Chapter-wise questions. Probability. 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail.
|
|
- Roberta Virginia Norton
- 2 years ago
- Views:
Transcription
1 Probability 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail cards marked with English letters A to Z (one letter on each card) are shuffled well. If one card is selected at random, what is the probability of getting a letter in the word assassination? 3. A box has 25 balls, 7 of them are red. What is the probability that the selecting a ball which is not red? 4. Two dice are thrown simultaneously. What is the probability that i) 3 will come up at both dice? ii) 3 will not come up on either of them? iii) 3 will come up on at least one? 5. A card is drawn at random from a well shuffled deck of 52 cards. Find the probability of getting (a) a queen, (b) a diamond, (c) a king or an ace, and (d) a red ace. 6. Acard is drawn from an ordinary pack and a gambler bets that it is a spade of an ace. What are the odds against his winning this best? 7. A card is drawn from a well shuffled deck of playing cards. Find the probability of drawing (i) a face card, (ii) a red face card cards numbered 1,2,3,..., 16, 17 are put into a box and mixed thoroughly. One person draws a card from the box. Find the probability that the number on the cards is (i) odd, (ii) a prime, (iii) divisible by 3, and (iv) divisible by 3 and 2 both.
2 9. A bag contains 5 red balls, 8 white balls, 4 green balls and 7 black balls. If one balls is drawn at random, find the probability that it is (i) black, (ii) red, and (iii) not green. 10. A bag contains 12 balls out of which x are white. (i) If one ball is drawn at random, what will be the probability that it will be a white ball? (ii) If 6 more white balls are put into the bag, the probability of drawing a white ball? II) If 6 more white balls are put into the bag, the probability of drawing a white ball will double than that in (i). Find X. 11. It is known that a box of 600 electric bulbs contains 12 defective bulbs. One bulb is taken out at random from this box. What is the probability that it is a non-defective bulb? 12. Three coins are tossed simultaneously. Write the sample space. Also find the probability of getting (a) all heads, (b) not more than one head, and (c) two heads. 13. A dice is thrown twice. Write the sample space. Find the probability of (i) doublets, (ii) prime number on each die, (iii) getting a total of From a well shuffled pack of cards, a card is drawn at random. Find the probability of getting a black queen. 15. One letter is selected at random from the word Association. Find the probability of selecting O 16. In a throw of a pair of dice, what is the probability of getting a sum more than 9? 17. A box has 30 counters in it. 6 of the counters are yellow. You take one counter out of the box at random. What is the probability that the counter you take out is not yellow?
3 cards marked with English alphabets come letter on each cards are shuffled well. If one card is selected at random, what is the probability of getting a vowel? 19. A die is thrown once. Find the probability of getting a composite or prime number. 20. What is the probability of a prime number in the factors of the number 30? 21. Two dice are thrown once, find the probability of doublets cards marked with English letters A to Z (one letter on each card) are shuffled well. If one card is selected at random, what is the probability of getting a letter in the word probability? 23. All the three face cards of diamonds are removed from a well shuffled pack of 52 cards. A card is drawn at random from the remaining pack. Find the probability of getting a red face card? 24. All the three face cards of spades are removed from a well shuffled pack of 52 cards. A card is drawn at random from the remaining pack. Find the probability of getting (a) a black face card b) a queen c) a black card 25. A die is thrown once. Find the probability of getting (i) An even prime number (ii) A multiple of Cards marked with 3, 4, 5, are placed in a box and mixed thoroughly. One card is drawn at random from the box. Find the probability that number on the drawn card is (i) divisible by 7 (iii) A number which is a perfect square 27. A bag contains 5 red balls and some blue balls. If the probability of drawing a blue ball from the bag is thrice that of a red ball, find the number of blue balls in the bag.
4 28. An unbiased die is tossed once. Find the probability of getting (I) a multiple of 2 or 3. (II) a prime number greater than A box contains 20 balls bearing numbers 1, 2, 3, 4, A ball is drawn at random from the box. What is the probability that the number on the ball is a) an odd number b) divisible by 2 or 3. c) prime number d) not divisible by A card is drawn at random from a well shuffled deck of playing cards. Find the probability that the card drawn is i) A card of spades or an ace ii) A red king iii) Either a king or a queen iv) Neither a king nor a queen 31. A bag contains 3 red, 5 black and 7 white balls. A ball is drawn from the bag at random. Find the probability that the ball drawn is (i) white (ii) red (iii) not black (iv) red or white 32. A letter is chosen at random from the English alphabet, Find the probability that the letter chosen. a) is a vowel b) is a consonant c) precides P d) follows r/ 33. A bag contains 3 red balls, 5 black balls and 4 white balls. A ball is drawn at random from the bag. What is the probability that it is. White not black 34. Three coins are tossed together. Find the probability of getting. i) exactly 2 heads ii) at least two heads iii) at least one head and one tail
5 35. A bag contains 4 red, 5 black and 6 white balls. A ball is drawn from the bag at random. Find the probability that the ball drawn is i) white ii) red iii) not black iv) red or white 36. A card is drawn at random from a well shuffled deck of 52 cards. Find the probability of getting (a) queen, (b) a diamon, (c) a king or an ace, and (d) a red ace. 37. A card is drawn from and ordinary pack and a gambler bets that it is a spade or an ace. What are the odds against his winning this bet? 38. A card is drawn from a well shuffled deck of playing cards. Find the probability of drawing (i) a face card, (ii) a red card cards numbered 1,2,3...,16,17 are put into a box and mixed thoroughly. One person draws a card from the box. Find the probability that the number on the card is (i) odd, (ii) a prime, (iii) divisible by 3, and (iv) divisible by 3 and 2 both. 40. A bag contains 5 red balls, 8 white balls, 4 green balls and 7 black balls, If one ball is drawn at random, find the probability that it is (i) black, (ii) red, and (iii) not green 41. A bag contains 12 balls out of whichx are white. i) If one ball is drawn at random, what will be the probability that it will be a white ball? ii) if 6 more white balls are put into the bag, the probability of drawing a white ball will double than that in (i). Find x. 42. It is known that a box of 600 electric bulbs contains 12 defective bubls. One bulb is taken out at random from this box. What is the probability that it is a non-defective bulb?
6 43. Three coins are tossed simultaneously. Write the sample space. Also find the probability of getting (a) all heads, (b) not more than one head, and(c) tow heads. 44. A dice is thrown twice. Write the sample space. Find the probability of (i) doublets, (ii) prime number on each die, (iii) getting a total of 11.
PROBABILITY Case of cards
WORKSHEET NO--1 PROBABILITY Case of cards WORKSHEET NO--2 Case of two die Case of coins WORKSHEET NO--3 1) Fill in the blanks: A. The probability of an impossible event is B. The probability of a sure
Chapter 16. Probability. For important terms and definitions refer NCERT text book. (6) NCERT text book page 386 question no.
Chapter 16 Probability For important terms and definitions refer NCERT text book. Type- I Concept : sample space (1)NCERT text book page 386 question no. 1 (*) (2) NCERT text book page 386 question no.
STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving.
Worksheet 4 th Topic : PROBABILITY TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving. BASIC COMPETENCY:
Diamond ( ) (Black coloured) (Black coloured) (Red coloured) ILLUSTRATIVE EXAMPLES
CHAPTER 15 PROBABILITY Points to Remember : 1. In the experimental approach to probability, we find the probability of the occurence of an event by actually performing the experiment a number of times
Topic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes
Worksheet 6 th Topic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of
TEST A CHAPTER 11, PROBABILITY
TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability
Class XII Chapter 13 Probability Maths. Exercise 13.1
Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:
Probability Exercise 2
Probability Exercise 2 1 Question 9 A box contains 5 red marbles, 8 white marbles and 4 green marbles. One marble is taken out of the box at random. What is the probability that the marble taken out will
Before giving a formal definition of probability, we explain some terms related to probability.
probability 22 INTRODUCTION In our day-to-day life, we come across statements such as: (i) It may rain today. (ii) Probably Rajesh will top his class. (iii) I doubt she will pass the test. (iv) It is unlikely
PROBABILITY. 1. Introduction. Candidates should able to:
PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation
Lesson 3 Dependent and Independent Events
Lesson 3 Dependent and Independent Events When working with 2 separate events, we must first consider if the first event affects the second event. Situation 1 Situation 2 Drawing two cards from a deck
Classical vs. Empirical Probability Activity
Name: Date: Hour : Classical vs. Empirical Probability Activity (100 Formative Points) For this activity, you will be taking part in 5 different probability experiments: Rolling dice, drawing cards, drawing
Page 1 of 22. Website: Mobile:
Exercise 15.1 Question 1: Complete the following statements: (i) Probability of an event E + Probability of the event not E =. (ii) The probability of an event that cannot happen is. Such as event is called.
Here are two situations involving chance:
Obstacle Courses 1. Introduction. Here are two situations involving chance: (i) Someone rolls a die three times. (People usually roll dice in pairs, so dice is more common than die, the singular form.)
Exercise Class XI Chapter 16 Probability Maths
Exercise 16.1 Question 1: Describe the sample space for the indicated experiment: A coin is tossed three times. A coin has two faces: head (H) and tail (T). When a coin is tossed three times, the total
CSC/MATA67 Tutorial, Week 12
CSC/MATA67 Tutorial, Week 12 November 23, 2017 1 More counting problems A class consists of 15 students of whom 5 are prefects. Q: How many committees of 8 can be formed if each consists of a) exactly
Name: Section: Date:
WORKSHEET 5: PROBABILITY Name: Section: Date: Answer the following problems and show computations on the blank spaces provided. 1. In a class there are 14 boys and 16 girls. What is the probability of
SECTION - 6. Mensuration and Probability 1. Probability 2. Cylinder, Cone and Sphere. Submission Date : / /
SECTION - 6 Mensuration and Probability 1. Probability 2. Cylinder, Cone and Sphere Submission Date : / / Mensuration and Probability Assignment Sheet 2003 1. A vessel is in the form of an inverted cone.
1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 100 calculators is tested.
1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 0 calculators is tested. Write down the expected number of faulty calculators in the sample. Find
Probability. The Bag Model
Probability The Bag Model Imagine a bag (or box) containing balls of various kinds having various colors for example. Assume that a certain fraction p of these balls are of type A. This means N = total
RANDOM EXPERIMENTS AND EVENTS
Random Experiments and Events 18 RANDOM EXPERIMENTS AND EVENTS In day-to-day life we see that before commencement of a cricket match two captains go for a toss. Tossing of a coin is an activity and getting
I. WHAT IS PROBABILITY?
C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and
PROBABILITY. The sample space of the experiment of tossing two coins is given by
PROBABILITY Introduction Probability is defined as a quantitative measure of uncertainty a numerical value that conveys the strength of our belief in the occurrence of an event. The probability of an event
7.1 Experiments, Sample Spaces, and Events
7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment
4.1 Sample Spaces and Events
4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an
Unit 9: Probability Assignments
Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose
Q1) 6 boys and 6 girls are seated in a row. What is the probability that all the 6 gurls are together.
Required Probability = where Q1) 6 boys and 6 girls are seated in a row. What is the probability that all the 6 gurls are together. Solution: As girls are always together so they are considered as a group.
Functional Skills Mathematics
Functional Skills Mathematics Level Learning Resource Probability D/L. Contents Independent Events D/L. Page - Combined Events D/L. Page - 9 West Nottinghamshire College D/L. Information Independent Events
MEP Practice Book SA5
5 Probability 5.1 Probabilities MEP Practice Book SA5 1. Describe the probability of the following events happening, using the terms Certain Very likely Possible Very unlikely Impossible (d) (e) (f) (g)
Math : Probabilities
20 20. Probability EP-Program - Strisuksa School - Roi-et Math : Probabilities Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou
Math 1313 Section 6.2 Definition of Probability
Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability
Conditional Probability Worksheet
Conditional Probability Worksheet P( A and B) P(A B) = P( B) Exercises 3-6, compute the conditional probabilities P( AB) and P( B A ) 3. P A = 0.7, P B = 0.4, P A B = 0.25 4. P A = 0.45, P B = 0.8, P A
Developed by Rashmi Kathuria. She can be reached at
Developed by Rashmi Kathuria. She can be reached at . Photocopiable Activity 1: Step by step Topic Nature of task Content coverage Learning objectives Task Duration Arithmetic
Stat210 WorkSheet#2 Chapter#2
1. When rolling a die 5 times, the number of elements of the sample space equals.(ans.=7,776) 2. If an experiment consists of throwing a die and then drawing a letter at random from the English alphabet,
Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include your name and student ID.
Math 3201 Unit 3 Probability Test 1 Unit Test Name: Part 1 Selected Response: Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include
When combined events A and B are independent:
A Resource for ree-standing Mathematics Qualifications A or B Mutually exclusive means that A and B cannot both happen at the same time. Venn Diagram showing mutually exclusive events: Aces The events
3 The multiplication rule/miscellaneous counting problems
Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1. Suppose P (A) = 0.4, P (B) = 0.5. (a) If A and B are independent, what is P (A B)? What is P (A B)? (b) If A and B are disjoint,
Unit 7 Central Tendency and Probability
Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
6. Practice Problems Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the probability. ) A bag contains red marbles, blue marbles, and 8
Conditional Probability Worksheet
Conditional Probability Worksheet EXAMPLE 4. Drug Testing and Conditional Probability Suppose that a company claims it has a test that is 95% effective in determining whether an athlete is using a steroid.
Normal Distribution Lecture Notes Continued
Normal Distribution Lecture Notes Continued 1. Two Outcome Situations Situation: Two outcomes (for against; heads tails; yes no) p = percent in favor q = percent opposed Written as decimals p + q = 1 Why?
6. In how many different ways can you answer 10 multiple-choice questions if each question has five choices?
Pre-Calculus Section 4.1 Multiplication, Addition, and Complement 1. Evaluate each of the following: a. 5! b. 6! c. 7! d. 0! 2. Evaluate each of the following: a. 10! b. 20! 9! 18! 3. In how many different
MEP Practice Book ES5. 1. A coin is tossed, and a die is thrown. List all the possible outcomes.
5 Probability MEP Practice Book ES5 5. Outcome of Two Events 1. A coin is tossed, and a die is thrown. List all the possible outcomes. 2. A die is thrown twice. Copy the diagram below which shows all the
Fdaytalk.com. Outcomes is probable results related to an experiment
EXPERIMENT: Experiment is Definite/Countable probable results Example: Tossing a coin Throwing a dice OUTCOMES: Outcomes is probable results related to an experiment Example: H, T Coin 1, 2, 3, 4, 5, 6
6) A) both; happy B) neither; not happy C) one; happy D) one; not happy
MATH 00 -- PRACTICE TEST 2 Millersville University, Spring 202 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find all natural
Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance Free-Response 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is
Intermediate Math Circles November 1, 2017 Probability I
Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.
Probability. Chapter-13
Chapter-3 Probability The definition of probability was given b Pierre Simon Laplace in 795 J.Cardan, an Italian physician and mathematician wrote the first book on probability named the book of games
Probability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( )
Probability Test Review Math 2 Name 1. Use the following venn diagram to answer the question: Event A: Odd Numbers Event B: Numbers greater than 10 a. What is? b. What is? c. ( ) d. ( ) 2. In Jason's homeroom
Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39
CHAPTER 2 PROBABILITY Contents 2.1 Basic Concepts of Probability 38 2.2 Probability of an Event 39 2.3 Methods of Assigning Probabilities 39 2.4 Principle of Counting - Permutation and Combination 39 2.5
Chapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
Compound Probability. A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events.
Probability 68B A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events. Independent Events are events in which the result of event
Independent Events. 1. Given that the second baby is a girl, what is the. e.g. 2 The probability of bearing a boy baby is 2
Independent Events 7. Introduction Consider the following examples e.g. E throw a die twice A first thrown is "" second thrown is "" o find P( A) Solution: Since the occurrence of Udoes not dependu on
PROBABILITY Introduction
PROBABILITY 295 PROBABILITY 15 The theory of probabilities and the theory of errors now constitute a formidable body of great mathematical interest and of great practical importance. 15.1 Introduction
PROBABILITY.0 Concept Map Contents Page. Probability Of An Event. Probability Of Two Events. 4. Probability of Mutually Exclusive Events.4 Probability
PROGRAM DIDIK CEMERLANG AKADEMIK SPM ADDITIONAL MATHEMATICS FORM MODULE PROBABILITY PROBABILITY.0 Concept Map Contents Page. Probability Of An Event. Probability Of Two Events. 4. Probability of Mutually
4.3 Rules of Probability
4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:
ABC High School, Kathmandu, Nepal. Topic : Probability
BC High School, athmandu, Nepal Topic : Probability Grade 0 Teacher: Shyam Prasad charya. Objective of the Module: t the end of this lesson, students will be able to define and say formula of. define Mutually
Probability Review Questions
Probability Review Questions Short Answer 1. State whether the following events are mutually exclusive and explain your reasoning. Selecting a prime number or selecting an even number from a set of 10
Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1
Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..
Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11
Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even
Probability. Probabilty Impossibe Unlikely Equally Likely Likely Certain
PROBABILITY Probability The likelihood or chance of an event occurring If an event is IMPOSSIBLE its probability is ZERO If an event is CERTAIN its probability is ONE So all probabilities lie between 0
Section 5.4 Permutations and Combinations
Section 5.4 Permutations and Combinations Definition: n-factorial For any natural number n, n! n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to
Most of the time we deal with theoretical probability. Experimental probability uses actual data that has been collected.
AFM Unit 7 Day 3 Notes Theoretical vs. Experimental Probability Name Date Definitions: Experiment: process that gives a definite result Outcomes: results Sample space: set of all possible outcomes Event:
Key Concepts. Theoretical Probability. Terminology. Lesson 11-1
Key Concepts Theoretical Probability Lesson - Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally
This Probability Packet Belongs to:
This Probability Packet Belongs to: 1 2 Station #1: M & M s 1. What is the sample space of your bag of M&M s? 2. Find the theoretical probability of the M&M s in your bag. Then, place the candy back into
Chapter 1 - Set Theory
Midterm review Math 3201 Name: Chapter 1 - Set Theory Part 1: Multiple Choice : 1) U = {hockey, basketball, golf, tennis, volleyball, soccer}. If B = {sports that use a ball}, which element would be in
8.2 Union, Intersection, and Complement of Events; Odds
8.2 Union, Intersection, and Complement of Events; Odds Since we defined an event as a subset of a sample space it is natural to consider set operations like union, intersection or complement in the context
Section 5.4 Permutations and Combinations
Section 5.4 Permutations and Combinations Definition: n-factorial For any natural number n, n! = n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to
Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set)
12.3 and 12.4 Notes Geometry 1 Diagramming the Sample Space using Venn Diagrams A sample space represents all things that could occur for a given event. In set theory language this would be known as the
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice for Final Exam Name Identify the following variable as either qualitative or quantitative and explain why. 1) The number of people on a jury A) Qualitative because it is not a measurement or a
LC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.
A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply
Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability
Most people think they understand odds and probability. Do you? Decision 1: Pick a card Decision 2: Switch or don't Outcomes: Make a tree diagram Do you think you understand probability? Probability Write
Chapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
Part 1: I can express probability as a fraction, decimal, and percent
Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:
Multiples and Divisibility
Multiples and Divisibility A multiple of a number is a product of that number and an integer. Divisibility: A number b is said to be divisible by another number a if b is a multiple of a. 45 is divisible
Whatcom County Math Championship 2017 Probability + Statistics 4 th Grade
Probability + Statistics 4 th Grade 1. nya has two spinners, with each space the same area. If she adds the result of both spinners, what is the probability that her answer will be even? Write the answer
Chapter 1: Sets and Probability
Chapter 1: Sets and Probability Section 1.3-1.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping
Worksheets for GCSE Mathematics. Probability. mr-mathematics.com Maths Resources for Teachers. Handling Data
Worksheets for GCSE Mathematics Probability mr-mathematics.com Maths Resources for Teachers Handling Data Probability Worksheets Contents Differentiated Independent Learning Worksheets Probability Scales
Section The Multiplication Principle and Permutations
Section 2.1 - The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different
Section 7.3 and 7.4 Probability of Independent Events
Section 7.3 and 7.4 Probability of Independent Events Grade 7 Review Two or more events are independent when one event does not affect the outcome of the other event(s). For example, flipping a coin and
Notes #45 Probability as a Fraction, Decimal, and Percent. As a result of what I learn today, I will be able to
Notes #45 Probability as a Fraction, Decimal, and Percent As a result of what I learn today, I will be able to Probabilities can be written in three ways:,, and. Probability is a of how an event is to.
3 The multiplication rule/miscellaneous counting problems
Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1 Suppose P (A 0, P (B 05 (a If A and B are independent, what is P (A B? What is P (A B? (b If A and B are disjoint, what is
Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.
Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1 - Experiments, Sample Spaces,
COMPOUND EVENTS. Judo Math Inc.
COMPOUND EVENTS Judo Math Inc. 7 th grade Statistics Discipline: Black Belt Training Order of Mastery: Compound Events 1. What are compound events? 2. Using organized Lists (7SP8) 3. Using tables (7SP8)
Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.
Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1 - Experiments, Sample Spaces,
HARDER PROBABILITY. Two events are said to be mutually exclusive if the occurrence of one excludes the occurrence of the other.
HARDER PROBABILITY MUTUALLY EXCLUSIVE EVENTS AND THE ADDITION LAW OF PROBABILITY Two events are said to be mutually exclusive if the occurrence of one excludes the occurrence of the other. Example Throwing
Probability: introduction
May 6, 2009 Probability: introduction page 1 Probability: introduction Probability is the part of mathematics that deals with the chance or the likelihood that things will happen The probability of an
Probability - Grade 10 *
OpenStax-CNX module: m32623 1 Probability - Grade 10 * Rory Adams Free High School Science Texts Project Sarah Blyth Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative
Due Friday February 17th before noon in the TA drop box, basement, AP&M. HOMEWORK 3 : HAND IN ONLY QUESTIONS: 2, 4, 8, 11, 13, 15, 21, 24, 27
Exercise Sheet 3 jacques@ucsd.edu Due Friday February 17th before noon in the TA drop box, basement, AP&M. HOMEWORK 3 : HAND IN ONLY QUESTIONS: 2, 4, 8, 11, 13, 15, 21, 24, 27 1. A six-sided die is tossed.
Name. Is the game fair or not? Prove your answer with math. If the game is fair, play it 36 times and record the results.
Homework 5.1C You must complete table. Use math to decide if the game is fair or not. If Period the game is not fair, change the point system to make it fair. Game 1 Circle one: Fair or Not 2 six sided
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
More 9.-9.3 Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. ) In how many ways can you answer the questions on
Module 4 Project Maths Development Team Draft (Version 2)
5 Week Modular Course in Statistics & Probability Strand 1 Module 4 Set Theory and Probability It is often said that the three basic rules of probability are: 1. Draw a picture 2. Draw a picture 3. Draw
PROBABILITY TOPIC TEST MU ALPHA THETA 2007
PROBABILITY TOPI TEST MU ALPHA THETA 00. Richard has red marbles and white marbles. Richard s friends, Vann and Penelo, each select marbles from the bag. What is the probability that Vann selects red marble
Probability Review 41
Probability Review 41 For the following problems, give the probability to four decimals, or give a fraction, or if necessary, use scientific notation. Use P(A) = 1 - P(not A) 1) A coin is tossed 6 times.
A. 15 B. 24 C. 45 D. 54
A spinner is divided into 8 equal sections. Lara spins the spinner 120 times. It lands on purple 30 times. How many more times does Lara need to spin the spinner and have it land on purple for the relative
2 C. 1 D. 2 4 D. 5 3 C. 25 D. 2
Discrete Math Exam Review Name:. A bag contains oranges, grapefruits, and tangerine. A piece of fruit is chosen from the bag at random. What is the probability that a grapefruit will be chosen from the
The Teachers Circle Mar. 20, 2012 HOW TO GAMBLE IF YOU MUST (I ll bet you $5 that if you give me $10, I ll give you $20.)
The Teachers Circle Mar. 2, 22 HOW TO GAMBLE IF YOU MUST (I ll bet you $ that if you give me $, I ll give you $2.) Instructor: Paul Zeitz (zeitzp@usfca.edu) Basic Laws and Definitions of Probability If
Convert the Egyptian numeral to Hindu-Arabic form. 1) A) 3067 B) 3670 C) 3607 D) 367
MATH 100 -- PRACTICE EXAM 2 Millersville University, Spring 2011 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Convert the Egyptian
1. How many subsets are there for the set of cards in a standard playing card deck? How many subsets are there of size 8?
Math 1711-A Summer 2016 Final Review 1 August 2016 Time Limit: 170 Minutes Name: 1. How many subsets are there for the set of cards in a standard playing card deck? How many subsets are there of size 8?