Calculus IV Math 2443 Review for Exam 2 on Mon Oct 24, 2016 Exam 2 will cover This is only a sample. Try all the homework problems.

Size: px
Start display at page:

Download "Calculus IV Math 2443 Review for Exam 2 on Mon Oct 24, 2016 Exam 2 will cover This is only a sample. Try all the homework problems."

Transcription

1 Calculus IV Math 443 eview for xam on Mon Oct 4, 6 xam will cover This is only a sample. Try all the homework problems. () o not evaluated the integral. Write as iterated integrals: (x + y )dv, where is the domain made of the cylinder bounded by y x and x + y, cut by two planes z and z x + y +. () o not evaluate the integral. Change the order of integration: y y f(x, y) dx dy (3) Find the volume of the solid under the cone z x + y and above the ring 4 x + y 5. Use double integral and polar coordinate. (4) Let be the region bounded by the paraboloid y x + z and the plane y 4. Write as an iterated integral for x + z dv. (5) Set up an integral expression for the mass of the solid, whose density is ρ(x, y, z) x, in the first octant bounded by the cylinder x + y and the planes y z, x, and z. (6) escribe the region whose area is given by +sin θ r dr dθ. (7) Sketch the solid whose volume is given by the iterated integral: (8) valuate the integral using spherical coordinate: x x y (x + y + z ) dz dy dx. y 4 y dxdzdy. (9) Find the volume of the region bounded by the paraboloids z x + y and z 36 3x 3y. () Use change of variable to evaluate (x + y) da, where is the region bounded by the lines x + y, x + y, x y, x y 3. () Use change of variable: [x u, y 3v] to evaluate x da, where is the region bounded by the ellipse 9x + 4y 36.

2 () Let f(x, y) be a function defined on a rectangular region [a, b] [c, d]. efine the double integral f(x, y) da. (3) Let be a domain in the xy-plane given by a x b y g (x), and f(x, y) be a continuous function on. How is defined)? f(x, y) defined (after () is (4) Use Fubini s Theorem to prove: Let be a domain in the xy-plane given by a x b y g (x), and f(x, y) be a continuous function on. Then b g (x) f(x, y) f(x, y) dy dx. a (5) valuate x dv, where is the solid enclosed by the ellipsoid a Use the transformation x aρ sin φ cos θ y bρ sin φ sin θ z cρ cos φ + y b + z c. Use the Jacobian for the spherical coordinate and the properties of the determinant: If a column or row contains a common factor, then the factor comes outside the determinant.

3 3 4 3 () omain is - - The solid is a cylinder with well-defined lower surface z, and upper surface z x + y +. The base domain in xy-plane is bounded by the two curves y x and x+y. To get the end-points for x, you need to solve the simultaneous equation y x and x + y to get (, ), (, 4). The solid is Therefore, (x + y )dv z x + y + x y x x. x+y+ x x+y+ x (x + y )dz da (x + y )dz dy dx. () y x 4 x f(x, y) dx dy f(x, y)dy dx + f(x, y)dy dx. y x x (3) The height function is f(x, y) x + y. The volume is x + y da, where is the ring 4 x + y 5. With polar coordinate, this ring is simply r 5.

4 4 Thus the volume is x + y da π. r r dr dθ r dr dθ (4) x + z dv 4 x + z dy da x +z x + z (4 x z )da where is the disk on xz-plane surrounded by the circle x + z 4. Using polar coordinate x r cos t z r sin t we have Integral r(4 r ) r dr dt 8π. (5) The solid is a cylinder parallel to the z-axis. The lower surface is z, upper surface is z y. Mass y xdz da xyda,

5 where is a quarter of the disk in xy-plane surrounded by x + y. Using polar coordinate, Mass 4 8 (r sin t)(r cos t)r drdt sin t cos t dt sin t dt 6 cos t ] π (6).5 To understand the region in polar coordinate, draw the inner curve r (half of the circle of radius, centered at (, ), from (, ) to (, )), and r +sin θ (this is a curve starting at (, ), to (, ), then finally to (, )). The region is the part in between the two curves, and above the x-axis because θ π. So, if we call the region in between the circle and the second curve, the integral is exactly da, the area of that region. The r factor in the integral is the Jacobian for the polar coordinate (7) The solid is a cylinder over the triangle in yz-plane with lower surface x, and upper surface x y. (8) The body is exactly the part in the first octant of the solid ball of radius, centered at the origin. The integrand is (x +y +z ) ρ 4, and Jacobian is ρ sin φ. Therefore, the integral -.5

6 6 is ρ 4 ρ sin φ dρ dφ dθ π 4. (9) The upper surface is z 36 3x 3y and lower surface is z x + y. So volume is 36 3x 3y x +y dz da (36 4(x + y )) da, where is the projection of the region bounded by the intersection curve of the above two surfaces. That means we solve them simultaneously to get x + y 9 (and z 9). Thus is the disk x + y 9. Using polar coordinate, this integral is 3 (36 4r ))r dr dθ. () We use the change of variable This becomes u x + y v x y x (u + v) 3 y (u v) 3 Then Jacobian is The region becomes So the integral becomes 3 (x, y) (u, v) x + y x y 3 u u 3. u du dv dv 3.

7 () The Jacobian is 6. So, Integral 4u 6 da where is the region in uv-plane surrounded by the curve 36u + 36v 36 (which is the circle u + v ). Now, use polar coordinate: Integral 4u 6 da 4(r cos θ) r dr dθ 4r 3 cos θ dr dθ cos θ dθ ( + cos θ)dθ (θ + sin θ) ] π π. 7 () ivide the intervals [a, b] and [c, d] into m, n equal subintervals. Let x b a m A x y. Pick a sample point (x i, yj ) from (i, j)th rectangle ij. Then m n f(x, y) da f(x i, yj ) A if the limit exists. lim m,n i j, y d c n ; (3) Find c < d such that c g (x) d for all a x b. So, [a, b] [c, d]. We also extend the function f(x, y, z) to F (x, y, z) by { f(x, y), if (x, y) F (x, y), if (x, y) Then f(x, y) da is defined by F (x, y) da. (4) Find c < d such that c g (x) d for all a x b. So, [a, b] [c, d]. Then f(x, y) da is defined by F (x, y) da, where { f(x, y), if (x, y) F (x, y), if (x, y)

8 8 Therefore, (F) Now, d c F (x, y) dy f(x, y) da g (x) c g (x) c g (x) b d a F (x, y) da c F (x, y) dy + dy + g (x) f(x, y) dy. Thus, from equality (F), we have f(x, y) da F (x, y) dy dx (by Fubini) g (x) b g (x) a F (x, y) dy + f(x, y) dy + d g (x) f(x, y) dy dx. (5) (Properties of eterminant) For example, cx cx cx 3 x x x 3 x 3 x 3 x 33 c x x x 3 x x x 3 x 3 x 3 x 33. d g (x) dy F (x, y) dy Since the Jacobian of the spherical coordinate is ρ sin φ, Jacobian for our coordinate is J abcρ sin φ, and the equation of the ellipse in this new coordinate is simply ρ. Thus, dv abcρ sin φ dρ dφ dθ 3 abc [ 3 abc cos φ 3 abc 4π 3 abc. sin φ dφ dθ Note that, if a b c r (solid ball of radius r), the the volume would have been 4 3 πr3. dθ ] π dθ

University of California, Berkeley Department of Mathematics 5 th November, 2012, 12:10-12:55 pm MATH 53 - Test #2

University of California, Berkeley Department of Mathematics 5 th November, 2012, 12:10-12:55 pm MATH 53 - Test #2 University of California, Berkeley epartment of Mathematics 5 th November, 212, 12:1-12:55 pm MATH 53 - Test #2 Last Name: First Name: Student Number: iscussion Section: Name of GSI: Record your answers

More information

Double Integrals over More General Regions

Double Integrals over More General Regions Jim Lambers MAT 8 Spring Semester 9-1 Lecture 11 Notes These notes correspond to Section 1. in Stewart and Sections 5.3 and 5.4 in Marsden and Tromba. ouble Integrals over More General Regions We have

More information

Math Final Exam - 6/11/2015

Math Final Exam - 6/11/2015 Math 200 - Final Exam - 6/11/2015 Name: Section: Section Class/Times Instructor Section Class/Times Instructor 1 9:00%AM ( 9:50%AM Papadopoulos,%Dimitrios 11 1:00%PM ( 1:50%PM Swartz,%Kenneth 2 11:00%AM

More information

MATH Exam 2 Solutions November 16, 2015

MATH Exam 2 Solutions November 16, 2015 MATH 1.54 Exam Solutions November 16, 15 1. Suppose f(x, y) is a differentiable function such that it and its derivatives take on the following values: (x, y) f(x, y) f x (x, y) f y (x, y) f xx (x, y)

More information

Definitions and claims functions of several variables

Definitions and claims functions of several variables Definitions and claims functions of several variables In the Euclidian space I n of all real n-dimensional vectors x = (x 1, x,..., x n ) the following are defined: x + y = (x 1 + y 1, x + y,..., x n +

More information

Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2.

Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2. Test Yourself These are problems you might see in a vector calculus course. They are general questions and are meant for practice. The key follows, but only with the answers. an you fill in the blanks

More information

Independent of path Green s Theorem Surface Integrals. MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU 20/4/14

Independent of path Green s Theorem Surface Integrals. MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU 20/4/14 School of Mathematics, KSU 20/4/14 Independent of path Theorem 1 If F (x, y) = M(x, y)i + N(x, y)j is continuous on an open connected region D, then the line integral F dr is independent of path if and

More information

WESI 205 Workbook. 1 Review. 2 Graphing in 3D

WESI 205 Workbook. 1 Review. 2 Graphing in 3D 1 Review 1. (a) Use a right triangle to compute the distance between (x 1, y 1 ) and (x 2, y 2 ) in R 2. (b) Use this formula to compute the equation of a circle centered at (a, b) with radius r. (c) Extend

More information

Mock final exam Math fall 2007

Mock final exam Math fall 2007 Mock final exam Math - fall 7 Fernando Guevara Vasquez December 5 7. Consider the curve r(t) = ti + tj + 5 t t k, t. (a) Show that the curve lies on a sphere centered at the origin. (b) Where does the

More information

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem INTEGRATION OVER NON-RECTANGULAR REGIONS Contents 1. A slightly more general form of Fubini s Theorem 1 1. A slightly more general form of Fubini s Theorem We now want to learn how to calculate double

More information

Review guide for midterm 2 in Math 233 March 30, 2009

Review guide for midterm 2 in Math 233 March 30, 2009 Review guide for midterm 2 in Math 2 March, 29 Midterm 2 covers material that begins approximately with the definition of partial derivatives in Chapter 4. and ends approximately with methods for calculating

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Mathematics 205 HWK 19b Solutions Section 16.2 p750. (x 2 y) dy dx. 2x 2 3

Mathematics 205 HWK 19b Solutions Section 16.2 p750. (x 2 y) dy dx. 2x 2 3 Mathematics 5 HWK 9b Solutions Section 6. p75 Problem, 6., p75. Evaluate (x y) dy dx. Solution. (x y) dy dx x ( ) y dy dx [ x x dx ] [ ] y x dx Problem 9, 6., p75. For the region as shown, write f da as

More information

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs.

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs. Exam 2 Summary Disclaimer: The exam 2 covers lectures 9-15, inclusive. This is mostly about limits, continuity and differentiation of functions of 2 and 3 variables, and some applications. The complete

More information

VectorPlot[{y^2-2x*y,3x*y-6*x^2},{x,-5,5},{y,-5,5}]

VectorPlot[{y^2-2x*y,3x*y-6*x^2},{x,-5,5},{y,-5,5}] hapter 16 16.1. 6. Notice that F(x, y) has length 1 and that it is perpendicular to the position vector (x, y) for all x and y (except at the origin). Think about drawing the vectors based on concentric

More information

Review Sheet for Math 230, Midterm exam 2. Fall 2006

Review Sheet for Math 230, Midterm exam 2. Fall 2006 Review Sheet for Math 230, Midterm exam 2. Fall 2006 October 31, 2006 The second midterm exam will take place: Monday, November 13, from 8:15 to 9:30 pm. It will cover chapter 15 and sections 16.1 16.4,

More information

Estimating Areas. is reminiscent of a Riemann Sum and, amazingly enough, will be called a Riemann Sum. Double Integrals

Estimating Areas. is reminiscent of a Riemann Sum and, amazingly enough, will be called a Riemann Sum. Double Integrals Estimating Areas Consider the challenge of estimating the volume of a solid {(x, y, z) 0 z f(x, y), (x, y) }, where is a region in the xy-plane. This may be thought of as the solid under the graph of z

More information

MAT01B1: Calculus with Polar coordinates

MAT01B1: Calculus with Polar coordinates MAT01B1: Calculus with Polar coordinates Dr Craig 23 October 2018 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h30 12h55 Friday (this week) 11h20 12h25 Office C-Ring 508

More information

Math 148 Exam III Practice Problems

Math 148 Exam III Practice Problems Math 48 Exam III Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

Final Exam Review Problems. P 1. Find the critical points of f(x, y) = x 2 y + 2y 2 8xy + 11 and classify them.

Final Exam Review Problems. P 1. Find the critical points of f(x, y) = x 2 y + 2y 2 8xy + 11 and classify them. Final Exam Review Problems P 1. Find the critical points of f(x, y) = x 2 y + 2y 2 8xy + 11 and classify them. 1 P 2. Find the volume of the solid bounded by the cylinder x 2 + y 2 = 9 and the planes z

More information

33. Riemann Summation over Rectangular Regions

33. Riemann Summation over Rectangular Regions . iemann Summation over ectangular egions A rectangular region in the xy-plane can be defined using compound inequalities, where x and y are each bound by constants such that a x a and b y b. Let z = f(x,

More information

Math 2411 Calc III Practice Exam 2

Math 2411 Calc III Practice Exam 2 Math 2411 Calc III Practice Exam 2 This is a practice exam. The actual exam consists of questions of the type found in this practice exam, but will be shorter. If you have questions do not hesitate to

More information

MATH 105: Midterm #1 Practice Problems

MATH 105: Midterm #1 Practice Problems Name: MATH 105: Midterm #1 Practice Problems 1. TRUE or FALSE, plus explanation. Give a full-word answer TRUE or FALSE. If the statement is true, explain why, using concepts and results from class to justify

More information

Multiple Integrals. Advanced Calculus. Lecture 1 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University.

Multiple Integrals. Advanced Calculus. Lecture 1 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University. Lecture epartment of Mathematics and Statistics McGill University January 4, 27 ouble integrals Iteration of double integrals ouble integrals Consider a function f(x, y), defined over a rectangle = [a,

More information

MATH Review Exam II 03/06/11

MATH Review Exam II 03/06/11 MATH 21-259 Review Exam II 03/06/11 1. Find f(t) given that f (t) = sin t i + 3t 2 j and f(0) = i k. 2. Find lim t 0 3(t 2 1) i + cos t j + t t k. 3. Find the points on the curve r(t) at which r(t) and

More information

Differentiable functions (Sec. 14.4)

Differentiable functions (Sec. 14.4) Math 20C Multivariable Calculus Lecture 3 Differentiable functions (Sec. 4.4) Review: Partial derivatives. Slide Partial derivatives and continuity. Equation of the tangent plane. Differentiable functions.

More information

Math 2321 Review for Test 2 Fall 11

Math 2321 Review for Test 2 Fall 11 Math 2321 Review for Test 2 Fall 11 The test will cover chapter 15 and sections 16.1-16.5 of chapter 16. These review sheets consist of problems similar to ones that could appear on the test. Some problems

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III January 14, 2010 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION 1. Functions of Several Variables A function of two variables is a rule that assigns a real number f(x, y) to each ordered pair of real numbers

More information

Practice Problems: Calculus in Polar Coordinates

Practice Problems: Calculus in Polar Coordinates Practice Problems: Calculus in Polar Coordinates Answers. For these problems, I want to convert from polar form parametrized Cartesian form, then differentiate and take the ratio y over x to get the slope,

More information

2.1 Partial Derivatives

2.1 Partial Derivatives .1 Partial Derivatives.1.1 Functions of several variables Up until now, we have only met functions of single variables. From now on we will meet functions such as z = f(x, y) and w = f(x, y, z), which

More information

Calculus 3 Exam 2 31 October 2017

Calculus 3 Exam 2 31 October 2017 Calculus 3 Exam 2 31 October 2017 Name: Instructions: Be sure to read each problem s directions. Write clearly during the exam and fully erase or mark out anything you do not want graded. You may use your

More information

Math Final Exam - 6/13/2013

Math Final Exam - 6/13/2013 Math - Final Exam - 6/13/13 NAME: SECTION: Directions: For the free response section, you must show all work. Answers without proper justification will not receive full credit. Partial credit will be awarded

More information

10.1 Curves defined by parametric equations

10.1 Curves defined by parametric equations Outline Section 1: Parametric Equations and Polar Coordinates 1.1 Curves defined by parametric equations 1.2 Calculus with Parametric Curves 1.3 Polar Coordinates 1.4 Areas and Lengths in Polar Coordinates

More information

MATH 20C: FUNDAMENTALS OF CALCULUS II FINAL EXAM

MATH 20C: FUNDAMENTALS OF CALCULUS II FINAL EXAM MATH 2C: FUNDAMENTALS OF CALCULUS II FINAL EXAM Name Please circle the answer to each of the following problems. You may use an approved calculator. Each multiple choice problem is worth 2 points.. Multiple

More information

A General Procedure (Solids of Revolution) Some Useful Area Formulas

A General Procedure (Solids of Revolution) Some Useful Area Formulas Goal: Given a solid described by rotating an area, compute its volume. A General Procedure (Solids of Revolution) (i) Draw a graph of the relevant functions/regions in the plane. Draw a vertical line and

More information

MATH 12 CLASS 9 NOTES, OCT Contents 1. Tangent planes 1 2. Definition of differentiability 3 3. Differentials 4

MATH 12 CLASS 9 NOTES, OCT Contents 1. Tangent planes 1 2. Definition of differentiability 3 3. Differentials 4 MATH 2 CLASS 9 NOTES, OCT 0 20 Contents. Tangent planes 2. Definition of differentiability 3 3. Differentials 4. Tangent planes Recall that the derivative of a single variable function can be interpreted

More information

F13 Study Guide/Practice Exam 3

F13 Study Guide/Practice Exam 3 F13 Study Guide/Practice Exam 3 This study guide/practice exam covers only the material since exam 2. The final exam, however, is cumulative so you should be sure to thoroughly study earlier material.

More information

MATH 259 FINAL EXAM. Friday, May 8, Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E

MATH 259 FINAL EXAM. Friday, May 8, Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E MATH 259 FINAL EXAM 1 Friday, May 8, 2009. NAME: Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E Instructions: 1. Do not separate the pages of the exam.

More information

Calculus II Fall 2014

Calculus II Fall 2014 Calculus II Fall 2014 Lecture 3 Partial Derivatives Eitan Angel University of Colorado Monday, December 1, 2014 E. Angel (CU) Calculus II 1 Dec 1 / 13 Introduction Much of the calculus of several variables

More information

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs.

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs. 10-11-2010 HW: 14.7: 1,5,7,13,29,33,39,51,55 Maxima and Minima In this very important chapter, we describe how to use the tools of calculus to locate the maxima and minima of a function of two variables.

More information

VECTOR CALCULUS Julian.O 2016

VECTOR CALCULUS Julian.O 2016 VETO ALULUS Julian.O 2016 Vector alculus Lecture 3: Double Integrals Green s Theorem Divergence of a Vector Field Double Integrals: Double integrals are used to integrate two-variable functions f(x, y)

More information

(d) If a particle moves at a constant speed, then its velocity and acceleration are perpendicular.

(d) If a particle moves at a constant speed, then its velocity and acceleration are perpendicular. Math 142 -Review Problems II (Sec. 10.2-11.6) Work on concept check on pages 734 and 822. More review problems are on pages 734-735 and 823-825. 2nd In-Class Exam, Wednesday, April 20. 1. True - False

More information

Functions of several variables

Functions of several variables Chapter 6 Functions of several variables 6.1 Limits and continuity Definition 6.1 (Euclidean distance). Given two points P (x 1, y 1 ) and Q(x, y ) on the plane, we define their distance by the formula

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan. Figure 50.1

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan. Figure 50.1 50 Polar Coordinates Arkansas Tech University MATH 94: Calculus II Dr. Marcel B. Finan Up to this point we have dealt exclusively with the Cartesian coordinate system. However, as we will see, this is

More information

14.4. Tangent Planes. Tangent Planes. Tangent Planes. Tangent Planes. Partial Derivatives. Tangent Planes and Linear Approximations

14.4. Tangent Planes. Tangent Planes. Tangent Planes. Tangent Planes. Partial Derivatives. Tangent Planes and Linear Approximations 14 Partial Derivatives 14.4 and Linear Approximations Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Suppose a surface S has equation z = f(x, y), where

More information

ANSWER KEY. (a) For each of the following partials derivatives, use the contour plot to decide whether they are positive, negative, or zero.

ANSWER KEY. (a) For each of the following partials derivatives, use the contour plot to decide whether they are positive, negative, or zero. Math 2130-101 Test #2 for Section 101 October 14 th, 2009 ANSWE KEY 1. (10 points) Compute the curvature of r(t) = (t + 2, 3t + 4, 5t + 6). r (t) = (1, 3, 5) r (t) = 1 2 + 3 2 + 5 2 = 35 T(t) = 1 r (t)

More information

Exam 2 Review Sheet. r(t) = x(t), y(t), z(t)

Exam 2 Review Sheet. r(t) = x(t), y(t), z(t) Exam 2 Review Sheet Joseph Breen Particle Motion Recall that a parametric curve given by: r(t) = x(t), y(t), z(t) can be interpreted as the position of a particle. Then the derivative represents the particle

More information

This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM.

This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM. Math 126 Final Examination Winter 2012 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM. This exam is closed

More information

Joint Distributions, Independence Class 7, Jeremy Orloff and Jonathan Bloom

Joint Distributions, Independence Class 7, Jeremy Orloff and Jonathan Bloom Learning Goals Joint Distributions, Independence Class 7, 8.5 Jeremy Orloff and Jonathan Bloom. Understand what is meant by a joint pmf, pdf and cdf of two random variables. 2. Be able to compute probabilities

More information

WJEC LEVEL 2 CERTIFICATE 9550/01 ADDITIONAL MATHEMATICS

WJEC LEVEL 2 CERTIFICATE 9550/01 ADDITIONAL MATHEMATICS Surname Centre Number Candidate Number Other Names 0 WJEC LEVEL 2 CERTIFICATE 9550/01 ADDITIONAL MATHEMATICS A.M. TUESDAY, 21 June 2016 2 hours 30 minutes S16-9550-01 For s use ADDITIONAL MATERIALS A calculator

More information

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2.

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2. Discussion 8 Solution Thursday, February 10th. 1. Consider the function f(x, y) := y 2 x 2. (a) This function is a mapping from R n to R m. Determine the values of n and m. The value of n is 2 corresponding

More information

(b) ( 1, s3 ) and Figure 18 shows the resulting curve. Notice that this rose has 16 loops.

(b) ( 1, s3 ) and Figure 18 shows the resulting curve. Notice that this rose has 16 loops. SECTIN. PLAR CRDINATES 67 _ and so we require that 6n5 be an even multiple of. This will first occur when n 5. Therefore we will graph the entire curve if we specify that. Switching from to t, we have

More information

Functions of more than one variable

Functions of more than one variable Chapter 3 Functions of more than one variable 3.1 Functions of two variables and their graphs 3.1.1 Definition A function of two variables has two ingredients: a domain and a rule. The domain of the function

More information

1. Vector Fields. f 1 (x, y, z)i + f 2 (x, y, z)j + f 3 (x, y, z)k.

1. Vector Fields. f 1 (x, y, z)i + f 2 (x, y, z)j + f 3 (x, y, z)k. HAPTER 14 Vector alculus 1. Vector Fields Definition. A vector field in the plane is a function F(x, y) from R into V, We write F(x, y) = hf 1 (x, y), f (x, y)i = f 1 (x, y)i + f (x, y)j. A vector field

More information

Solutions to the problems from Written assignment 2 Math 222 Winter 2015

Solutions to the problems from Written assignment 2 Math 222 Winter 2015 Solutions to the problems from Written assignment 2 Math 222 Winter 2015 1. Determine if the following limits exist, and if a limit exists, find its value. x2 y (a) The limit of f(x, y) = x 4 as (x, y)

More information

Math 122: Final Exam Review Sheet

Math 122: Final Exam Review Sheet Exam Information Math 1: Final Exam Review Sheet The final exam will be given on Wednesday, December 1th from 8-1 am. The exam is cumulative and will cover sections 5., 5., 5.4, 5.5, 5., 5.9,.1,.,.4,.,

More information

The Compensating Polar Planimeter

The Compensating Polar Planimeter The Compensating Polar Planimeter Description of a polar planimeter Standard operation The neutral circle How a compensating polar planimeter compensates Show and tell: actual planimeters References (Far

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives So far we have dealt with functions of the form y = f(x),

More information

MATH 255 Applied Honors Calculus III Winter Homework 1. Table 1: 11.1:8 t x y

MATH 255 Applied Honors Calculus III Winter Homework 1. Table 1: 11.1:8 t x y MATH 255 Applied Honors Calculus III Winter 2 Homework Section., pg. 692: 8, 24, 43. Section.2, pg. 72:, 2 (no graph required), 32, 4. Section.3, pg. 73: 4, 2, 54, 8. Section.4, pg. 79: 6, 35, 46. Solutions.:

More information

EXERCISES CHAPTER 11. z = f(x, y) = A x α 1. x y ; (3) z = x2 + 4x + 2y. Graph the domain of the function and isoquants for z = 1 and z = 2.

EXERCISES CHAPTER 11. z = f(x, y) = A x α 1. x y ; (3) z = x2 + 4x + 2y. Graph the domain of the function and isoquants for z = 1 and z = 2. EXERCISES CHAPTER 11 1. (a) Given is a Cobb-Douglas function f : R 2 + R with z = f(x, y) = A x α 1 1 x α 2 2, where A = 1, α 1 = 1/2 and α 2 = 1/2. Graph isoquants for z = 1 and z = 2 and illustrate the

More information

B) 0 C) 1 D) No limit. x2 + y2 4) A) 2 B) 0 C) 1 D) No limit. A) 1 B) 2 C) 0 D) No limit. 8xy 6) A) 1 B) 0 C) π D) -1

B) 0 C) 1 D) No limit. x2 + y2 4) A) 2 B) 0 C) 1 D) No limit. A) 1 B) 2 C) 0 D) No limit. 8xy 6) A) 1 B) 0 C) π D) -1 MTH 22 Exam Two - Review Problem Set Name Sketch the surface z = f(x,y). ) f(x, y) = - x2 ) 2) f(x, y) = 2 -x2 - y2 2) Find the indicated limit or state that it does not exist. 4x2 + 8xy + 4y2 ) lim (x,

More information

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it:

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it: Extreme Values of Multivariate Functions Our next task is to develop a method for determining local extremes of multivariate functions, as well as absolute extremes of multivariate functions on closed

More information

2. A number x is 2 more than the product of its reciprocal and its additive inverse. In which interval does the number lie?

2. A number x is 2 more than the product of its reciprocal and its additive inverse. In which interval does the number lie? 2 nd AMC 2001 2 1. The median of the list n, n + 3, n + 4, n + 5, n + 6, n + 8, n +, n + 12, n + 15 is. What is the mean? (A) 4 (B) 6 (C) 7 (D) (E) 11 2. A number x is 2 more than the product of its reciprocal

More information

On Surfaces of Revolution whose Mean Curvature is Constant

On Surfaces of Revolution whose Mean Curvature is Constant On Surfaces of Revolution whose Mean Curvature is Constant Ch. Delaunay May 4, 2002 When one seeks a surface of given area enclosing a maximal volume, one finds that the equation this surface must satisfy

More information

As the Planimeter s Wheel Turns

As the Planimeter s Wheel Turns As the Planimeter s Wheel Turns December 30, 2004 A classic example of Green s Theorem in action is the planimeter, a device that measures the area enclosed by a curve. Most familiar may be the polar planimeter

More information

Calculus II Final Exam Key

Calculus II Final Exam Key Calculus II Final Exam Key Instructions. Do NOT write your answers on these sheets. Nothing written on the test papers will be graded.. Please begin each section of questions on a new sheet of paper. 3.

More information

[f(t)] 2 + [g(t)] 2 + [h(t)] 2 dt. [f(u)] 2 + [g(u)] 2 + [h(u)] 2 du. The Fundamental Theorem of Calculus implies that s(t) is differentiable and

[f(t)] 2 + [g(t)] 2 + [h(t)] 2 dt. [f(u)] 2 + [g(u)] 2 + [h(u)] 2 du. The Fundamental Theorem of Calculus implies that s(t) is differentiable and Midterm 2 review Math 265 Fall 2007 13.3. Arc Length and Curvature. Assume that the curve C is described by the vector-valued function r(r) = f(t), g(t), h(t), and that C is traversed exactly once as t

More information

1.6. QUADRIC SURFACES 53. Figure 1.18: Parabola y = 2x 2. Figure 1.19: Parabola x = 2y 2

1.6. QUADRIC SURFACES 53. Figure 1.18: Parabola y = 2x 2. Figure 1.19: Parabola x = 2y 2 1.6. QUADRIC SURFACES 53 Figure 1.18: Parabola y = 2 1.6 Quadric Surfaces Figure 1.19: Parabola x = 2y 2 1.6.1 Brief review of Conic Sections You may need to review conic sections for this to make more

More information

Section 3: Functions of several variables.

Section 3: Functions of several variables. Section 3: Functions of several variables. Compiled by Chris Tisdell S1: Motivation S2: Function of two variables S3: Visualising and sketching S4: Limits and continuity S5: Partial differentiation S6:

More information

UNIT Explain the radiation from two-wire. Ans: Radiation from Two wire

UNIT Explain the radiation from two-wire. Ans:   Radiation from Two wire UNIT 1 1. Explain the radiation from two-wire. Radiation from Two wire Figure1.1.1 shows a voltage source connected two-wire transmission line which is further connected to an antenna. An electric field

More information

Lecture 19. Vector fields. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. April 10, 2018.

Lecture 19. Vector fields. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. April 10, 2018. Lecture 19 Vector fields Dan Nichols nichols@math.umass.edu MATH 233, Spring 218 University of Massachusetts April 1, 218 (2) Chapter 16 Chapter 12: Vectors and 3D geometry Chapter 13: Curves and vector

More information

Math 5BI: Problem Set 1 Linearizing functions of several variables

Math 5BI: Problem Set 1 Linearizing functions of several variables Math 5BI: Problem Set Linearizing functions of several variables March 9, A. Dot and cross products There are two special operations for vectors in R that are extremely useful, the dot and cross products.

More information

Areas of Various Regions Related to HW4 #13(a)

Areas of Various Regions Related to HW4 #13(a) Areas of Various Regions Related to HW4 #a) I wanted to give a complete answer to the problems) we discussed in class today in particular, a) and its hypothetical subparts). To do so, I m going to work

More information

i + u 2 j be the unit vector that has its initial point at (a, b) and points in the desired direction. It determines a line in the xy-plane:

i + u 2 j be the unit vector that has its initial point at (a, b) and points in the desired direction. It determines a line in the xy-plane: 1 Directional Derivatives and Gradients Suppose we need to compute the rate of change of f(x, y) with respect to the distance from a point (a, b) in some direction. Let u = u 1 i + u 2 j be the unit vector

More information

MA Calculus III Exam 3 : Part I 25 November 2013

MA Calculus III Exam 3 : Part I 25 November 2013 MA 225 - Calculus III Exam 3 : Part I 25 November 2013 Instructions: You have as long as you need to work on the first portion of this exam. When you finish, turn it in and only then you are allowed to

More information

Instructions: Good luck! Math 21a Second Midterm Exam Spring, 2009

Instructions: Good luck! Math 21a Second Midterm Exam Spring, 2009 Your Name Your Signature Instructions: Please begin by printing and signing your name in the boxes above and by checking your section in the box to the right You are allowed 2 hours (120 minutes) for this

More information

Chapter 16. Partial Derivatives

Chapter 16. Partial Derivatives Chapter 16 Partial Derivatives The use of contour lines to help understand a function whose domain is part of the plane goes back to the year 1774. A group of surveyors had collected a large number of

More information

MATH 8 FALL 2010 CLASS 27, 11/19/ Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits

MATH 8 FALL 2010 CLASS 27, 11/19/ Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits MATH 8 FALL 2010 CLASS 27, 11/19/2010 1 Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits lim h 0 f(a + h, b) f(a, b), lim h f(a, b + h) f(a, b) In these

More information

Precalculus Second Semester Final Review

Precalculus Second Semester Final Review Precalculus Second Semester Final Review This packet will prepare you for your second semester final exam. You will find a formula sheet on the back page; these are the same formulas you will receive for

More information

Lecture 4 : Monday April 6th

Lecture 4 : Monday April 6th Lecture 4 : Monday April 6th jacques@ucsd.edu Key concepts : Tangent hyperplane, Gradient, Directional derivative, Level curve Know how to find equation of tangent hyperplane, gradient, directional derivatives,

More information

Buffon Needle Problem

Buffon Needle Problem Buffon Needle Problem MATH 171 Freshman Seminar for Mathematics Majors J. Robert Buchanan Department of Mathematics 2010 History Georges Louis Leclerc (Comte de Buffon, 1707 1788) was a French naturalist

More information

266&deployment= &UserPass=b3733cde68af274d036da170749a68f6

266&deployment= &UserPass=b3733cde68af274d036da170749a68f6 Sections 14.6 and 14.7 (1482266) Question 12345678910111213141516171819202122 Due: Thu Oct 21 2010 11:59 PM PDT 1. Question DetailsSCalcET6 14.6.012. [1289020] Find the directional derivative, D u f, of

More information

Name: ID: Section: Math 233 Exam 2. Page 1. This exam has 17 questions:

Name: ID: Section: Math 233 Exam 2. Page 1. This exam has 17 questions: Page Name: ID: Section: This exam has 7 questions: 5 multiple choice questions worth 5 points each. 2 hand graded questions worth 25 points total. Important: No graphing calculators! Any non scientific

More information

4 to find the dimensions of the rectangle that have the maximum area. 2y A =?? f(x, y) = (2x)(2y) = 4xy

4 to find the dimensions of the rectangle that have the maximum area. 2y A =?? f(x, y) = (2x)(2y) = 4xy Optimization Constrained optimization and Lagrange multipliers Constrained optimization is what it sounds like - the problem of finding a maximum or minimum value (optimization), subject to some other

More information

Examples: Find the domain and range of the function f(x, y) = 1 x y 2.

Examples: Find the domain and range of the function f(x, y) = 1 x y 2. Multivariate Functions In this chapter, we will return to scalar functions; thus the functions that we consider will output points in space as opposed to vectors. However, in contrast to the majority of

More information

MATHEMATICS Unit Pure Core 2

MATHEMATICS Unit Pure Core 2 General Certificate of Education January 2009 Advanced Subsidiary Examination MATHEMATICS Unit Pure Core 2 MPC2 Tuesday 1 January 2009 9.00 am to 10.0 am For this paper you must have: an 8-page answer

More information

Unit 8 Trigonometry. Math III Mrs. Valentine

Unit 8 Trigonometry. Math III Mrs. Valentine Unit 8 Trigonometry Math III Mrs. Valentine 8A.1 Angles and Periodic Data * Identifying Cycles and Periods * A periodic function is a function that repeats a pattern of y- values (outputs) at regular intervals.

More information

For each question, X indicates a correct choice. ANSWER SHEET - BLUE. Question a b c d e Do not write in this column 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X

For each question, X indicates a correct choice. ANSWER SHEET - BLUE. Question a b c d e Do not write in this column 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X For each question, X indicates a correct choice. ANSWER SHEET - BLUE X ANSWER SHEET - GREEN X ANSWER SHEET - WHITE X ANSWER SHEET - YELLOW For each question, place an X in the box of your choice. X QUESTION

More information

Independence of Path and Conservative Vector Fields

Independence of Path and Conservative Vector Fields Independence of Path and onservative Vector Fields MATH 311, alculus III J. Robert Buchanan Department of Mathematics Summer 2011 Goal We would like to know conditions on a vector field function F(x, y)

More information

SOLUTIONS 2. PRACTICE EXAM 2. HOURLY. Problem 1) TF questions (20 points) Circle the correct letter. No justifications are needed.

SOLUTIONS 2. PRACTICE EXAM 2. HOURLY. Problem 1) TF questions (20 points) Circle the correct letter. No justifications are needed. SOLUIONS 2. PRACICE EXAM 2. HOURLY Math 21a, S03 Problem 1) questions (20 points) Circle the correct letter. No justifications are needed. A function f(x, y) on the plane for which the absolute minimum

More information

POLAR FUNCTIONS. In Precalculus students should have learned to:.

POLAR FUNCTIONS. In Precalculus students should have learned to:. POLAR FUNCTIONS From the AP Calculus BC Course Description, students in Calculus BC are required to know: The analsis of planar curves, including those given in polar form Derivatives of polar functions

More information

Review Problems. Calculus IIIA: page 1 of??

Review Problems. Calculus IIIA: page 1 of?? Review Problems The final is comprehensive exam (although the material from the last third of the course will be emphasized). You are encouraged to work carefully through this review package, and to revisit

More information

State Math Contest Junior Exam SOLUTIONS

State Math Contest Junior Exam SOLUTIONS State Math Contest Junior Exam SOLUTIONS 1. The following pictures show two views of a non standard die (however the numbers 1-6 are represented on the die). How many dots are on the bottom face of figure?

More information

The Chain Rule, Higher Partial Derivatives & Opti- mization

The Chain Rule, Higher Partial Derivatives & Opti- mization The Chain Rule, Higher Partial Derivatives & Opti- Unit #21 : mization Goals: We will study the chain rule for functions of several variables. We will compute and study the meaning of higher partial derivatives.

More information

I II III IV V VI VII VIII IX X Total

I II III IV V VI VII VIII IX X Total 1 of 16 HAND IN Answers recorded on exam paper. DEPARTMENT OF MATHEMATICS AND STATISTICS QUEEN S UNIVERSITY AT KINGSTON MATH 121/124 - APR 2018 Section 700 - CDS Students ONLY Instructor: A. Ableson INSTRUCTIONS:

More information

11.7 Maximum and Minimum Values

11.7 Maximum and Minimum Values Arkansas Tech University MATH 2934: Calculus III Dr. Marcel B Finan 11.7 Maximum and Minimum Values Just like functions of a single variable, functions of several variables can have local and global extrema,

More information

Activity Overview This activity takes the concept of derivative and applies it to various maximum and minimum problems.

Activity Overview This activity takes the concept of derivative and applies it to various maximum and minimum problems. TI-Nspire Activity: Derivatives: Applied Maxima and Minima By: Tony Duncan Activity Overview This activity takes the concept of derivative and applies it to various maximum and minimum problems. Concepts

More information

CHAPTER 11 PARTIAL DERIVATIVES

CHAPTER 11 PARTIAL DERIVATIVES CHAPTER 11 PARTIAL DERIVATIVES 1. FUNCTIONS OF SEVERAL VARIABLES A) Definition: A function of two variables is a rule that assigns to each ordered pair of real numbers (x,y) in a set D a unique real number

More information

JK XY LJ LJ ZX KL KL YZ LJ KL YX KJ. Final Exam Review Modules 10 16, 18 19

JK XY LJ LJ ZX KL KL YZ LJ KL YX KJ. Final Exam Review Modules 10 16, 18 19 Geometry Final Exam Review Modules 10 16, 18 19 Use the following information for 1 3. The figure is symmetric about the x axis. Name: 6. In this figure ~. Which statement is not true? A JK XY LJ ZX C

More information