Know how to represent permutations in the two rowed notation, and how to multiply permutations using this notation.

Size: px
Start display at page:

Download "Know how to represent permutations in the two rowed notation, and how to multiply permutations using this notation."

Transcription

1 The third exam will be on Monday, November 21, It will cover Sections Of course, the material is cumulative, and the listed sections depend on earlier sections, which it is assumed that you still know. Following are some of the concepts and results you should know: S n denotes the set of all permutations of the set {1,..., n} of integers from 1 to n. cardinality of S n is S n = n!. The Know how to represent permutations in the two rowed notation, and how to multiply permutations using this notation. Know what a cycle of length r is. A cycle of length 2 is a transposition. Know what it means to say that two permutations π and σ are disjoint. Disjoint permutations commute. (Theorem 5.1.2, Page 209) Know how to compute the cycle decomposition of permutations in S n. Know how to go back and forth between two rowed notation for permutations and cycle decompositions. Know how to multiply permutations given in either format and express the result in either two rowed or cycle notation. Know what is meant by the order of a permutation: o(π) is the smallest positive integer k such that π k = id. That is, o(π) is the order of π as an element of the group S n The order of an r-cycle is r. Know how to compute the order of a permutation from the cycle structure: If π = τ 1 τ 2 τ k is a product of disjoint cycles, then the order of π is the least common multiple of the lengths of the cycles τ 1,..., τ k. A transposition is a cycle of length 2. Every permutation is a product of transpositions. The number of transpositions in such a product for a permutation σ is always even or always odd. σ is even if it is a product of an even number of transpositions; σ is odd if it is a product of an odd number of transpositions. An r-cycle (j 1, j 2,..., j r ) is an even permutation if r is odd and it is an odd permutation if r is even. This follows from the factorization (j 1 j 2... j r ) = (j 1 j r )(j 1 j r 1 ) (j 1 j 2 ). The product of two even permutations is even, the product of two odd permutations is even, and the product of an even and an odd permutation is odd. The alternating group A n S n is the subgroup of all even permutation. The order of A n is A n = n!/2. Know what we mean by the symmetry group Sym(X) of a set X in the plane (or three space). Know how to represent the symmetries of a polygon P by means of permutations of the vertices. (Page 215) 1

2 The symmetry group of a regular polygon with n-sides is the dihedral group of degree n D n = { e, a,..., a n 1, b, ab,..., a n 1 b }, where a k is the (counterclockwise) rotation by 2kπ/n radians about the center of the polygon, and the last n entries are reflections. The subgroup C n = { e, a,..., a n 1} of D n is the rotation group or order n. If the symmetry group of a plane figure X is finite, then it is either D n or C n for some n. (Page 218) Know what it means to say that a group G acts on a set X (Definition 5.4.1, Page 222). Namely, each element g of G determines a permutation of X, denoted by x gx, in such a way that: (a) ex = x for all x X, where e is the identity of G. That is the permutation of X determined by e is the identity permutation. (b) (gh)x = g(hx) for all g, h G and x X. That is, the multiplication of g and h in G corresponds to the permutation of X that is the composition of the permutation determined by h and that determined by g. If G is a group acting on a set X and a X, know what the orbit of a under the action of G is. Namely, Orb(a) = {ga : g G}. That is, the orbit of a consists of all of the elements of X that are the image of a under one of the permutations of X determined by an element of G. Know what the stabilizer of a, denoted Stab(a), is: Stab(a) = {g G : ga = a}. That is the stabilizer of a consists of all the group elements g that do not move a under the permutation of X determined by g. If G acts on a set X, then the orbits of this action form a partition of X. If G acts on a set X, then the stabilizer Stab(a) of each element a X is a subgroup of G. Know the Orbit-Stabilizer theorem for group actions (Theorem 5.4.3, Page 223): If G acts on X and a X is any element of X, then Orb(a) = (G : Stab(a)) = Another way to state the same thing is: G = the number of cosets of Stab(a) in G. Stab(a) Orb(a) Stab(a) = G. If G is a group acting on the set X and g G, know what the fixed set of g, denoted Fix(g) is: Fix(g) = {x X : gx = x}. That is, Fix(g) is the set of elements of X that are not moved by the permutation of X determined by g. 2

3 Know the Burnside counting theorem (Theorem 5.4.4, Page 224: If G is a finite group acting on a finite set X, then the number k of orbits in X under this action of G is k = 1 G Fix(g) g G where Fix(g) is the number of elements in X that are fixed by g. A convenient way to think about this theorem is that it says that the number of orbits is the average (as g varies over G) of the number of elements of X fixed by an element g of G. Know how to use Burnside s theorem to compute the number of distinct patterns in the colorings of a given set of points in the plane, using the action of the symmetry group of the points. Review Exercises Be sure that you know how to do all assigned homework exercises. The following are a few supplemental exercises similar to those already assigned as homework. 1. Let α = ( ) and β = ( 1 2 ) ( ). (Note that we are using the cycle notation for α and β which we are assuming are in S 6. (a) Write α and β in two rowed notation. (b) Express α 1 and α 2 as products of disjoint cycles. (c) Write β as a product of 2 cycles. Is β even or odd? (d) Let θ = στ where σ and τ are disjoint cycles of length 9 and 6, respectively. Find the smallest positive integer s such that θ s is the identity permutation. 2. Write each of the following permutations as a product of disjoint cycles. (Remember that a single cycle qualifies.) (a) (b) (c) ( 1 2 ) ( 1 3 ) ( 1 4 ) (d) ( 1 3 ) 1 ( 2 4 ) ( ) 1 (e) ( ) ( ) ( 1 3 ) (f) ( ) Assume that σ = and τ = each of the following elements of S 4 : (a) στ (b) τσ (c) σ 2 (d) τ 2 (e) τ 3 (f) τ 4 (g) σ 1 (h) τ are permutations in S Compute 3

4 4. Write each of the following permutations as a single cycle or a product of disjoint cycles. (a) (b) (c) (d) In S 10, let α = ( ), β = ( ), γ = ( ), and let σ = αβγ. Write σ as a product of disjoint cycles, and use this to find its order and its inverse. Is σ even or odd? 6. Count the number of ways that a 3 3 grid of squares can be colored red or black (adjacent squares are allowed to have the same color). We will assume that two colorings are the same when one can be obtained from the other by clockwise rotation by 90, 180, or 270. It may be helpful to use the following two grids for visualization purposes The grid on the right is obtained from the one on the left by rotation ρ by 90, so that ρ can be identified with the following permutation of the nine small squares: ρ = ( ) ( ) ( 5 ) The following represents a particular coloring of the grid and the coloring obtained by 90 clockwise rotation. Thus these two colorings will be considered the same. R B B R R B B R R B R R R R B R B B 7. Find the number of different regular pentagons with vertices colored red, white, or blue. 8. A wheel is divided evenly into four compartments. Each compartment can be painted red, white, or blue. The back of the wheel is black. How many different such color wheels are there? 9. A rectangular necktie is divided evenly into five bands and each band may be colored green, red, or blue. How many different neckties are there? 10. A rectangular electrical relay box appears as shown below: 4

5 If each wire may be red or black, how many such boxes, taking symmetry into account, are there? If each wire may be red, black, or white, how many such boxes are there? 11. Think of the set of all six-digit binary words that is, strings of length 6 composed of 0 s and 1 s. For example: In some applications, two six-digit words are considered equivalent if one can be obtained from the other by applying the cyclic permutation σ: a 1 a 2 a 3 a 4 a 5 a 6 a 6 a 1 a 2 a 3 a 4 a 5 a number of times. For example, is equivalent to since the second string is obtained from the first by applying σ 3 times. Find the number of such non-equivalent words. 5

Lecture 2.3: Symmetric and alternating groups

Lecture 2.3: Symmetric and alternating groups Lecture 2.3: Symmetric and alternating groups Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson)

More information

Section II.9. Orbits, Cycles, and the Alternating Groups

Section II.9. Orbits, Cycles, and the Alternating Groups II.9 Orbits, Cycles, Alternating Groups 1 Section II.9. Orbits, Cycles, and the Alternating Groups Note. In this section, we explore permutations more deeply and introduce an important subgroup of S n.

More information

MATH 433 Applied Algebra Lecture 12: Sign of a permutation (continued). Abstract groups.

MATH 433 Applied Algebra Lecture 12: Sign of a permutation (continued). Abstract groups. MATH 433 Applied Algebra Lecture 12: Sign of a permutation (continued). Abstract groups. Permutations Let X be a finite set. A permutation of X is a bijection from X to itself. The set of all permutations

More information

Permutation Groups. Every permutation can be written as a product of disjoint cycles. This factorization is unique up to the order of the factors.

Permutation Groups. Every permutation can be written as a product of disjoint cycles. This factorization is unique up to the order of the factors. Permutation Groups 5-9-2013 A permutation of a set X is a bijective function σ : X X The set of permutations S X of a set X forms a group under function composition The group of permutations of {1,2,,n}

More information

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees.

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees. 7 Symmetries 7 Permutations A permutation of a set is a reordering of its elements Another way to look at it is as a function Φ that takes as its argument a set of natural numbers of the form {, 2,, n}

More information

X = {1, 2,...,n} n 1f 2f 3f... nf

X = {1, 2,...,n} n 1f 2f 3f... nf Section 11 Permutations Definition 11.1 Let X be a non-empty set. A bijective function f : X X will be called a permutation of X. Consider the case when X is the finite set with n elements: X {1, 2,...,n}.

More information

The Sign of a Permutation Matt Baker

The Sign of a Permutation Matt Baker The Sign of a Permutation Matt Baker Let σ be a permutation of {1, 2,, n}, ie, a one-to-one and onto function from {1, 2,, n} to itself We will define what it means for σ to be even or odd, and then discuss

More information

Permutation Groups. Definition and Notation

Permutation Groups. Definition and Notation 5 Permutation Groups Wigner s discovery about the electron permutation group was just the beginning. He and others found many similar applications and nowadays group theoretical methods especially those

More information

The Math Behind Futurama: The Prisoner of Benda

The Math Behind Futurama: The Prisoner of Benda of Benda May 7, 2013 The problem (informally) Professor Farnsworth has created a mind-switching machine that switches two bodies, but the switching can t be reversed using just those two bodies. Using

More information

Permutation group and determinants. (Dated: September 19, 2018)

Permutation group and determinants. (Dated: September 19, 2018) Permutation group and determinants (Dated: September 19, 2018) 1 I. SYMMETRIES OF MANY-PARTICLE FUNCTIONS Since electrons are fermions, the electronic wave functions have to be antisymmetric. This chapter

More information

Lecture 3 Presentations and more Great Groups

Lecture 3 Presentations and more Great Groups Lecture Presentations and more Great Groups From last time: A subset of elements S G with the property that every element of G can be written as a finite product of elements of S and their inverses is

More information

Chapter 1. The alternating groups. 1.1 Introduction. 1.2 Permutations

Chapter 1. The alternating groups. 1.1 Introduction. 1.2 Permutations Chapter 1 The alternating groups 1.1 Introduction The most familiar of the finite (non-abelian) simple groups are the alternating groups A n, which are subgroups of index 2 in the symmetric groups S n.

More information

REU 2006 Discrete Math Lecture 3

REU 2006 Discrete Math Lecture 3 REU 006 Discrete Math Lecture 3 Instructor: László Babai Scribe: Elizabeth Beazley Editors: Eliana Zoque and Elizabeth Beazley NOT PROOFREAD - CONTAINS ERRORS June 6, 006. Last updated June 7, 006 at :4

More information

Permutations. = f 1 f = I A

Permutations. = f 1 f = I A Permutations. 1. Definition (Permutation). A permutation of a set A is a bijective function f : A A. The set of all permutations of A is denoted by Perm(A). 2. If A has cardinality n, then Perm(A) has

More information

Some results on Su Doku

Some results on Su Doku Some results on Su Doku Sourendu Gupta March 2, 2006 1 Proofs of widely known facts Definition 1. A Su Doku grid contains M M cells laid out in a square with M cells to each side. Definition 2. For every

More information

Ma/CS 6a Class 16: Permutations

Ma/CS 6a Class 16: Permutations Ma/CS 6a Class 6: Permutations By Adam Sheffer The 5 Puzzle Problem. Start with the configuration on the left and move the tiles to obtain the configuration on the right. The 5 Puzzle (cont.) The game

More information

LECTURE 8: DETERMINANTS AND PERMUTATIONS

LECTURE 8: DETERMINANTS AND PERMUTATIONS LECTURE 8: DETERMINANTS AND PERMUTATIONS MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1 Determinants In the last lecture, we saw some applications of invertible matrices We would now like to describe how

More information

Permutations. describes the permutation which sends 1! 2, 2! 1, 3! 3.

Permutations. describes the permutation which sends 1! 2, 2! 1, 3! 3. Math 103A Winter,2001 Professor John J Wavrik Permutations A permutation of {1,, n } is a 1-1, onto mapping of the set to itself. Most books initially use a bulky notation to describe a permutation: The

More information

Some t-homogeneous sets of permutations

Some t-homogeneous sets of permutations Some t-homogeneous sets of permutations Jürgen Bierbrauer Department of Mathematical Sciences Michigan Technological University Houghton, MI 49931 (USA) Stephen Black IBM Heidelberg (Germany) Yves Edel

More information

MAS336 Computational Problem Solving. Problem 3: Eight Queens

MAS336 Computational Problem Solving. Problem 3: Eight Queens MAS336 Computational Problem Solving Problem 3: Eight Queens Introduction Francis J. Wright, 2007 Topics: arrays, recursion, plotting, symmetry The problem is to find all the distinct ways of choosing

More information

GLOSSARY. a * (b * c) = (a * b) * c. A property of operations. An operation * is called associative if:

GLOSSARY. a * (b * c) = (a * b) * c. A property of operations. An operation * is called associative if: Associativity A property of operations. An operation * is called associative if: a * (b * c) = (a * b) * c for every possible a, b, and c. Axiom For Greek geometry, an axiom was a 'self-evident truth'.

More information

5 Symmetric and alternating groups

5 Symmetric and alternating groups MTHM024/MTH714U Group Theory Notes 5 Autumn 2011 5 Symmetric and alternating groups In this section we examine the alternating groups A n (which are simple for n 5), prove that A 5 is the unique simple

More information

Fifteen puzzle. Sasha Patotski. Cornell University November 16, 2015

Fifteen puzzle. Sasha Patotski. Cornell University November 16, 2015 Fifteen puzzle. Sasha Patotski Cornell University ap744@cornell.edu November 16, 2015 Sasha Patotski (Cornell University) Fifteen puzzle. November 16, 2015 1 / 7 Last time The permutation group S n is

More information

Solving Megaminx puzzle With Group Theory 2018 S. Student Gerald Jiarong Xu Deerfield Academy 7 Boyden lane Deerfield MA Phone: (917) E

Solving Megaminx puzzle With Group Theory 2018 S. Student Gerald Jiarong Xu Deerfield Academy 7 Boyden lane Deerfield MA Phone: (917) E Solving Megaminx puzzle With Group Theory 2018 S. Student Gerald Jiarong Xu Deerfield Academy 7 Boyden lane Deerfield MA 01342 Phone: (917) 868-6058 Email: Gxu21@deerfield.edu Mentor David Xianfeng Gu

More information

Transitivity Action of A n on (n=4,5,6,7) on Unordered and Ordered Quadrupples

Transitivity Action of A n on (n=4,5,6,7) on Unordered and Ordered Quadrupples ABSTRACT Transitivity Action of A n on (n=4,5,6,7) on Unordered and Ordered Quadrupples Gachago j.kimani *, 1 Kinyanjui J.N, 2 Rimberia j, 3 Patrick kimani 4 and Jacob kiboi muchemi 5 1,3,4 Department

More information

Week 3-4: Permutations and Combinations

Week 3-4: Permutations and Combinations Week 3-4: Permutations and Combinations February 20, 2017 1 Two Counting Principles Addition Principle. Let S 1, S 2,..., S m be disjoint subsets of a finite set S. If S = S 1 S 2 S m, then S = S 1 + S

More information

THE 15 PUZZLE AND TOPSPIN. Elizabeth Senac

THE 15 PUZZLE AND TOPSPIN. Elizabeth Senac THE 15 PUZZLE AND TOPSPIN Elizabeth Senac 4x4 box with 15 numbers Goal is to rearrange the numbers from a random starting arrangement into correct numerical order. Can only slide one block at a time. Definition:

More information

Determinants, Part 1

Determinants, Part 1 Determinants, Part We shall start with some redundant definitions. Definition. Given a matrix A [ a] we say that determinant of A is det A a. Definition 2. Given a matrix a a a 2 A we say that determinant

More information

Introduction to Combinatorial Mathematics

Introduction to Combinatorial Mathematics Introduction to Combinatorial Mathematics George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 300 George Voutsadakis (LSSU) Combinatorics April 2016 1 / 97

More information

THE SIGN OF A PERMUTATION

THE SIGN OF A PERMUTATION THE SIGN OF A PERMUTATION KEITH CONRAD 1. Introduction Throughout this discussion, n 2. Any cycle in S n is a product of transpositions: the identity (1) is (12)(12), and a k-cycle with k 2 can be written

More information

Lecture 16b: Permutations and Bell Ringing

Lecture 16b: Permutations and Bell Ringing Lecture 16b: Permutations and Bell Ringing Another application of group theory to music is change-ringing, which refers to the process whereby people playing church bells can ring the bells in every possible

More information

PD-SETS FOR CODES RELATED TO FLAG-TRANSITIVE SYMMETRIC DESIGNS. Communicated by Behruz Tayfeh Rezaie. 1. Introduction

PD-SETS FOR CODES RELATED TO FLAG-TRANSITIVE SYMMETRIC DESIGNS. Communicated by Behruz Tayfeh Rezaie. 1. Introduction Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 7 No. 1 (2018), pp. 37-50. c 2018 University of Isfahan www.combinatorics.ir www.ui.ac.ir PD-SETS FOR CODES RELATED

More information

COMPSCI 575/MATH 513 Combinatorics and Graph Theory. Lecture #30: The Cycle Index (Tucker Section 9.3) David Mix Barrington 30 November 2016

COMPSCI 575/MATH 513 Combinatorics and Graph Theory. Lecture #30: The Cycle Index (Tucker Section 9.3) David Mix Barrington 30 November 2016 COMPSCI 575/MATH 513 Combinatorics and Graph Theory Lecture #30: The Cycle Index (Tucker Section 9.3) David Mix Barrington 30 November 2016 The Cycle Index Review Burnside s Theorem Colorings of Squares

More information

Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration

Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration Ira M. Gessel Department of Mathematics Brandeis University Sapienza Università di Roma July 10, 2013 Exponential generating functions

More information

Counting Cube Colorings with the Cauchy-Frobenius Formula and Further Friday Fun

Counting Cube Colorings with the Cauchy-Frobenius Formula and Further Friday Fun Counting Cube Colorings with the Cauchy-Frobenius Formula and Further Friday Fun Daniel Frohardt Wayne State University December 3, 2010 We have a large supply of squares of in 3 different colors and an

More information

Lecture 3 Complex Exponential Signals

Lecture 3 Complex Exponential Signals Lecture 3 Complex Exponential Signals Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/3/1 1 Review of Complex Numbers Using Euler s famous formula for the complex exponential The

More information

16 Alternating Groups

16 Alternating Groups 16 Alternating Groups In this paragraph, we examine an important subgroup of S n, called the alternating group on n letters. We begin with a definition that will play an important role throughout this

More information

Reading 14 : Counting

Reading 14 : Counting CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Instructors: Beck Hasti, Gautam Prakriya Reading 14 : Counting In this reading we discuss counting. Often, we are interested in the cardinality

More information

THE ERDŐS-KO-RADO THEOREM FOR INTERSECTING FAMILIES OF PERMUTATIONS

THE ERDŐS-KO-RADO THEOREM FOR INTERSECTING FAMILIES OF PERMUTATIONS THE ERDŐS-KO-RADO THEOREM FOR INTERSECTING FAMILIES OF PERMUTATIONS A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements for the Degree of Master

More information

Solutions to Exercises Chapter 6: Latin squares and SDRs

Solutions to Exercises Chapter 6: Latin squares and SDRs Solutions to Exercises Chapter 6: Latin squares and SDRs 1 Show that the number of n n Latin squares is 1, 2, 12, 576 for n = 1, 2, 3, 4 respectively. (b) Prove that, up to permutations of the rows, columns,

More information

SUDOKU Colorings of the Hexagonal Bipyramid Fractal

SUDOKU Colorings of the Hexagonal Bipyramid Fractal SUDOKU Colorings of the Hexagonal Bipyramid Fractal Hideki Tsuiki Kyoto University, Sakyo-ku, Kyoto 606-8501,Japan tsuiki@i.h.kyoto-u.ac.jp http://www.i.h.kyoto-u.ac.jp/~tsuiki Abstract. The hexagonal

More information

A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP

A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A31 A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP Shinji Tanimoto Department of Mathematics, Kochi Joshi University

More information

Cardinality and Bijections

Cardinality and Bijections Countable and Cardinality and Bijections Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 13, 2012 Countable and Countable and Countable and How to count elements in a set? How

More information

RESTRICTED PERMUTATIONS AND POLYGONS. Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, Haifa, Israel

RESTRICTED PERMUTATIONS AND POLYGONS. Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, Haifa, Israel RESTRICTED PERMUTATIONS AND POLYGONS Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, 905 Haifa, Israel {gferro,toufik}@mathhaifaacil abstract Several authors have examined

More information

6.1 - Introduction to Periodic Functions

6.1 - Introduction to Periodic Functions 6.1 - Introduction to Periodic Functions Periodic Functions: Period, Midline, and Amplitude In general: A function f is periodic if its values repeat at regular intervals. Graphically, this means that

More information

Groups, Modular Arithmetic and Geometry

Groups, Modular Arithmetic and Geometry Groups, Modular Arithmetic and Geometry Pupil Booklet 2012 The Maths Zone www.themathszone.co.uk Modular Arithmetic Modular arithmetic was developed by Euler and then Gauss in the late 18th century and

More information

Chapter 6.1. Cycles in Permutations

Chapter 6.1. Cycles in Permutations Chapter 6.1. Cycles in Permutations Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 6.1. Cycles in Permutations Math 184A / Fall 2017 1 / 27 Notations for permutations Consider a permutation in 1-line

More information

28,800 Extremely Magic 5 5 Squares Arthur Holshouser. Harold Reiter.

28,800 Extremely Magic 5 5 Squares Arthur Holshouser. Harold Reiter. 28,800 Extremely Magic 5 5 Squares Arthur Holshouser 3600 Bullard St. Charlotte, NC, USA Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA hbreiter@uncc.edu

More information

Group Theory and SAGE: A Primer Robert A. Beezer University of Puget Sound c 2008 CC-A-SA License

Group Theory and SAGE: A Primer Robert A. Beezer University of Puget Sound c 2008 CC-A-SA License Group Theory and SAGE: A Primer Robert A. Beezer University of Puget Sound c 2008 CC-A-SA License Revision: December 9, 2008 Introduction This compilation collects SAGE commands that are useful for a student

More information

Topspin: Oval-Track Puzzle, Taking Apart The Topspin One Tile At A Time

Topspin: Oval-Track Puzzle, Taking Apart The Topspin One Tile At A Time Salem State University Digital Commons at Salem State University Honors Theses Student Scholarship Fall 2015-01-01 Topspin: Oval-Track Puzzle, Taking Apart The Topspin One Tile At A Time Elizabeth Fitzgerald

More information

Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions. By Dr. Mohammed Ramidh

Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions. By Dr. Mohammed Ramidh Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions By Dr. Mohammed Ramidh Trigonometric Functions This section reviews the basic trigonometric functions. Trigonometric functions are important because

More information

Math 8245 Homework 1, due Monday 29 September PJW. E n = p 1 p 2 p n + 1.

Math 8245 Homework 1, due Monday 29 September PJW. E n = p 1 p 2 p n + 1. Math 8245 Homework 1, due Monday 29 September PJW 1. Let p 1, p 2, p 3,... = 2, 3, 5,... be the sequence of primes, and define E n = p 1 p 2 p n + 1. These are the numbers which appear in Euclid s proof

More information

σ-coloring of the Monohedral Tiling

σ-coloring of the Monohedral Tiling International J.Math. Combin. Vol.2 (2009), 46-52 σ-coloring of the Monohedral Tiling M. E. Basher (Department of Mathematics, Faculty of Science (Suez), Suez-Canal University, Egypt) E-mail: m e basher@@yahoo.com

More information

Recovery and Characterization of Non-Planar Resistor Networks

Recovery and Characterization of Non-Planar Resistor Networks Recovery and Characterization of Non-Planar Resistor Networks Julie Rowlett August 14, 1998 1 Introduction In this paper we consider non-planar conductor networks. A conductor is a two-sided object which

More information

The Futurama Theorem.

The Futurama Theorem. The Futurama Theorem. A friendly introduction to permutations. Rhian Davies 1 st March 2014 Permutations In this class we are going to consider the theory of permutations, and use them to solve a problem

More information

MAT 115: Finite Math for Computer Science Problem Set 5

MAT 115: Finite Math for Computer Science Problem Set 5 MAT 115: Finite Math for Computer Science Problem Set 5 Out: 04/10/2017 Due: 04/17/2017 Instructions: I leave plenty of space on each page for your computation. If you need more sheet, please attach your

More information

Chapter 4 Cyclotomic Cosets, the Mattson Solomon Polynomial, Idempotents and Cyclic Codes

Chapter 4 Cyclotomic Cosets, the Mattson Solomon Polynomial, Idempotents and Cyclic Codes Chapter 4 Cyclotomic Cosets, the Mattson Solomon Polynomial, Idempotents and Cyclic Codes 4.1 Introduction Much of the pioneering research on cyclic codes was carried out by Prange [5]inthe 1950s and considerably

More information

Computational aspects of two-player zero-sum games Course notes for Computational Game Theory Section 3 Fall 2010

Computational aspects of two-player zero-sum games Course notes for Computational Game Theory Section 3 Fall 2010 Computational aspects of two-player zero-sum games Course notes for Computational Game Theory Section 3 Fall 21 Peter Bro Miltersen November 1, 21 Version 1.3 3 Extensive form games (Game Trees, Kuhn Trees)

More information

Binary Continued! November 27, 2013

Binary Continued! November 27, 2013 Binary Tree: 1 Binary Continued! November 27, 2013 1. Label the vertices of the bottom row of your Binary Tree with the numbers 0 through 7 (going from left to right). (You may put numbers inside of the

More information

THE 15-PUZZLE (AND RUBIK S CUBE)

THE 15-PUZZLE (AND RUBIK S CUBE) THE 15-PUZZLE (AND RUBIK S CUBE) KEITH CONRAD 1. Introduction A permutation puzzle is a toy where the pieces can be moved around and the object is to reassemble the pieces into their beginning state We

More information

A Group-theoretic Approach to Human Solving Strategies in Sudoku

A Group-theoretic Approach to Human Solving Strategies in Sudoku Colonial Academic Alliance Undergraduate Research Journal Volume 3 Article 3 11-5-2012 A Group-theoretic Approach to Human Solving Strategies in Sudoku Harrison Chapman University of Georgia, hchaps@gmail.com

More information

Introductory Probability

Introductory Probability Introductory Probability Combinations Nicholas Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK Agenda Assigning Objects to Identical Positions Denitions Committee Card Hands Coin Toss Counts

More information

Equivalence classes of length-changing replacements of size-3 patterns

Equivalence classes of length-changing replacements of size-3 patterns Equivalence classes of length-changing replacements of size-3 patterns Vahid Fazel-Rezai Mentor: Tanya Khovanova 2013 MIT-PRIMES Conference May 18, 2013 Vahid Fazel-Rezai Length-Changing Pattern Replacements

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a triangle, and related to points on a circle. We noticed how the x and y values

More information

Tetrabonacci Subgroup of the Symmetric Group over the Magic Squares Semigroup

Tetrabonacci Subgroup of the Symmetric Group over the Magic Squares Semigroup Tetrabonacci Subgroup of the Symmetric Group over the Magic Squares Semigroup Babayo A.M. 1, G.U.Garba 2 1. Department of Mathematics and Computer Science, Faculty of Science, Federal University Kashere,

More information

Domino Tilings of Aztec Diamonds, Baxter Permutations, and Snow Leopard Permutations

Domino Tilings of Aztec Diamonds, Baxter Permutations, and Snow Leopard Permutations Domino Tilings of Aztec Diamonds, Baxter Permutations, and Snow Leopard Permutations Benjamin Caffrey 212 N. Blount St. Madison, WI 53703 bjc.caffrey@gmail.com Eric S. Egge Department of Mathematics and

More information

Biembeddings of Latin squares and Hamiltonian decompositions

Biembeddings of Latin squares and Hamiltonian decompositions Biembeddings of Latin squares and Hamiltonian decompositions M. J. Grannell, T. S. Griggs Department of Pure Mathematics The Open University Walton Hall Milton Keynes MK7 6AA UNITED KINGDOM M. Knor Department

More information

Weighted Polya Theorem. Solitaire

Weighted Polya Theorem. Solitaire Weighted Polya Theorem. Solitaire Sasha Patotski Cornell University ap744@cornell.edu December 15, 2015 Sasha Patotski (Cornell University) Weighted Polya Theorem. Solitaire December 15, 2015 1 / 15 Cosets

More information

The Place of Group Theory in Decision-Making in Organizational Management A case of 16- Puzzle

The Place of Group Theory in Decision-Making in Organizational Management A case of 16- Puzzle IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728,p-ISSN: 2319-765X, Volume 7, Issue 6 (Sep. - Oct. 2013), PP 17-22 The Place of Group Theory in Decision-Making in Organizational Management A case

More information

HOMEWORK ASSIGNMENT 5

HOMEWORK ASSIGNMENT 5 HOMEWORK ASSIGNMENT 5 MATH 251, WILLIAMS COLLEGE, FALL 2006 Abstract. These are the instructor s solutions. 1. Big Brother The social security number of a person is a sequence of nine digits that are not

More information

Introduction to Mathematical Reasoning, Saylor 111

Introduction to Mathematical Reasoning, Saylor 111 Here s a game I like plying with students I ll write a positive integer on the board that comes from a set S You can propose other numbers, and I tell you if your proposed number comes from the set Eventually

More information

ON SOME PROPERTIES OF PERMUTATION TABLEAUX

ON SOME PROPERTIES OF PERMUTATION TABLEAUX ON SOME PROPERTIES OF PERMUTATION TABLEAUX ALEXANDER BURSTEIN Abstract. We consider the relation between various permutation statistics and properties of permutation tableaux. We answer some of the questions

More information

code V(n,k) := words module

code V(n,k) := words module Basic Theory Distance Suppose that you knew that an English word was transmitted and you had received the word SHIP. If you suspected that some errors had occurred in transmission, it would be impossible

More information

Equivalence Classes of Permutations Modulo Replacements Between 123 and Two-Integer Patterns

Equivalence Classes of Permutations Modulo Replacements Between 123 and Two-Integer Patterns Equivalence Classes of Permutations Modulo Replacements Between 123 and Two-Integer Patterns Vahid Fazel-Rezai Phillips Exeter Academy Exeter, New Hampshire, U.S.A. vahid fazel@yahoo.com Submitted: Sep

More information

Enumerating 3D-Sudoku Solutions over Cubic Prefractal Objects

Enumerating 3D-Sudoku Solutions over Cubic Prefractal Objects Regular Paper Enumerating 3D-Sudoku Solutions over Cubic Prefractal Objects Hideki Tsuiki 1,a) Yohei Yokota 1, 1 Received: September 1, 2011, Accepted: December 16, 2011 Abstract: We consider three-dimensional

More information

Symmetric Permutations Avoiding Two Patterns

Symmetric Permutations Avoiding Two Patterns Symmetric Permutations Avoiding Two Patterns David Lonoff and Jonah Ostroff Carleton College Northfield, MN 55057 USA November 30, 2008 Abstract Symmetric pattern-avoiding permutations are restricted permutations

More information

The Relationship between Permutation Groups and Permutation Polytopes

The Relationship between Permutation Groups and Permutation Polytopes The Relationship between Permutation Groups and Permutation Polytopes Shatha A. Salman University of Technology Applied Sciences department Baghdad-Iraq Batool A. Hameed University of Technology Applied

More information

LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE

LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE The inclusion-exclusion principle (also known as the sieve principle) is an extended version of the rule of the sum. It states that, for two (finite) sets, A

More information

Orthomorphisms of Boolean Groups. Nichole Louise Schimanski. A dissertation submitted in partial fulfillment of the requirements for the degree of

Orthomorphisms of Boolean Groups. Nichole Louise Schimanski. A dissertation submitted in partial fulfillment of the requirements for the degree of Orthomorphisms of Boolean Groups by Nichole Louise Schimanski A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematical Sciences Dissertation

More information

Chapter 1. Trigonometry Week 6 pp

Chapter 1. Trigonometry Week 6 pp Fall, Triginometry 5-, Week -7 Chapter. Trigonometry Week pp.-8 What is the TRIGONOMETRY o TrigonometryAngle+ Three sides + triangle + circle. Trigonometry: Measurement of Triangles (derived form Greek

More information

SYMMETRIES OF FIBONACCI POINTS, MOD m

SYMMETRIES OF FIBONACCI POINTS, MOD m PATRICK FLANAGAN, MARC S. RENAULT, AND JOSH UPDIKE Abstract. Given a modulus m, we examine the set of all points (F i,f i+) Z m where F is the usual Fibonacci sequence. We graph the set in the fundamental

More information

Perfect Octagon Quadrangle Systems with an upper C 4 -system and a large spectrum

Perfect Octagon Quadrangle Systems with an upper C 4 -system and a large spectrum Computer Science Journal of Moldova, vol.18, no.3(54), 2010 Perfect Octagon Quadrangle Systems with an upper C 4 -system and a large spectrum Luigia Berardi, Mario Gionfriddo, Rosaria Rota To the memory

More information

Combinatorics in the group of parity alternating permutations

Combinatorics in the group of parity alternating permutations Combinatorics in the group of parity alternating permutations Shinji Tanimoto (tanimoto@cc.kochi-wu.ac.jp) arxiv:081.1839v1 [math.co] 10 Dec 008 Department of Mathematics, Kochi Joshi University, Kochi

More information

Citation for published version (APA): Nutma, T. A. (2010). Kac-Moody Symmetries and Gauged Supergravity Groningen: s.n.

Citation for published version (APA): Nutma, T. A. (2010). Kac-Moody Symmetries and Gauged Supergravity Groningen: s.n. University of Groningen Kac-Moody Symmetries and Gauged Supergravity Nutma, Teake IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

Classes of permutations avoiding 231 or 321

Classes of permutations avoiding 231 or 321 Classes of permutations avoiding 231 or 321 Nik Ruškuc nik.ruskuc@st-andrews.ac.uk School of Mathematics and Statistics, University of St Andrews Dresden, 25 November 2015 Aim Introduce the area of pattern

More information

Unit Circle: Sine and Cosine

Unit Circle: Sine and Cosine Unit Circle: Sine and Cosine Functions By: OpenStaxCollege The Singapore Flyer is the world s tallest Ferris wheel. (credit: Vibin JK /Flickr) Looking for a thrill? Then consider a ride on the Singapore

More information

AGS Math Algebra 2 Correlated to Kentucky Academic Expectations for Mathematics Grades 6 High School

AGS Math Algebra 2 Correlated to Kentucky Academic Expectations for Mathematics Grades 6 High School AGS Math Algebra 2 Correlated to Kentucky Academic Expectations for Mathematics Grades 6 High School Copyright 2008 Pearson Education, Inc. or its affiliate(s). All rights reserved AGS Math Algebra 2 Grade

More information

Analysis on the Properties of a Permutation Group

Analysis on the Properties of a Permutation Group International Journal of Theoretical and Applied Mathematics 2017; 3(1): 19-24 http://www.sciencepublishinggroup.com/j/ijtam doi: 10.11648/j.ijtam.20170301.13 Analysis on the Properties of a Permutation

More information

PUTNAM PROBLEMS FINITE MATHEMATICS, COMBINATORICS

PUTNAM PROBLEMS FINITE MATHEMATICS, COMBINATORICS PUTNAM PROBLEMS FINITE MATHEMATICS, COMBINATORICS 2014-B-5. In the 75th Annual Putnam Games, participants compete at mathematical games. Patniss and Keeta play a game in which they take turns choosing

More information

Quarter Turn Baxter Permutations

Quarter Turn Baxter Permutations Quarter Turn Baxter Permutations Kevin Dilks May 29, 2017 Abstract Baxter permutations are known to be in bijection with a wide number of combinatorial objects. Previously, it was shown that each of these

More information

Lecture 18 - Counting

Lecture 18 - Counting Lecture 18 - Counting 6.0 - April, 003 One of the most common mathematical problems in computer science is counting the number of elements in a set. This is often the core difficulty in determining a program

More information

Permutations and codes:

Permutations and codes: Hamming distance Permutations and codes: Polynomials, bases, and covering radius Peter J. Cameron Queen Mary, University of London p.j.cameron@qmw.ac.uk International Conference on Graph Theory Bled, 22

More information

On Hultman Numbers. 1 Introduction

On Hultman Numbers. 1 Introduction 47 6 Journal of Integer Sequences, Vol 0 (007, Article 076 On Hultman Numbers Jean-Paul Doignon and Anthony Labarre Université Libre de Bruxelles Département de Mathématique, cp 6 Bd du Triomphe B-050

More information

Sets. Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 6, Outline Sets Equality Subset Empty Set Cardinality Power Set

Sets. Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 6, Outline Sets Equality Subset Empty Set Cardinality Power Set Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 6, 2012 Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) Gazihan Alankuş (Based on original slides by Brahim Hnich

More information

Counting Snakes, Differentiating the Tangent Function, and Investigating the Bernoulli-Euler Triangle by Harold Reiter

Counting Snakes, Differentiating the Tangent Function, and Investigating the Bernoulli-Euler Triangle by Harold Reiter Counting Snakes, Differentiating the Tangent Function, and Investigating the Bernoulli-Euler Triangle by Harold Reiter In this paper we will examine three apparently unrelated mathematical objects One

More information

Fast Sorting and Pattern-Avoiding Permutations

Fast Sorting and Pattern-Avoiding Permutations Fast Sorting and Pattern-Avoiding Permutations David Arthur Stanford University darthur@cs.stanford.edu Abstract We say a permutation π avoids a pattern σ if no length σ subsequence of π is ordered in

More information

Grade 6/7/8 Math Circles April 1/2, Modular Arithmetic

Grade 6/7/8 Math Circles April 1/2, Modular Arithmetic Faculty of Mathematics Waterloo, Ontario N2L 3G1 Modular Arithmetic Centre for Education in Mathematics and Computing Grade 6/7/8 Math Circles April 1/2, 2014 Modular Arithmetic Modular arithmetic deals

More information

2. Be able to evaluate a trig function at a particular degree measure. Example: cos. again, just use the unit circle!

2. Be able to evaluate a trig function at a particular degree measure. Example: cos. again, just use the unit circle! Study Guide for PART II of the Fall 18 MAT187 Final Exam NO CALCULATORS are permitted on this part of the Final Exam. This part of the Final exam will consist of 5 multiple choice questions. You will be

More information

RAINBOW COLORINGS OF SOME GEOMETRICALLY DEFINED UNIFORM HYPERGRAPHS IN THE PLANE

RAINBOW COLORINGS OF SOME GEOMETRICALLY DEFINED UNIFORM HYPERGRAPHS IN THE PLANE 1 RAINBOW COLORINGS OF SOME GEOMETRICALLY DEFINED UNIFORM HYPERGRAPHS IN THE PLANE 1 Introduction Brent Holmes* Christian Brothers University Memphis, TN 38104, USA email: bholmes1@cbu.edu A hypergraph

More information

On 3-Harness Weaving: Cataloging Designs Generated by Fundamental Blocks Having Distinct Rows and Columns

On 3-Harness Weaving: Cataloging Designs Generated by Fundamental Blocks Having Distinct Rows and Columns On 3-Harness Weaving: Cataloging Designs Generated by Fundamental Blocks Having Distinct Rows and Columns Shelley L. Rasmussen Department of Mathematical Sciences University of Massachusetts, Lowell, MA,

More information