcio Lobo Netto, Cláudio Ranieri Laboratório de Sistemas Integráveis Universidade de São Paulo (USP) São Paulo SP Brazil {lobonett,ranieri}@lsi.usp.br

More information

AR Tamagotchi : Animate Everything Around Us

AR Tamagotchi : Animate Everything Around Us AR Tamagotchi : Animate Everything Around Us Byung-Hwa Park i-lab, Pohang University of Science and Technology (POSTECH), Pohang, South Korea pbh0616@postech.ac.kr Se-Young Oh Dept. of Electrical Engineering,

More information

Tactile Feedback in Mobile: Consumer Attitudes About High-Definition Haptic Effects in Touch Screen Phones. August 2017

Tactile Feedback in Mobile: Consumer Attitudes About High-Definition Haptic Effects in Touch Screen Phones. August 2017 Consumer Attitudes About High-Definition Haptic Effects in Touch Screen Phones August 2017 Table of Contents 1. EXECUTIVE SUMMARY... 1 2. STUDY OVERVIEW... 2 3. METHODOLOGY... 3 3.1 THE SAMPLE SELECTION

More information

A Concept Study on Wearable Cockpit for Construction Work - not only for machine operation but also for project control -

A Concept Study on Wearable Cockpit for Construction Work - not only for machine operation but also for project control - A Concept Study on Wearable Cockpit for Construction Work - not only for machine operation but also for project control - Thomas Bock, Shigeki Ashida Chair for Realization and Informatics of Construction,

More information

Blindstation : a Game Platform Adapted to Visually Impaired Children

Blindstation : a Game Platform Adapted to Visually Impaired Children Blindstation : a Game Platform Adapted to Visually Impaired Children Sébastien Sablé and Dominique Archambault INSERM U483 / INOVA - Université Pierre et Marie Curie 9, quai Saint Bernard, 75,252 Paris

More information

AGRICULTURE, LIVESTOCK and FISHERIES

AGRICULTURE, LIVESTOCK and FISHERIES Research in ISSN : P-2409-0603, E-2409-9325 AGRICULTURE, LIVESTOCK and FISHERIES An Open Access Peer Reviewed Journal Open Access Research Article Res. Agric. Livest. Fish. Vol. 2, No. 2, August 2015:

More information

Tele-operation of a Robot Arm with Electro Tactile Feedback

Tele-operation of a Robot Arm with Electro Tactile Feedback F Tele-operation of a Robot Arm with Electro Tactile Feedback Daniel S. Pamungkas and Koren Ward * Abstract Tactile feedback from a remotely controlled robotic arm can facilitate certain tasks by enabling

More information

Exploring Surround Haptics Displays

Exploring Surround Haptics Displays Exploring Surround Haptics Displays Ali Israr Disney Research 4615 Forbes Ave. Suite 420, Pittsburgh, PA 15213 USA israr@disneyresearch.com Ivan Poupyrev Disney Research 4615 Forbes Ave. Suite 420, Pittsburgh,

More information

Haptic Identification of Stiffness and Force Magnitude

Haptic Identification of Stiffness and Force Magnitude Haptic Identification of Stiffness and Force Magnitude Steven A. Cholewiak, 1 Hong Z. Tan, 1 and David S. Ebert 2,3 1 Haptic Interface Research Laboratory 2 Purdue University Rendering and Perceptualization

More information

Learning Aircraft Behavior from Real Air Traffic

Learning Aircraft Behavior from Real Air Traffic Learning Aircraft Behavior from Real Air Traffic Arcady Rantrua 1,2, Eric Maesen 1, Sebastien Chabrier 1, Marie-Pierre Gleizes 2 {firstname.lastname}@soprasteria.com {firstname.lastname}@irit.fr 1 R&D

More information

An Investigation of Search Behaviour in a Tactile Exploration Task for Sighted and Non-sighted Adults.

An Investigation of Search Behaviour in a Tactile Exploration Task for Sighted and Non-sighted Adults. An Investigation of Search Behaviour in a Tactile Exploration Task for Sighted and Non-sighted Adults. Luca Brayda Guido Rodriguez Istituto Italiano di Tecnologia Clinical Neurophysiology, Telerobotics

More information

Abstract. 2. Related Work. 1. Introduction Icon Design

Abstract. 2. Related Work. 1. Introduction Icon Design The Hapticon Editor: A Tool in Support of Haptic Communication Research Mario J. Enriquez and Karon E. MacLean Department of Computer Science University of British Columbia enriquez@cs.ubc.ca, maclean@cs.ubc.ca

More information

VEWL: A Framework for Building a Windowing Interface in a Virtual Environment Daniel Larimer and Doug A. Bowman Dept. of Computer Science, Virginia Tech, 660 McBryde, Blacksburg, VA dlarimer@vt.edu, bowman@vt.edu

More information

Telecommunication and remote-controlled

Telecommunication and remote-controlled Spatial Interfaces Editors: Frank Steinicke and Wolfgang Stuerzlinger Telexistence: Enabling Humans to Be Virtually Ubiquitous Susumu Tachi The University of Tokyo Telecommunication and remote-controlled

More information

Depth-Enhanced Mobile Robot Teleguide based on Laser Images

Depth-Enhanced Mobile Robot Teleguide based on Laser Images Depth-Enhanced Mobile Robot Teleguide based on Laser Images S. Livatino 1 G. Muscato 2 S. Sessa 2 V. Neri 2 1 School of Engineering and Technology, University of Hertfordshire, Hatfield, United Kingdom

More information

Psychophysics of night vision device halo

Psychophysics of night vision device halo University of Wollongong Research Online Faculty of Health and Behavioural Sciences - Papers (Archive) Faculty of Science, Medicine and Health 2009 Psychophysics of night vision device halo Robert S Allison

More information

Perception in Immersive Environments

Perception in Immersive Environments Perception in Immersive Environments Scott Kuhl Department of Computer Science Augsburg College scott@kuhlweb.com Abstract Immersive environment (virtual reality) systems provide a unique way for researchers

More information

Applications of Haptics Technology in Advance Robotics

Applications of Haptics Technology in Advance Robotics Applications of Haptics Technology in Advance Robotics Vaibhav N. Fulkar vaibhav.fulkar@hotmail.com Mohit V. Shivramwar mohitshivramwar@gmail.com Anilesh A. Alkari anileshalkari123@gmail.com Abstract Haptic

More information

VR/AR Concepts in Architecture And Available Tools

VR/AR Concepts in Architecture And Available Tools VR/AR Concepts in Architecture And Available Tools Peter Kán Interactive Media Systems Group Institute of Software Technology and Interactive Systems TU Wien Outline 1. What can you do with virtual reality

More information

Mobile Manipulation in der Telerobotik

Mobile Manipulation in der Telerobotik Mobile Manipulation in der Telerobotik Angelika Peer, Thomas Schauß, Ulrich Unterhinninghofen, Martin Buss angelika.peer@tum.de schauss@tum.de ulrich.unterhinninghofen@tum.de mb@tum.de Lehrstuhl für Steuerungs-

More information

USING VIRTUAL REALITY SIMULATION FOR SAFE HUMAN-ROBOT INTERACTION 1. INTRODUCTION

USING VIRTUAL REALITY SIMULATION FOR SAFE HUMAN-ROBOT INTERACTION 1. INTRODUCTION USING VIRTUAL REALITY SIMULATION FOR SAFE HUMAN-ROBOT INTERACTION Brad Armstrong 1, Dana Gronau 2, Pavel Ikonomov 3, Alamgir Choudhury 4, Betsy Aller 5 1 Western Michigan University, Kalamazoo, Michigan;

More information

Basic Formgiving Skills

Basic Formgiving Skills Basic Formgiving Skills B.F.L.C van Straaten 0945628 Preface In this annotated portfolio I describe and show all my delivered work and feedback for the Basic Formgiving Skills assignment during the second

More information

NON UNIFORM BACKGROUND REMOVAL FOR PARTICLE ANALYSIS BASED ON MORPHOLOGICAL STRUCTURING ELEMENT:

NON UNIFORM BACKGROUND REMOVAL FOR PARTICLE ANALYSIS BASED ON MORPHOLOGICAL STRUCTURING ELEMENT: IJCE January-June 2012, Volume 4, Number 1 pp. 59 67 NON UNIFORM BACKGROUND REMOVAL FOR PARTICLE ANALYSIS BASED ON MORPHOLOGICAL STRUCTURING ELEMENT: A COMPARATIVE STUDY Prabhdeep Singh1 & A. K. Garg2

More information

Tactile information transmission by apparent movement phenomenon using shape-memory alloy device

Tactile information transmission by apparent movement phenomenon using shape-memory alloy device Tactile information transmission by apparent movement phenomenon using shape-memory alloy device Y Mizukami and H Sawada Department of Intelligent Mechanical Systems Engineering, Faculty of Engineering,

More information

VIRTUAL IMMERSION UTILIZATION FOR IMPROVING PERCEPTION OF THE 3D PROTOTYPES

VIRTUAL IMMERSION UTILIZATION FOR IMPROVING PERCEPTION OF THE 3D PROTOTYPES September 2017 Engineering VIRTUAL IMMERSION UTILIZATION FOR IMPROVING PERCEPTION OF THE 3D PROTOTYPES Ghinea MIHALACHE 1 Marinică (Stan) ANCA 2 ABSTRACT: VIRTUAL IMMERSION (OR VR) GETS INTO ATTENTION

More information

The Use of Non-Local Means to Reduce Image Noise

The Use of Non-Local Means to Reduce Image Noise The Use of Non-Local Means to Reduce Image Noise By Chimba Chundu, Danny Bin, and Jackelyn Ferman ABSTRACT Digital images, such as those produced from digital cameras, suffer from random noise that is

More information

Real-time Reconstruction of Wide-Angle Images from Past Image-Frames with Adaptive Depth Models

Real-time Reconstruction of Wide-Angle Images from Past Image-Frames with Adaptive Depth Models Real-time Reconstruction of Wide-Angle Images from Past Image-Frames with Adaptive Depth Models Kenji Honda, Naoki Hashinoto, Makoto Sato Precision and Intelligence Laboratory, Tokyo Institute of Technology

More information

UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR

UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR TRABAJO DE FIN DE GRADO GRADO EN INGENIERÍA DE SISTEMAS DE COMUNICACIONES CONTROL CENTRALIZADO DE FLOTAS DE ROBOTS CENTRALIZED CONTROL FOR

More information

A Very High Level Interface to Teleoperate a Robot via Web including Augmented Reality

A Very High Level Interface to Teleoperate a Robot via Web including Augmented Reality A Very High Level Interface to Teleoperate a Robot via Web including Augmented Reality R. Marín, P. J. Sanz and J. S. Sánchez Abstract The system consists of a multirobot architecture that gives access

More information

Research report. A new option for the visually impaired to experience 3D art at museums: manual exploration of virtual copies

Research report. A new option for the visually impaired to experience 3D art at museums: manual exploration of virtual copies Research report Visual Impairment Research 1388-235X/03/US$ 16.00 Visual Impairment Research 2003, Vol. 5 No. 1, pp. 1 12 Swets & Zeitlinger 2003 Accepted 29 May 2003 A new option for the visually impaired

More information

Tactile letter recognition under different modes of stimulus presentation*

Tactile letter recognition under different modes of stimulus presentation* Percepriori & Psychophysics 19 74. Vol. 16 (Z), 401-408 Tactile letter recognition under different modes of stimulus presentation* JACK M. LOOMISt Smith-Kettlewell Institute and Department of ViedSciences,

More information

VICs: A Modular Vision-Based HCI Framework

VICs: A Modular Vision-Based HCI Framework VICs: A Modular Vision-Based HCI Framework The Visual Interaction Cues Project Guangqi Ye, Jason Corso Darius Burschka, & Greg Hager CIRL, 1 Today, I ll be presenting work that is part of an ongoing project

More information

High-speed Noise Cancellation with Microphone Array

High-speed Noise Cancellation with Microphone Array Noise Cancellation a Posteriori Probability, Maximum Criteria Independent Component Analysis High-speed Noise Cancellation with Microphone Array We propose the use of a microphone array based on independent

More information

Method for Real Time Text Extraction of Digital Manga Comic

Method for Real Time Text Extraction of Digital Manga Comic Method for Real Time Text Extraction of Digital Manga Comic Kohei Arai Information Science Department Saga University Saga, 840-0027, Japan Herman Tolle Software Engineering Department Brawijaya University

More information

Immersive Natives. Die Zukunft der virtuellen Realität. Prof. Dr. Frank Steinicke. Human-Computer Interaction, Universität Hamburg

Immersive Natives. Die Zukunft der virtuellen Realität. Prof. Dr. Frank Steinicke. Human-Computer Interaction, Universität Hamburg Immersive Natives Die Zukunft der virtuellen Realität Prof. Dr. Frank Steinicke Human-Computer Interaction, Universität Hamburg Immersion Presence Place Illusion + Plausibility Illusion + Social Presence

More information

Gesture in Embodied Communication and Human-Computer Interaction

Gesture in Embodied Communication and Human-Computer Interaction Eleni Efthimiou Georgios Kouroupetroglou (Eds.) Gesture in Embodied Communication and Human-Computer Interaction 9th International Gesture Workshop, GW 2011 Athens, Greece, May 25-27, 2011 Institute for

More information

The Haptic Impendance Control through Virtual Environment Force Compensation

The Haptic Impendance Control through Virtual Environment Force Compensation The Haptic Impendance Control through Virtual Environment Force Compensation OCTAVIAN MELINTE Robotics and Mechatronics Department Institute of Solid Mechanicsof the Romanian Academy ROMANIA octavian.melinte@yahoo.com

More information

ROBOTIC MANIPULATION AND HAPTIC FEEDBACK VIA HIGH SPEED MESSAGING WITH THE JOINT ARCHITECTURE FOR UNMANNED SYSTEMS (JAUS)

ROBOTIC MANIPULATION AND HAPTIC FEEDBACK VIA HIGH SPEED MESSAGING WITH THE JOINT ARCHITECTURE FOR UNMANNED SYSTEMS (JAUS) ROBOTIC MANIPULATION AND HAPTIC FEEDBACK VIA HIGH SPEED MESSAGING WITH THE JOINT ARCHITECTURE FOR UNMANNED SYSTEMS (JAUS) Dr. Daniel Kent, * Dr. Thomas Galluzzo*, Dr. Paul Bosscher and William Bowman INTRODUCTION

More information

Texture recognition using force sensitive resistors

Texture recognition using force sensitive resistors Texture recognition using force sensitive resistors SAYED, Muhammad, DIAZ GARCIA,, Jose Carlos and ALBOUL, Lyuba Available from Sheffield Hallam University Research

More information

The Development of Computer Aided Engineering: Introduced from an Engineering Perspective. A Presentation By: Jesse Logan Moe.

The Development of Computer Aided Engineering: Introduced from an Engineering Perspective. A Presentation By: Jesse Logan Moe. The Development of Computer Aided Engineering: Introduced from an Engineering Perspective A Presentation By: Jesse Logan Moe What Defines CAE? Introduction Computer-Aided Engineering is the use of information

More information

Cyber-Physical Systems: Challenges for Systems Engineering

Cyber-Physical Systems: Challenges for Systems Engineering Cyber-Physical Systems: Challenges for Systems Engineering agendacps Closing Event April 12th, 2012, EIT ICT Labs, Berlin Eva Geisberger fortiss An-Institut der Technischen Universität München Cyber-Physical

More information

learning progression diagrams

learning progression diagrams Technological literacy: implications for Teaching and learning learning progression diagrams The connections in these Learning Progression Diagrams show how learning progresses between the indicators within

More information

BSc in Music, Media & Performance Technology

BSc in Music, Media & Performance Technology BSc in Music, Media & Performance Technology Email: jurgen.simpson@ul.ie The BSc in Music, Media & Performance Technology will develop the technical and creative skills required to be successful media

More information

COMP219: Artificial Intelligence. Lecture 2: AI Problems and Applications

COMP219: Artificial Intelligence. Lecture 2: AI Problems and Applications COMP219: Artificial Intelligence Lecture 2: AI Problems and Applications 1 Introduction Last time General module information Characterisation of AI and what it is about Today Overview of some common AI

More information

Enhanced Virtual Transparency in Handheld AR: Digital Magnifying Glass

Enhanced Virtual Transparency in Handheld AR: Digital Magnifying Glass Enhanced Virtual Transparency in Handheld AR: Digital Magnifying Glass Klen Čopič Pucihar School of Computing and Communications Lancaster University Lancaster, UK LA1 4YW k.copicpuc@lancaster.ac.uk Paul

More information

CMM-Manager Fully featured metrology software for CNC, manual and portable CMMs

CMM-Manager Fully featured metrology software for CNC, manual and portable CMMs Ryf AG Bettlachstrasse 2 2540 Grenchen tel 032 654 21 00 fax 032 654 21 09 www.ryfag.ch CMM-Manager Fully featured metrology software for CNC, manual and portable CMMs NIKON METROLOGY I VISION BEYOND PRECISION

More information

Developing a Mobile, Service-Based Augmented Reality Tool for Modern Maintenance Work

Developing a Mobile, Service-Based Augmented Reality Tool for Modern Maintenance Work Developing a Mobile, Service-Based Augmented Reality Tool for Modern Maintenance Work Paula Savioja, Paula Järvinen, Tommi Karhela, Pekka Siltanen, and Charles Woodward VTT Technical Research Centre of

More information

ANALYSIS OF MEASUREMENT ACCURACY OF CONTACTLESS 3D OPTICAL SCANNERS

ANALYSIS OF MEASUREMENT ACCURACY OF CONTACTLESS 3D OPTICAL SCANNERS ANALYSIS OF MEASUREMENT ACCURACY OF CONTACTLESS 3D OPTICAL SCANNERS RADOMIR MENDRICKY Department of Manufacturing Systems and Automation, Technical University of Liberec, Liberec, Czech Republic DOI: 10.17973/MMSJ.2015_10_201541

More information