Graph-of-word and TW-IDF: New Approach to Ad Hoc IR (CIKM 2013) Learning to Rank: From Pairwise Approach to Listwise Approach (ICML 2007)

Size: px
Start display at page:

Download "Graph-of-word and TW-IDF: New Approach to Ad Hoc IR (CIKM 2013) Learning to Rank: From Pairwise Approach to Listwise Approach (ICML 2007)"

Transcription

1 Graph-of-word and TW-IDF: New Approach to Ad Hoc IR (CIKM 2013) Learning to Rank: From Pairwise Approach to Listwise Approach (ICML 2007) Qin Huazheng 2014/10/15

2 Graph-of-word and TW-IDF: New Approach to Ad Hoc IR (CIKM 2013) Learning to Rank: From Pairwise Approach to Listwise Approach (ICML 2007)

3 Outline Motivation Framework Experiments

4 Motivation Questioning the term independence assumption behind the traditional bag-of-word model, we propose a different representation of a document that captures the relationships between the terms using an unweighted directed graph of terms.

5 Motivation Semantically speaking, word order and word dependence do matter. Mary is quicker than John and John is quicker than Mary are clearly different phrases. Yet, their bag-of-word representation is the same. Nevertheless, the impact of the term order has been a popular issue and relationships between the terms in general is claimed to play an important role in text processing. This motivated us to find a representation that would capture these relationships while being as efficient as the traditional one at query time.

6 Outline Motivation Framework Experiments

7 Graph-of-word Framework We represent a textual document (typically a Web page)as a graph-of-word that corresponds to an unweighted directed graph whose vertices represent unique terms, whose edges represent co-occurrences between the terms within a fixed-size sliding window and whose edge direction represents term order.

8 Graph-of-word Example: Framework

9 Graph-of-word Example: Framework

10 TF-IDF and TW-IDF TF-IDF( ) Framework TW-IDF where tw(t, d) is the weight of the vertex associated with the term t in the graph-of-word representation of the document d. In the experiments of section 6, the weight is the indegree.

11 Outline Motivation Framework Experiments

12 Experiments

13 Experiments

14 Thank you

15 Graph-of-word and TW-IDF: New Approach to Ad Hoc IR (CIKM 2013) Learning to Rank: From Pairwise Approach to Listwise Approach (ICML 2007)

16 Outline What is Learning to Rank? (L2R) Three Approaches of L2R The Listwise Approach: ListNet

17 What is learning to rank? Learning to rank or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. Training data consists of lists of items with some partial order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment (e.g. "relevant" or "not relevant") for each item. The ranking model's purpose is to rank, i.e. produce a permutation of items in new, unseen lists in a way which is "similar" to rankings in the training data in some sense.

18 What is learning to rank? Learning to Rank Framework

19 Outline What is Learning to Rank? (L2R) Three Approaches of L2R The Listwise Approach: ListNet

20 Three approaches of L2R Pointwise Approach In this case it is assumed that each query-document pair in the training data has a numerical or ordinal score. Then learning-to-rank problem can be approximated by a regression problem given a single query-document pair, predict its score. This approach does not consider the relationship between the documents.

21 Three approaches of L2R Pairwise Approach In this case learning-to-rank problem is approximated by a classification problem learning a binary classifier that can tell which document is better in a given pair of documents. The goal is to minimize average number of inversions in ranking.

22 Three approaches of L2R Pairwise Approach The objective of learning is formalized as minimizing errors in classification of document pairs, rather than minimizing errors in ranking of documents. The assumption of that the document pairs are generated i.i.d. is also too. The number of generated document pairs varies largely from query to query, which will result in training a model biased toward queries with more document pairs

23 Three approaches of L2R Listwise Approach In the listwise approach, the document lists instead of document pairs are used as instances in learning.

24 Outline What is Learning to Rank? (L2R) Three Approaches of L2R The Listwise Approach: ListNet

25 The major question then is how to define a listwise loss function, rep resenting the difference between the ranking list output by a ranking model and the ranking list given as ground truth. T i = (d 1, s 1, d 2, s 2, d 3, s 3, d 4, s 4, d 5, s 5 } O i = (d 2, s 2, d 1, s 1, d 3, s 3, d 5, s 5, d 4, s 4 }

26 Notations A set of queries: Each query is associated with a list of documents: denotes the sizes of Each list of documents is associated with a list of judgments (scores):

27 Notations A feature vector: The list of features: The corresponding list of scores: The training set:

28 Notations Ranking function: The scores of a list of feature vectors: The total losses with respect to the training data: Where is a listwise loss function.

29 The Loss Function How about defining the loss function as MAP or ndcg? Namely: Or: = 1 MAP(y i, z (i) ) = 1 ndcg(y i, z (i) )

30 MAP(Mean Average Precision) AP: P(i) is the accepted proportion of top-i items and M is the total number of accepted items in all topm items.

31 MAP(Mean Average Precision) AP Example: z (i) y i A A C B D B C D AP = E E

32 MAP(Mean Average Precision) MAP: MAP = 1 n n i=1 AP(y i, z (i) ) z (1) y 1 z (n) y n

33 ndcg(normailzed Discounted Cumulative Gain ) Z = m i= log 2 (i + 1) A C B D E z (i) A B C D E y i ndcg = 1 Z 1 log 2 (1+1) * 0 log 2 (2+1) 0 log log log 2 (5+1) Z = 1 * log 2 (1+1) log 2 (2+1) log log log 2 (5+1)

34 The Loss Function Why not to optimize the following: n i=1 L(y i, z (i) ) n = [1 MAP y i, z i ] i=1 n i=1 L(y i, z (i) ) n = [1 ndcg y i, z i ] i=1 They are not continuous! Many optimization methods (e.g. Gradient Descent, Lagrange) can not be applied.

35 Probability Models We propose using two probability models to calculate the listwise loss function. We map a list of scores to a probability distribution using one of the two probability models and then take any metric between probability distributions as a loss function. The two models are referred to as permutation probability and top k probability.

36 Probability Models map distribution1 map distribution2 The difference between two distributions

37 Permutation Probability permutation: We use s to denote the list of scores: where is the score of the j-th object.

38 Permutation Probability The probability of permutation π given the list of scores s is defined as: where denotes the score of object at position j of permutation π.

39 Permutation Probability

40 Permutation Probability Theorem 3 indicates that, for a permutation in which an object with a larger score is ranked ahead of another object with a smaller score, if we exchange their positions, the permutation probability of the resulting permutation will be lower than that of the original permutation.

41 Permutation Probability Theorem 4 indicates given the scores of n objects, the list of objects sorted in descending order of the scores has the highest permutation probability, while the list of objects sorted in ascending order has the lowest permutation probability.

42 Permutation Probability

43 Permutation Probability Given two lists of scores, we can first calculate the two corresponding permutation probability distributions, and then take the metric between the two distributions as the listwise loss function. Since the number of permutations is of order O(n!), the calculation might be intractable in practice. To cope with the problem, we consider the use of top k probability.

44 Top-k Probability Before giving the definition of top k probability, we first define the top k subgroup: A n k

45 Top-k Probability

46 Top-k Probability

47 The Listwise Loss Function Given two lists of scores, we can define the metric between the corresponding top k probability distributions as the listwise loss function. For example, when we use Cross Entropy as metric, the listwise loss function is:

48 Learning Method: ListNet We propose a new learning method for optimizing the listwise loss function based on top k probability, with Neural Network as model and Gradient Descent as optimization algorithm. We refer to the method as ListNet.

49 Learning Method: ListNet

50 Learning Method: ListNet

51 Learning Method: ListNet

52 Learning Method: ListNet

53 Learning Method: ListNet

54 Experimental Results Data Collections: TREC, OHSUMED, Csearch Ranking Accuracy:

55 Experimental Results ndcg

56 Experimental Results The pairwise loss: Similar trends were observed on the results evaluated in terms of MAP.

57 Thank you

Learning to rank search results

Learning to rank search results Learning to rank search results Voting algorithms, rank combination methods Web Search André Mourão, João Magalhães 1 2 How can we merge these results? Which model should we select for our production system?

More information

Search results fusion

Search results fusion Search results fusion Voting algorithms, rank combination methods Web Search André Mourão, João Magalhães 1 2 How can we merge these results? Which model should we select for our production system? Not

More information

Information Retrieval Evaluation

Information Retrieval Evaluation Information Retrieval Evaluation (COSC 416) Nazli Goharian nazli@cs.georgetown.edu Goharian, Grossman, Frieder, 2002, 2010 Measuring Effectiveness An algorithm is deemed incorrect if it does not have a

More information

Patent Mining: Use of Data/Text Mining for Supporting Patent Retrieval and Analysis

Patent Mining: Use of Data/Text Mining for Supporting Patent Retrieval and Analysis Patent Mining: Use of Data/Text Mining for Supporting Patent Retrieval and Analysis by Chih-Ping Wei ( 魏志平 ), PhD Institute of Service Science and Institute of Technology Management National Tsing Hua

More information

3D-Assisted Image Feature Synthesis for Novel Views of an Object

3D-Assisted Image Feature Synthesis for Novel Views of an Object 3D-Assisted Image Feature Synthesis for Novel Views of an Object Hao Su* Fan Wang* Li Yi Leonidas Guibas * Equal contribution View-agnostic Image Retrieval Retrieval using AlexNet features Query Cross-view

More information

Contents. List of Figures List of Tables. Structure of the Book How to Use this Book Online Resources Acknowledgements

Contents. List of Figures List of Tables. Structure of the Book How to Use this Book Online Resources Acknowledgements Contents List of Figures List of Tables Preface Notation Structure of the Book How to Use this Book Online Resources Acknowledgements Notational Conventions Notational Conventions for Probabilities xiii

More information

Lecture 3 - Regression

Lecture 3 - Regression Lecture 3 - Regression Instructor: Prof Ganesh Ramakrishnan July 25, 2016 1 / 30 The Simplest ML Problem: Least Square Regression Curve Fitting: Motivation Error measurement Minimizing Error Method of

More information

Inverted Indexes: Alternative Queries

Inverted Indexes: Alternative Queries Inverted Indexes: Alternative Queries Yufei Tao KAIST April 2, 2013 Remember that our discussion of inverted indexes so far aims at accelerating a specific type of queries (see the slides of an earlier

More information

The Game-Theoretic Approach to Machine Learning and Adaptation

The Game-Theoretic Approach to Machine Learning and Adaptation The Game-Theoretic Approach to Machine Learning and Adaptation Nicolò Cesa-Bianchi Università degli Studi di Milano Nicolò Cesa-Bianchi (Univ. di Milano) Game-Theoretic Approach 1 / 25 Machine Learning

More information

Outcome Forecasting in Sports. Ondřej Hubáček

Outcome Forecasting in Sports. Ondřej Hubáček Outcome Forecasting in Sports Ondřej Hubáček Motivation & Challenges Motivation exploiting betting markets performance optimization Challenges no available datasets difficulties with establishing the state-of-the-art

More information

Radio Deep Learning Efforts Showcase Presentation

Radio Deep Learning Efforts Showcase Presentation Radio Deep Learning Efforts Showcase Presentation November 2016 hume@vt.edu www.hume.vt.edu Tim O Shea Senior Research Associate Program Overview Program Objective: Rethink fundamental approaches to how

More information

Move Evaluation Tree System

Move Evaluation Tree System Move Evaluation Tree System Hiroto Yoshii hiroto-yoshii@mrj.biglobe.ne.jp Abstract This paper discloses a system that evaluates moves in Go. The system Move Evaluation Tree System (METS) introduces a tree

More information

MEASURING PRIVACY RISK IN ONLINE SOCIAL NETWORKS. Justin Becker, Hao Chen UC Davis May 2009

MEASURING PRIVACY RISK IN ONLINE SOCIAL NETWORKS. Justin Becker, Hao Chen UC Davis May 2009 MEASURING PRIVACY RISK IN ONLINE SOCIAL NETWORKS Justin Becker, Hao Chen UC Davis May 2009 1 Motivating example College admission Kaplan surveyed 320 admissions offices in 2008 1 in 10 admissions officers

More information

CLASSLESS ASSOCIATION USING NEURAL NETWORKS

CLASSLESS ASSOCIATION USING NEURAL NETWORKS Workshop track - ICLR 1 CLASSLESS ASSOCIATION USING NEURAL NETWORKS Federico Raue 1,, Sebastian Palacio, Andreas Dengel 1,, Marcus Liwicki 1 1 University of Kaiserslautern, Germany German Research Center

More information

Sentiment Analysis of User-Generated Contents for Pharmaceutical Product Safety

Sentiment Analysis of User-Generated Contents for Pharmaceutical Product Safety Sentiment Analysis of User-Generated Contents for Pharmaceutical Product Safety Haruna Isah, Daniel Neagu and Paul Trundle Artificial Intelligence Research Group University of Bradford, UK Haruna Isah

More information

RESTRICTED PERMUTATIONS AND POLYGONS. Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, Haifa, Israel

RESTRICTED PERMUTATIONS AND POLYGONS. Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, Haifa, Israel RESTRICTED PERMUTATIONS AND POLYGONS Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, 905 Haifa, Israel {gferro,toufik}@mathhaifaacil abstract Several authors have examined

More information

Game Theory and Algorithms Lecture 19: Nim & Impartial Combinatorial Games

Game Theory and Algorithms Lecture 19: Nim & Impartial Combinatorial Games Game Theory and Algorithms Lecture 19: Nim & Impartial Combinatorial Games May 17, 2011 Summary: We give a winning strategy for the counter-taking game called Nim; surprisingly, it involves computations

More information

Kernels and Support Vector Machines

Kernels and Support Vector Machines Kernels and Support Vector Machines Machine Learning CSE446 Sham Kakade University of Washington November 1, 2016 2016 Sham Kakade 1 Announcements: Project Milestones coming up HW2 You ve implemented GD,

More information

SMILe: Shuffled Multiple-Instance Learning

SMILe: Shuffled Multiple-Instance Learning SMILe: Shuffled Multiple-Instance Learning Gary Doran and Soumya Ray Department of Electrical Engineering and Computer Science Case Western Reserve University Cleveland, OH 44106, USA {gary.doran,sray}@case.edu

More information

Olympiad Combinatorics. Pranav A. Sriram

Olympiad Combinatorics. Pranav A. Sriram Olympiad Combinatorics Pranav A. Sriram August 2014 Chapter 2: Algorithms - Part II 1 Copyright notices All USAMO and USA Team Selection Test problems in this chapter are copyrighted by the Mathematical

More information

Name that sculpture. Relja Arandjelovid and Andrew Zisserman. Visual Geometry Group Department of Engineering Science University of Oxford

Name that sculpture. Relja Arandjelovid and Andrew Zisserman. Visual Geometry Group Department of Engineering Science University of Oxford Name that sculpture Relja Arandjelovid and Andrew Zisserman Visual Geometry Group Department of Engineering Science University of Oxford University of Oxford 7 th June 2012 Problem statement Identify the

More information

Greedy Algorithms and Genome Rearrangements

Greedy Algorithms and Genome Rearrangements Greedy Algorithms and Genome Rearrangements Outline 1. Transforming Cabbage into Turnip 2. Genome Rearrangements 3. Sorting By Reversals 4. Pancake Flipping Problem 5. Greedy Algorithm for Sorting by Reversals

More information

Huffman-Compressed Wavelet Trees for Large Alphabets

Huffman-Compressed Wavelet Trees for Large Alphabets Laboratorio de Bases de Datos Facultade de Informática Universidade da Coruña Departamento de Ciencias de la Computación Universidad de Chile Huffman-Compressed Wavelet Trees for Large Alphabets Gonzalo

More information

Permutations and codes:

Permutations and codes: Hamming distance Permutations and codes: Polynomials, bases, and covering radius Peter J. Cameron Queen Mary, University of London p.j.cameron@qmw.ac.uk International Conference on Graph Theory Bled, 22

More information

Music Recommendation using Recurrent Neural Networks

Music Recommendation using Recurrent Neural Networks Music Recommendation using Recurrent Neural Networks Ashustosh Choudhary * ashutoshchou@cs.umass.edu Mayank Agarwal * mayankagarwa@cs.umass.edu Abstract A large amount of information is contained in the

More information

Common Core Math Tutorial and Practice

Common Core Math Tutorial and Practice Common Core Math Tutorial and Practice TABLE OF CONTENTS Chapter One Number and Numerical Operations Number Sense...4 Ratios, Proportions, and Percents...12 Comparing and Ordering...19 Equivalent Numbers,

More information

Heuristic Search with Pre-Computed Databases

Heuristic Search with Pre-Computed Databases Heuristic Search with Pre-Computed Databases Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Abstract Use pre-computed partial results to improve the efficiency of heuristic

More information

Data and Knowledge as Infrastructure. Chaitan Baru Senior Advisor for Data Science CISE Directorate National Science Foundation

Data and Knowledge as Infrastructure. Chaitan Baru Senior Advisor for Data Science CISE Directorate National Science Foundation Data and Knowledge as Infrastructure Chaitan Baru Senior Advisor for Data Science CISE Directorate National Science Foundation 1 Motivation Easy access to data The Hello World problem (courtesy: R.V. Guha)

More information

Multivariate Permutation Tests: With Applications in Biostatistics

Multivariate Permutation Tests: With Applications in Biostatistics Multivariate Permutation Tests: With Applications in Biostatistics Fortunato Pesarin University ofpadova, Italy JOHN WILEY & SONS, LTD Chichester New York Weinheim Brisbane Singapore Toronto Contents Preface

More information

CCO Commun. Comb. Optim.

CCO Commun. Comb. Optim. Communications in Combinatorics and Optimization Vol. 2 No. 2, 2017 pp.149-159 DOI: 10.22049/CCO.2017.25918.1055 CCO Commun. Comb. Optim. Graceful labelings of the generalized Petersen graphs Zehui Shao

More information

Lecture 4: Spatial Domain Processing and Image Enhancement

Lecture 4: Spatial Domain Processing and Image Enhancement I2200: Digital Image processing Lecture 4: Spatial Domain Processing and Image Enhancement Prof. YingLi Tian Sept. 27, 2017 Department of Electrical Engineering The City College of New York The City University

More information

Achieving Desirable Gameplay Objectives by Niched Evolution of Game Parameters

Achieving Desirable Gameplay Objectives by Niched Evolution of Game Parameters Achieving Desirable Gameplay Objectives by Niched Evolution of Game Parameters Scott Watson, Andrew Vardy, Wolfgang Banzhaf Department of Computer Science Memorial University of Newfoundland St John s.

More information

Global Journal of Engineering Science and Research Management

Global Journal of Engineering Science and Research Management A KERNEL BASED APPROACH: USING MOVIE SCRIPT FOR ASSESSING BOX OFFICE PERFORMANCE Mr.K.R. Dabhade *1 Ms. S.S. Ponde 2 *1 Computer Science Department. D.I.E.M.S. 2 Asst. Prof. Computer Science Department,

More information

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Module 6 Lecture - 37 Divide and Conquer: Counting Inversions

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Module 6 Lecture - 37 Divide and Conquer: Counting Inversions Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute Module 6 Lecture - 37 Divide and Conquer: Counting Inversions Let us go back and look at Divide and Conquer again.

More information

Confidence-Based Multi-Robot Learning from Demonstration

Confidence-Based Multi-Robot Learning from Demonstration Int J Soc Robot (2010) 2: 195 215 DOI 10.1007/s12369-010-0060-0 Confidence-Based Multi-Robot Learning from Demonstration Sonia Chernova Manuela Veloso Accepted: 5 May 2010 / Published online: 19 May 2010

More information

Lossy Compression of Permutations

Lossy Compression of Permutations 204 IEEE International Symposium on Information Theory Lossy Compression of Permutations Da Wang EECS Dept., MIT Cambridge, MA, USA Email: dawang@mit.edu Arya Mazumdar ECE Dept., Univ. of Minnesota Twin

More information

Lecture 3 Presentations and more Great Groups

Lecture 3 Presentations and more Great Groups Lecture Presentations and more Great Groups From last time: A subset of elements S G with the property that every element of G can be written as a finite product of elements of S and their inverses is

More information

Singing Voice Detection. Applications of Music Processing. Singing Voice Detection. Singing Voice Detection. Singing Voice Detection

Singing Voice Detection. Applications of Music Processing. Singing Voice Detection. Singing Voice Detection. Singing Voice Detection Detection Lecture usic Processing Applications of usic Processing Christian Dittmar International Audio Laboratories Erlangen christian.dittmar@audiolabs-erlangen.de Important pre-requisite for: usic segmentation

More information

Session 2: 10 Year Vision session (11:00-12:20) - Tuesday. Session 3: Poster Highlights A (14:00-15:00) - Tuesday 20 posters (3minutes per poster)

Session 2: 10 Year Vision session (11:00-12:20) - Tuesday. Session 3: Poster Highlights A (14:00-15:00) - Tuesday 20 posters (3minutes per poster) Lessons from Collecting a Million Biometric Samples 109 Expression Robust 3D Face Recognition by Matching Multi-component Local Shape Descriptors on the Nasal and Adjoining Cheek Regions 177 Shared Representation

More information

Ma/CS 6a Class 16: Permutations

Ma/CS 6a Class 16: Permutations Ma/CS 6a Class 6: Permutations By Adam Sheffer The 5 Puzzle Problem. Start with the configuration on the left and move the tiles to obtain the configuration on the right. The 5 Puzzle (cont.) The game

More information

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees.

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees. 7 Symmetries 7 Permutations A permutation of a set is a reordering of its elements Another way to look at it is as a function Φ that takes as its argument a set of natural numbers of the form {, 2,, n}

More information

Large Scale Topic Detection using Node-Cut Partitioning on Dense Weighted-Graphs

Large Scale Topic Detection using Node-Cut Partitioning on Dense Weighted-Graphs Large Scale Topic Detection using Node-Cut Partitioning on Dense Weighted-Graphs Kambiz Ghoorchian Šarūnas Girdzijauskas ghoorian@kth.se 22.06.206 Motivation Solution Results Conclusion 2 What is a Topic

More information

The Effects of Entrainment in a Tutoring Dialogue System. Huy Nguyen, Jesse Thomason CS 3710 University of Pittsburgh

The Effects of Entrainment in a Tutoring Dialogue System. Huy Nguyen, Jesse Thomason CS 3710 University of Pittsburgh The Effects of Entrainment in a Tutoring Dialogue System Huy Nguyen, Jesse Thomason CS 3710 University of Pittsburgh Outline Introduction Corpus Post-Hoc Experiment Results Summary 2 Introduction Spoken

More information

Predicting the movie popularity using user-identified tropes

Predicting the movie popularity using user-identified tropes Predicting the movie popularity using user-identified tropes Amy Xu Stanford Univeristy xuamyj@stanford.edu Dennis Jeong Stanford Univeristy wonjeo@stanford.edu Abstract Tropes are recurrent themes and

More information

CRF and Structured Perceptron

CRF and Structured Perceptron CRF and Structured Perceptron CS 585, Fall 2015 -- Oct. 6 Introduction to Natural Language Processing http://people.cs.umass.edu/~brenocon/inlp2015/ Brendan O Connor Viterbi exercise solution CRF & Structured

More information

An improvement to the Gilbert-Varshamov bound for permutation codes

An improvement to the Gilbert-Varshamov bound for permutation codes An improvement to the Gilbert-Varshamov bound for permutation codes Yiting Yang Department of Mathematics Tongji University Joint work with Fei Gao and Gennian Ge May 11, 2013 Outline Outline 1 Introduction

More information

IBM SPSS Neural Networks

IBM SPSS Neural Networks IBM Software IBM SPSS Neural Networks 20 IBM SPSS Neural Networks New tools for building predictive models Highlights Explore subtle or hidden patterns in your data. Build better-performing models No programming

More information

Permutation Groups. Every permutation can be written as a product of disjoint cycles. This factorization is unique up to the order of the factors.

Permutation Groups. Every permutation can be written as a product of disjoint cycles. This factorization is unique up to the order of the factors. Permutation Groups 5-9-2013 A permutation of a set X is a bijective function σ : X X The set of permutations S X of a set X forms a group under function composition The group of permutations of {1,2,,n}

More information

Chpt 2. Frequency Distributions and Graphs. 2-3 Histograms, Frequency Polygons, Ogives / 35

Chpt 2. Frequency Distributions and Graphs. 2-3 Histograms, Frequency Polygons, Ogives / 35 Chpt 2 Frequency Distributions and Graphs 2-3 Histograms, Frequency Polygons, Ogives 1 Chpt 2 Homework 2-3 Read pages 48-57 p57 Applying the Concepts p58 2-4, 10, 14 2 Chpt 2 Objective Represent Data Graphically

More information

FOURTEEN SPECIES OF SKEW HEXAGONS

FOURTEEN SPECIES OF SKEW HEXAGONS FOURTEEN SPECIES OF SKEW HEXAGONS H. S. WHITE. Hexagon and hexahedron. For a tentative definition, let a skew hexagon be a succession of six line segments or edges, finite or infinite, the terminal point

More information

Exercises to Chapter 2 solutions

Exercises to Chapter 2 solutions Exercises to Chapter 2 solutions 1 Exercises to Chapter 2 solutions E2.1 The Manchester code was first used in Manchester Mark 1 computer at the University of Manchester in 1949 and is still used in low-speed

More information

Lecture 2.3: Symmetric and alternating groups

Lecture 2.3: Symmetric and alternating groups Lecture 2.3: Symmetric and alternating groups Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson)

More information

5.1 State-Space Search Problems

5.1 State-Space Search Problems Foundations of Artificial Intelligence March 7, 2018 5. State-Space Search: State Spaces Foundations of Artificial Intelligence 5. State-Space Search: State Spaces Malte Helmert University of Basel March

More information

Bead Sort: A Natural Sorting Algorithm

Bead Sort: A Natural Sorting Algorithm In The Bulletin of the European Association for Theoretical Computer Science 76 (), 5-6 Bead Sort: A Natural Sorting Algorithm Joshua J Arulanandham, Cristian S Calude, Michael J Dinneen Department of

More information

Application of Multi Layer Perceptron (MLP) for Shower Size Prediction

Application of Multi Layer Perceptron (MLP) for Shower Size Prediction Chapter 3 Application of Multi Layer Perceptron (MLP) for Shower Size Prediction 3.1 Basic considerations of the ANN Artificial Neural Network (ANN)s are non- parametric prediction tools that can be used

More information

DYNAMIC CONVOLUTIONAL NEURAL NETWORK FOR IMAGE SUPER- RESOLUTION

DYNAMIC CONVOLUTIONAL NEURAL NETWORK FOR IMAGE SUPER- RESOLUTION Journal of Advanced College of Engineering and Management, Vol. 3, 2017 DYNAMIC CONVOLUTIONAL NEURAL NETWORK FOR IMAGE SUPER- RESOLUTION Anil Bhujel 1, Dibakar Raj Pant 2 1 Ministry of Information and

More information

The Art of Neural Nets

The Art of Neural Nets The Art of Neural Nets Marco Tavora marcotav65@gmail.com Preamble The challenge of recognizing artists given their paintings has been, for a long time, far beyond the capability of algorithms. Recent advances

More information

Sampling distributions and the Central Limit Theorem

Sampling distributions and the Central Limit Theorem Sampling distributions and the Central Limit Theorem Johan A. Elkink University College Dublin 14 October 2013 Johan A. Elkink (UCD) Central Limit Theorem 14 October 2013 1 / 29 Outline 1 Sampling 2 Statistical

More information

COMP219: Artificial Intelligence. Lecture 17: Semantic Networks

COMP219: Artificial Intelligence. Lecture 17: Semantic Networks COMP219: Artificial Intelligence Lecture 17: Semantic Networks 1 Overview Last time Rules as a KR scheme; forward vs backward chaining Today Another approach to knowledge representation Structured objects:

More information

Chapter 1 INTRODUCTION TO SOURCE CODING AND CHANNEL CODING. Whether a source is analog or digital, a digital communication

Chapter 1 INTRODUCTION TO SOURCE CODING AND CHANNEL CODING. Whether a source is analog or digital, a digital communication 1 Chapter 1 INTRODUCTION TO SOURCE CODING AND CHANNEL CODING 1.1 SOURCE CODING Whether a source is analog or digital, a digital communication system is designed to transmit information in digital form.

More information

LECTURE 19 - LAGRANGE MULTIPLIERS

LECTURE 19 - LAGRANGE MULTIPLIERS LECTURE 9 - LAGRANGE MULTIPLIERS CHRIS JOHNSON Abstract. In this lecture we ll describe a way of solving certain optimization problems subject to constraints. This method, known as Lagrange multipliers,

More information

GPU ACCELERATED DEEP LEARNING WITH CUDNN

GPU ACCELERATED DEEP LEARNING WITH CUDNN GPU ACCELERATED DEEP LEARNING WITH CUDNN Larry Brown Ph.D. March 2015 AGENDA 1 Introducing cudnn and GPUs 2 Deep Learning Context 3 cudnn V2 4 Using cudnn 2 Introducing cudnn and GPUs 3 HOW GPU ACCELERATION

More information

arxiv: v2 [eess.sp] 10 Sep 2018

arxiv: v2 [eess.sp] 10 Sep 2018 Designing communication systems via iterative improvement: error correction coding with Bayes decoder and codebook optimized for source symbol error arxiv:1805.07429v2 [eess.sp] 10 Sep 2018 Chai Wah Wu

More information

Some results on Su Doku

Some results on Su Doku Some results on Su Doku Sourendu Gupta March 2, 2006 1 Proofs of widely known facts Definition 1. A Su Doku grid contains M M cells laid out in a square with M cells to each side. Definition 2. For every

More information

Know how to represent permutations in the two rowed notation, and how to multiply permutations using this notation.

Know how to represent permutations in the two rowed notation, and how to multiply permutations using this notation. The third exam will be on Monday, November 21, 2011. It will cover Sections 5.1-5.5. Of course, the material is cumulative, and the listed sections depend on earlier sections, which it is assumed that

More information

Empirical Assessment of Classification Accuracy of Local SVM

Empirical Assessment of Classification Accuracy of Local SVM Empirical Assessment of Classification Accuracy of Local SVM Nicola Segata Enrico Blanzieri Department of Engineering and Computer Science (DISI) University of Trento, Italy. segata@disi.unitn.it 18th

More information

COMP219: Artificial Intelligence. Lecture 17: Semantic Networks

COMP219: Artificial Intelligence. Lecture 17: Semantic Networks COMP219: Artificial Intelligence Lecture 17: Semantic Networks 1 Overview Last time Rules as a KR scheme; forward vs backward chaining Today Another approach to knowledge representation Structured objects:

More information

Algorithms for Bioinformatics

Algorithms for Bioinformatics Adapted from slides by Alexandru Tomescu, Leena Salmela, Veli Mäkinen, Esa Pitkänen 582670 Algorithms for Bioinformatics Lecture 3: Greedy Algorithms and Genomic Rearrangements 11.9.2014 Background We

More information

MATH 259 FINAL EXAM. Friday, May 8, Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E

MATH 259 FINAL EXAM. Friday, May 8, Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E MATH 259 FINAL EXAM 1 Friday, May 8, 2009. NAME: Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E Instructions: 1. Do not separate the pages of the exam.

More information

Dyck paths, standard Young tableaux, and pattern avoiding permutations

Dyck paths, standard Young tableaux, and pattern avoiding permutations PU. M. A. Vol. 21 (2010), No.2, pp. 265 284 Dyck paths, standard Young tableaux, and pattern avoiding permutations Hilmar Haukur Gudmundsson The Mathematics Institute Reykjavik University Iceland e-mail:

More information

X = {1, 2,...,n} n 1f 2f 3f... nf

X = {1, 2,...,n} n 1f 2f 3f... nf Section 11 Permutations Definition 11.1 Let X be a non-empty set. A bijective function f : X X will be called a permutation of X. Consider the case when X is the finite set with n elements: X {1, 2,...,n}.

More information

N. Papadakis, N. Reynolds, C.Ramirez-Jimenez, M.Pharaoh

N. Papadakis, N. Reynolds, C.Ramirez-Jimenez, M.Pharaoh Relation comparison methodologies of the primary and secondary frequency components of acoustic events obtained from thermoplastic composite laminates under tensile stress N. Papadakis, N. Reynolds, C.Ramirez-Jimenez,

More information

arxiv: v1 [math.co] 16 Aug 2018

arxiv: v1 [math.co] 16 Aug 2018 Two first-order logics of permutations arxiv:1808.05459v1 [math.co] 16 Aug 2018 Michael Albert, Mathilde Bouvel, Valentin Féray August 17, 2018 Abstract We consider two orthogonal points of view on finite

More information

The Originative Statistical Regression Models: Are They Too Old and Untenable? To Fit or Not to Fit Data to a Model: That is the Question.

The Originative Statistical Regression Models: Are They Too Old and Untenable? To Fit or Not to Fit Data to a Model: That is the Question. 1 Objectives 1.To poll the titled and untitled questions. 2.To offer my answer with illustrative examples (2) and recent projects (2). The Originative Statistical Regression Models: Are They Too Old and

More information

REINFORCEMENT LEARNING (DD3359) O-03 END-TO-END LEARNING

REINFORCEMENT LEARNING (DD3359) O-03 END-TO-END LEARNING REINFORCEMENT LEARNING (DD3359) O-03 END-TO-END LEARNING RIKA ANTONOVA ANTONOVA@KTH.SE ALI GHADIRZADEH ALGH@KTH.SE RL: What We Know So Far Formulate the problem as an MDP (or POMDP) State space captures

More information

DECISION TREE TUTORIAL

DECISION TREE TUTORIAL Kardi Teknomo DECISION TREE TUTORIAL Revoledu.com Decision Tree Tutorial by Kardi Teknomo Copyright 2008-2012 by Kardi Teknomo Published by Revoledu.com Online edition is available at Revoledu.com Last

More information

Permutation graphs an introduction

Permutation graphs an introduction Permutation graphs an introduction Ioan Todinca LIFO - Université d Orléans Algorithms and permutations, february / Permutation graphs Optimisation algorithms use, as input, the intersection model (realizer)

More information

Applications of Music Processing

Applications of Music Processing Lecture Music Processing Applications of Music Processing Christian Dittmar International Audio Laboratories Erlangen christian.dittmar@audiolabs-erlangen.de Singing Voice Detection Important pre-requisite

More information

Finding the Best Panoramas

Finding the Best Panoramas Finding the Best Panoramas Jeremy Pack CS 229 Fall 20 Abstract. Google Maps publishes street level panoramic photographs from around the world in the Street View service. When users request street level

More information

Human Reconstruction of Digitized Graphical Signals

Human Reconstruction of Digitized Graphical Signals Proceedings of the International MultiConference of Engineers and Computer Scientists 8 Vol II IMECS 8, March -, 8, Hong Kong Human Reconstruction of Digitized Graphical s Coskun DIZMEN,, and Errol R.

More information

AVA: A Large-Scale Database for Aesthetic Visual Analysis

AVA: A Large-Scale Database for Aesthetic Visual Analysis 1 AVA: A Large-Scale Database for Aesthetic Visual Analysis Wei-Ta Chu National Chung Cheng University N. Murray, L. Marchesotti, and F. Perronnin, AVA: A Large-Scale Database for Aesthetic Visual Analysis,

More information

Enumeration of Two Particular Sets of Minimal Permutations

Enumeration of Two Particular Sets of Minimal Permutations 3 47 6 3 Journal of Integer Sequences, Vol. 8 (05), Article 5.0. Enumeration of Two Particular Sets of Minimal Permutations Stefano Bilotta, Elisabetta Grazzini, and Elisa Pergola Dipartimento di Matematica

More information

Permutation Tableaux and the Dashed Permutation Pattern 32 1

Permutation Tableaux and the Dashed Permutation Pattern 32 1 Permutation Tableaux and the Dashed Permutation Pattern William Y.C. Chen, Lewis H. Liu, Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 7, P.R. China chen@nankai.edu.cn, lewis@cfc.nankai.edu.cn

More information

Bayesian Positioning in Wireless Networks using Angle of Arrival

Bayesian Positioning in Wireless Networks using Angle of Arrival Bayesian Positioning in Wireless Networks using Angle of Arrival Presented by: Rich Martin Joint work with: David Madigan, Eiman Elnahrawy, Wen-Hua Ju, P. Krishnan, A.S. Krishnakumar Rutgers University

More information

Pattern Avoidance in Unimodal and V-unimodal Permutations

Pattern Avoidance in Unimodal and V-unimodal Permutations Pattern Avoidance in Unimodal and V-unimodal Permutations Dido Salazar-Torres May 16, 2009 Abstract A characterization of unimodal, [321]-avoiding permutations and an enumeration shall be given.there is

More information

Spectral Transition-Based Playlist Prediction

Spectral Transition-Based Playlist Prediction Spectral Transition-Based Playlist Prediction Nipun Agarwala, Chris Billovits, Rahul Prabala {nipuna1, cjbillov, rprabala }@stanford.edu December 11, 2015 Abstract Since the advent of the radio, and in

More information

Research Challenges in Forecasting Technical Emergence. Dewey Murdick, IARPA 25 September 2013

Research Challenges in Forecasting Technical Emergence. Dewey Murdick, IARPA 25 September 2013 Research Challenges in Forecasting Technical Emergence Dewey Murdick, IARPA 25 September 2013 1 Invests in high-risk/high-payoff research programs that have the potential to provide our nation with an

More information

A Survey of Automated Hierarchical Classification of Patents

A Survey of Automated Hierarchical Classification of Patents A Survey of Automated Hierarchical Classification of Patents Juan Carlos Gomez and Marie-Francine Moens KU Leuven, Department of Computer Science Celestijnenlaan 200A, 3001 Heverlee, Belgium {juancarlos.gomez,sien.moens}@cs.kuleuven.be

More information

SSB Debate: Model-based Inference vs. Machine Learning

SSB Debate: Model-based Inference vs. Machine Learning SSB Debate: Model-based nference vs. Machine Learning June 3, 2018 SSB 2018 June 3, 2018 1 / 20 Machine learning in the biological sciences SSB 2018 June 3, 2018 2 / 20 Machine learning in the biological

More information

Superpatterns and Universal Point Sets

Superpatterns and Universal Point Sets Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 8, no. 2, pp. 77 209 (204) DOI: 0.755/jgaa.0038 Superpatterns and Universal Point Sets Michael J. Bannister Zhanpeng Cheng William E.

More information

Structure and Synthesis of Robot Motion

Structure and Synthesis of Robot Motion Structure and Synthesis of Robot Motion Motion Synthesis in Groups and Formations I Subramanian Ramamoorthy School of Informatics 5 March 2012 Consider Motion Problems with Many Agents How should we model

More information

Deep Learning for Autonomous Driving

Deep Learning for Autonomous Driving Deep Learning for Autonomous Driving Shai Shalev-Shwartz Mobileye IMVC dimension, March, 2016 S. Shalev-Shwartz is also affiliated with The Hebrew University Shai Shalev-Shwartz (MobilEye) DL for Autonomous

More information

Document Content-Based Search Using Topic Modeling

Document Content-Based Search Using Topic Modeling Document Content-Based Search Using Topic Modeling Jason Bello, Brian de Silva, Jerry Luo University of California, Los Angeles August 9, 2013 Jason Bello, Brian de Silva, Jerry Luo (UCLA) Topic Modeling

More information

SCHEDULING Giovanni De Micheli Stanford University

SCHEDULING Giovanni De Micheli Stanford University SCHEDULING Giovanni De Micheli Stanford University Outline The scheduling problem. Scheduling without constraints. Scheduling under timing constraints. Relative scheduling. Scheduling under resource constraints.

More information

Mechanism Design without Money II: House Allocation, Kidney Exchange, Stable Matching

Mechanism Design without Money II: House Allocation, Kidney Exchange, Stable Matching Algorithmic Game Theory Summer 2016, Week 8 Mechanism Design without Money II: House Allocation, Kidney Exchange, Stable Matching ETH Zürich Peter Widmayer, Paul Dütting Looking at the past few lectures

More information

A GRAPH THEORETICAL APPROACH TO SOLVING SCRAMBLE SQUARES PUZZLES. 1. Introduction

A GRAPH THEORETICAL APPROACH TO SOLVING SCRAMBLE SQUARES PUZZLES. 1. Introduction GRPH THEORETICL PPROCH TO SOLVING SCRMLE SQURES PUZZLES SRH MSON ND MLI ZHNG bstract. Scramble Squares puzzle is made up of nine square pieces such that each edge of each piece contains half of an image.

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III January 14, 2010 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

MA/CSSE 473 Day 13. Student Questions. Permutation Generation. HW 6 due Monday, HW 7 next Thursday, Tuesday s exam. Permutation generation

MA/CSSE 473 Day 13. Student Questions. Permutation Generation. HW 6 due Monday, HW 7 next Thursday, Tuesday s exam. Permutation generation MA/CSSE 473 Day 13 Permutation Generation MA/CSSE 473 Day 13 HW 6 due Monday, HW 7 next Thursday, Student Questions Tuesday s exam Permutation generation 1 Exam 1 If you want additional practice problems

More information

Searching Optimal Movements in Multi-Player Games with Imperfect Information

Searching Optimal Movements in Multi-Player Games with Imperfect Information 1 Searching Optimal Movements in Multi-Player Games with Imperfect Information Kenshi Yoshimura Teruhisa Hochin Hiroki Nomiya Department of Information Science Kyoto Institute of Technology Kyoto, Japan

More information

SketchNet: Sketch Classification with Web Images[CVPR `16]

SketchNet: Sketch Classification with Web Images[CVPR `16] SketchNet: Sketch Classification with Web Images[CVPR `16] CS688 Paper Presentation 1 Doheon Lee 20183398 2018. 10. 23 Table of Contents Introduction Background SketchNet Result 2 Introduction Properties

More information