RESTRICTED PERMUTATIONS AND POLYGONS. Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, Haifa, Israel

Size: px
Start display at page:

Download "RESTRICTED PERMUTATIONS AND POLYGONS. Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, Haifa, Israel"

Transcription

1 RESTRICTED PERMUTATIONS AND POLYGONS Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, 905 Haifa, Israel abstract Several authors have examined connections among restricted permutations and different combinatorial structures In this paper we establish a bijection between the set of permutations π which avoid and the set of odd-dissection convex polygons, where a permutation avoids ab c if there are no i < j < k such that π i π j π k is order-isomorphic to abc We also exhibit bijections between the set of permutations that avoid (or ) and the set of odd-dissection convex polygons Using tools developed to prove these results, we give enumerations and generating functions for permutations which avoid and certain additional patterns Extended abstract Classical patterns Let [n] = {,,, n} and denote by S n the set of permutations of [n] We shall view permutations in S n as words π = π π π n We denote by S the set of all permutations of all sizes (including the empty permutation ɛ, that is, the permutation of length 0), that is, S = n 0 S n The reduced form of a permutation σ on a set {j, j,, j k }, where j < j < < j k is a permutation obtained by renaming the letters of the permutation σ so that j i is renamed i for all i {,, k} For example, the reduced forms of the permutations 497 and 974 are 4 and 4, respectively Definition For k n, we say that a permutation σ S n has an occurrence of the pattern φ S k if there exist i < i < < i k n such that the reduced form of σ(i )σ(i ) σ(i k ) is φ We denote the number of occurrences of the pattern φ in the permutation σ by φ(σ) We say that a permutation π avoids a pattern φ, or is φ-avoiding, if φ(π) = 0 For example, let π = 8754, φ = 4 and θ = 4 Then it is easy to see that π avoids φ, and contains exactly one occurrence of θ, that is π does not avoid θ The set of all φ-avoiding permutations in S n is denoted by S n (φ) For any set T of patterns, we let S n (T ) = φ T S n The first explicit result seems to be Hammersley s enumeration of S n () in [5] In [, Ch ] and [, Ch 54] Knuth shows that for any τ S, we have S n (τ) = C n, where C n is the nth Catalan number given by C n = n+( n ) n (see [9, Sequence A00008]) Other authors considered restricted permutations in the 970s and early 980s (see, for example, [4], [5], and []), but the first systematic study was not undertaken until 985, when Simion and Schmidt [7] solved the enumeration problem for every subset of S Currently, there exist more than two hundred papers on this subject (see [8])

2 RESTRICTED PERMUTATIONS AND POLYGONS Generalized patterns In [] Babson and Steingrímsson introduced generalized permutation patterns that add the requirement that two adjacent letters in a pattern must be adjacent in the permutation In order to avoid confusion we write a classical pattern, say, as --, and if we write, say -, then we mean that if this pattern occurs in the permutation, then the letters in the permutation that correspond to and are adjacent Let us give a formal definition of a generalized pattern Definition A generalized pattern of length k is a word φ = φ x φ x k φ k, where φ φ φ k S k, and for j =,,, k, x j is either the empty string ɛ or a dash - If x j = - then in the definition of an occurrence of a classical pattern we require i j i j +, otherwise we require i j = i j + For example, the permutation π = 45 has two occurrences of the pattern --4, namely -4- and -4-5 A number of interesting results on generalized patterns were obtained in [] Relations to several well studied combinatorial structures, such as set partitions (see []), Dyck paths (see []), Motzkin paths (see [4]) and involutions (see [8]) were shown there As in the paper by Simion and Schmidt [7] dealing with the classical patterns, Claesson [], Claesson and Mansour [] considered a number of cases where permutations have to avoid two or more generalized patterns simultaneously In [7] Kitaev gave either an explicit formula or a recursive formula for almost all cases of simultaneous avoidance of more than two generalized patterns of length three with no dashes (see also [9, 0]) Distanced patterns In this section we give a uniform language to studying the classical pattern problem (see Definition ) and generalized pattern problem (see Definition ) in terms of the d-pattern problem Definition A distanced-pattern (or d-pattern) of length k is a pair (φ, d) where φ S k and d is a word d = d x dx dx k k such that d j 0 for j =,,, k, and x j is either the empty string ɛ, a minus - sign, or a plus + sign If x j = ɛ (resp x j = +, x j = - ) then in the definition of an occurrence of a classical pattern we require i j i j = d j (resp i j i j d j, i j i j d j ) For example, if π = 4578 S 8 then it contains Φ = (, ), eg π π 5 π 7 = 48 with distance d =, it contains Θ = (, 0 + ), eg π π π = 4 and π π π 8 = 4, and it contains Γ = (, 0 ), eg π π π = 4 and π 5 π π 7 = 8 As a remark, our Definition generalizes the classical and generalized definitions of patterns For example, avoiding the classical pattern 4 is the same as avoiding the d-pattern (4, ) and avoiding the generalized pattern -4- is the same as avoiding the pattern (4, ) The following two examples connect the d-pattern avoidance problem to binomial coefficients and Fibonacci numbers Example 4 Let d be any nonnegative integer number Then it can shown that #S (d+)n+l ((, d)) = l for all n 0 and 0 l d j=0 ( (d+ j)n+l j ) d n+ j=l ( (d+ j)n ) ((d + )n + l)! n = (n + )! l n! d+ l, Example 5 For any n 0, #S n (, + ) = F n+, where F n+ is the (n+)-st Fibonacci number To see that, let a n = #S n (, + ) For every permutation π in S n (, + ) there are two possibilities: the entry can be either the last (the n-th) element of π, or the (n )-st element of π In the later case the entry must be the last element of π Therefore, in the first case we have a n permutations, and in the second case we have a n permutations, hence a n = a n + a n Observing that a 0 = a =, we conclude that a n = F n+, as claimed

3 RESTRICTED PERMUTATIONS AND POLYGONS Define an odd-dissection convex polygon permutation or odd-dissection gon permutation (or ODPpermutation) π to be a permutation in S n that avoid the d-pattern, where we denote the d-pattern (abc, ) by ab c For example, there are exactly twenty ODP-permutations of length 4 We denote the set of all ODP-permutations in S n by O n The main reason for the term ODP-permutation is that the cardinality of the set O n is given by number of odd-dissections of a (n + )-gon The main results of this paper can be formulated as follows Let G n be a convex n-gon in the plane R with vertices labeled,,, n and edges,,, (n )n, n Figure The set 4 A dissection of G n is a partition of connecting vertices of G n into k polygons G,, G k by noncrossing diagonals of G n An odd-dissection of G n is a dissection G,, G k of G n such that G i is not a m-gon (m > ) for all i =,, k We denote the set of all odd-dissections of a given convex (n + )-gon by n (see Figure for the case n = 4) Observe that every odd-dissection G n has one of two forms: () The vertices and n + are connected by straight line segments to the same vertex i, and () The two vertices and n + of G are not connected by a straight line segment to the same vertex Theorem (i) There exists a bijection Θ between O n and n (ii) There exists a bijection between the set of -avoiding permutations in S n and n (iii) There exists a bijection between the set of -avoiding permutations in S n and n Let F (x) = n 0 #O nx n, then Theorem (i) gives F (x) = + xf (x) + x F (x)(f (x) ), and the values of the corresponding sequence are,,,, 0, 7, 4, 05, 400, 094, 5758, 708, 98 for n = 0,,, (see [9, Sequence A0494]) To find an exact formula for the number of ODP-permutations on [n], let p(x; α) = αx(p(x; α) + ) ( + xp(x; α)) Clearly, p(x; ) = F (x) On the other hand, by using the Lagrange inversion formula we get that p(x; α) = n n j=0 n ( )( n n ) j j + x n j α n Therefore, the generating function F (x) can be presented as F (x) = + ( )( ) n k n k x n n k n k k n k 0

4 4 RESTRICTED PERMUTATIONS AND POLYGONS Hence, we have the following result Corollary 7 For all n, the number of ODP-permutations, -avoiding permutations, - avoiding permutations in S n is given by ( )( ) n k n k n k n k k k 0 An another application of the bijection Θ to give the generating functions for several statistics in ODP-permutations For a permutation π, denote by τ k (π) the number of occurrences of the classical pattern τ k = (k + )(k) (in other words, τ k = ( (k + )(k), )), for any k For an odd-dissection n-gon G with partition into k-polygons G, G,, G k, denote by p k (G) the number of polygons G i with k + vertices These statistics can be characterized in terms of pattern avoidance as follows Lemma 8 Let π O n and G = Θ(π) Then τ l (π) = 0 if and only if p l+ (G) = 0, for any l Let F (t; x, x, ) be the generating function n 0 (t n ) π On l xτ l(π) l By Lemma 8 together with Theorem we have that the generating function F (t; x, x, ) satisfies F (t; x, x, ) = + tf (t; x, x, ) + t F (t; x, x, )(F (tx ; x x, x x, ) ), which is equivalent to () F (t; x, x, ) = + ( t) 4t F (tx ; x x, x x, ) By applying () repeatedly and in each step performing some rather tedious algebraic manipulations we get Corollary 9 The generating function for the number of ODP-permutations in S n is given by F (x;,, ) = + ( x) 8x As an another application of (), we have the following result + ( x) 8x Corollary 0 The generating function for the number of ODP-permutations that avoid τ l is given by H l (x) where H l (x) = + ( x) 4x H l (x) with H 0 (x) = For example, the generating function for the number of ODP-permutations that avoid the classical pattern (which equals the number of -avoiding permutations; see []) is given by H (x) = +, the generating function for the Catalan numbers Also, the generating function for the 4x number of ODP-permutations that avoid the classical pattern 54 is given by H (x) = + ( x) 8x + 4x

5 RESTRICTED PERMUTATIONS AND POLYGONS 5 References [] E Babson and E Steingrimsson, Generalized permutation patterns and a classification of the Mahonian statistics, Séminaire Loth de Combin 44 (000) Articale B44b [] A Claesson, Generalized pattern avoidance, Europ J of Combin (00), 9 97 [] A Claesson and T Mansour, Enumerating permutations avoiding a pair of Babson-Steingrímsson patterns, Ars Combin, to appear, preprint mathco/ [4] R Donaghey and LW Shapiro, Motzkin Numbers J Combin Theory Ser A (977), 9-0 [5] J M Hammersley, A few seedlings of research, Proceedings Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume, Berkeley/Los Angeles, 97, University of California Press, [] GH Hardy and EM Wright, Partitions, An Introduction to the Theory of Numbers, 5th ed Oxford, England: Clarendon Press, 979, 7-9 [7] S Kitaev, Multi-avoidance of generalised patterns, Discr Math 0 (00), [8] S Kitaev and T Mansour, Survey on certain pattern problems, preprint in wwwmsukyedu/math MAreport/indexhtml [9] S Kitaev and T Mansour, Simultaneous avoidance of generalized patterns, Ars Combin, to appear [0] S Kitaev and T Mansour, On multi-avoidance of generalized patterns, Ars Combin, to appear [] DE Knuth, The art of computer programming, Volume, Fundamental algorithms, Addison Wesley, Reading, Massachusetts, 97 [] DE Knuth, The art of computer programming, Volume, Sorting and Searching, Addison Wesley, Reading, Massachusetts, 97 [] SG Mohanty, Lattice Path Counting and Applications New York, Academic Press, 979 [4] D G Rogers, Ascending sequences in permutations, Discr Math (978) 5 40 [5] D Rotem, On a correspondence between binary trees and a certain type of permutation, Info Proc Letters 4 (975) 58 [] D Rotem, Stack sortable permutations, Discr Math (98) 85 9 [7] R Simion and F Schmidt, Restricted permutations, Europ J Combin (985) 8 40 [8] S Skiena, Involutions, Implementing Discrete Mathematics, Combinatorics and Graph Theory with Mathematica, Reading, MA, Addison-Wesley, (990) - [9] N Sloane and S Plouffe, The Encyclopedia of Integer Sequencess, Academic Press, New York, 995

Restricted Permutations Related to Fibonacci Numbers and k-generalized Fibonacci Numbers

Restricted Permutations Related to Fibonacci Numbers and k-generalized Fibonacci Numbers Restricted Permutations Related to Fibonacci Numbers and k-generalized Fibonacci Numbers arxiv:math/0109219v1 [math.co] 27 Sep 2001 Eric S. Egge Department of Mathematics Gettysburg College 300 North Washington

More information

Permutation Tableaux and the Dashed Permutation Pattern 32 1

Permutation Tableaux and the Dashed Permutation Pattern 32 1 Permutation Tableaux and the Dashed Permutation Pattern William Y.C. Chen, Lewis H. Liu, Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 7, P.R. China chen@nankai.edu.cn, lewis@cfc.nankai.edu.cn

More information

Inversions on Permutations Avoiding Consecutive Patterns

Inversions on Permutations Avoiding Consecutive Patterns Inversions on Permutations Avoiding Consecutive Patterns Naiomi Cameron* 1 Kendra Killpatrick 2 12th International Permutation Patterns Conference 1 Lewis & Clark College 2 Pepperdine University July 11,

More information

Pattern Avoidance in Unimodal and V-unimodal Permutations

Pattern Avoidance in Unimodal and V-unimodal Permutations Pattern Avoidance in Unimodal and V-unimodal Permutations Dido Salazar-Torres May 16, 2009 Abstract A characterization of unimodal, [321]-avoiding permutations and an enumeration shall be given.there is

More information

Dyck paths, standard Young tableaux, and pattern avoiding permutations

Dyck paths, standard Young tableaux, and pattern avoiding permutations PU. M. A. Vol. 21 (2010), No.2, pp. 265 284 Dyck paths, standard Young tableaux, and pattern avoiding permutations Hilmar Haukur Gudmundsson The Mathematics Institute Reykjavik University Iceland e-mail:

More information

ON SOME PROPERTIES OF PERMUTATION TABLEAUX

ON SOME PROPERTIES OF PERMUTATION TABLEAUX ON SOME PROPERTIES OF PERMUTATION TABLEAUX ALEXANDER BURSTEIN Abstract. We consider the relation between various permutation statistics and properties of permutation tableaux. We answer some of the questions

More information

132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers

132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers 132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers arxiv:math/0205206v1 [math.co] 19 May 2002 Eric S. Egge Department of Mathematics Gettysburg College Gettysburg, PA 17325

More information

Asymptotic behaviour of permutations avoiding generalized patterns

Asymptotic behaviour of permutations avoiding generalized patterns Asymptotic behaviour of permutations avoiding generalized patterns Ashok Rajaraman 311176 arajaram@sfu.ca February 19, 1 Abstract Visualizing permutations as labelled trees allows us to to specify restricted

More information

On uniquely k-determined permutations

On uniquely k-determined permutations On uniquely k-determined permutations Sergey Avgustinovich and Sergey Kitaev 16th March 2007 Abstract Motivated by a new point of view to study occurrences of consecutive patterns in permutations, we introduce

More information

What Does the Future Hold for Restricted Patterns? 1

What Does the Future Hold for Restricted Patterns? 1 What Does the Future Hold for Restricted Patterns? 1 by Zvezdelina Stankova Berkeley Math Circle Advanced Group November 26, 2013 1. Basics on Restricted Patterns 1.1. The primary object of study. We agree

More information

Permutations of a Multiset Avoiding Permutations of Length 3

Permutations of a Multiset Avoiding Permutations of Length 3 Europ. J. Combinatorics (2001 22, 1021 1031 doi:10.1006/eujc.2001.0538 Available online at http://www.idealibrary.com on Permutations of a Multiset Avoiding Permutations of Length 3 M. H. ALBERT, R. E.

More information

ON SOME PROPERTIES OF PERMUTATION TABLEAUX

ON SOME PROPERTIES OF PERMUTATION TABLEAUX ON SOME PROPERTIES OF PERMUTATION TABLEAUX ALEXANDER BURSTEIN Abstract. We consider the relation between various permutation statistics and properties of permutation tableaux. We answer some of the open

More information

Permutation Tableaux and the Dashed Permutation Pattern 32 1

Permutation Tableaux and the Dashed Permutation Pattern 32 1 Permutation Tableaux and the Dashed Permutation Pattern William Y.C. Chen and Lewis H. Liu Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin, P.R. China chen@nankai.edu.cn, lewis@cfc.nankai.edu.cn

More information

A combinatorial proof for the enumeration of alternating permutations with given peak set

A combinatorial proof for the enumeration of alternating permutations with given peak set AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 57 (2013), Pages 293 300 A combinatorial proof for the enumeration of alternating permutations with given peak set Alina F.Y. Zhao School of Mathematical Sciences

More information

Avoiding consecutive patterns in permutations

Avoiding consecutive patterns in permutations Avoiding consecutive patterns in permutations R. E. L. Aldred M. D. Atkinson D. J. McCaughan January 3, 2009 Abstract The number of permutations that do not contain, as a factor (subword), a given set

More information

#A2 INTEGERS 18 (2018) ON PATTERN AVOIDING INDECOMPOSABLE PERMUTATIONS

#A2 INTEGERS 18 (2018) ON PATTERN AVOIDING INDECOMPOSABLE PERMUTATIONS #A INTEGERS 8 (08) ON PATTERN AVOIDING INDECOMPOSABLE PERMUTATIONS Alice L.L. Gao Department of Applied Mathematics, Northwestern Polytechnical University, Xi an, Shaani, P.R. China llgao@nwpu.edu.cn Sergey

More information

Permutations with short monotone subsequences

Permutations with short monotone subsequences Permutations with short monotone subsequences Dan Romik Abstract We consider permutations of 1, 2,..., n 2 whose longest monotone subsequence is of length n and are therefore extremal for the Erdős-Szekeres

More information

Enumeration of Two Particular Sets of Minimal Permutations

Enumeration of Two Particular Sets of Minimal Permutations 3 47 6 3 Journal of Integer Sequences, Vol. 8 (05), Article 5.0. Enumeration of Two Particular Sets of Minimal Permutations Stefano Bilotta, Elisabetta Grazzini, and Elisa Pergola Dipartimento di Matematica

More information

Square Involutions. Filippo Disanto Dipartimento di Scienze Matematiche e Informatiche Università di Siena Pian dei Mantellini Siena, Italy

Square Involutions. Filippo Disanto Dipartimento di Scienze Matematiche e Informatiche Università di Siena Pian dei Mantellini Siena, Italy 3 47 6 3 Journal of Integer Sequences, Vol. 4 (0), Article.3.5 Square Involutions Filippo Disanto Dipartimento di Scienze Matematiche e Informatiche Università di Siena Pian dei Mantellini 44 5300 Siena,

More information

Struct: Finding Structure in Permutation Sets

Struct: Finding Structure in Permutation Sets Michael Albert, Christian Bean, Anders Claesson, Bjarki Ágúst Guðmundsson, Tómas Ken Magnússon and Henning Ulfarsson April 26th, 2016 Classical Patterns What is a permutation? π = 431265 = Classical Patterns

More information

Graphs of Tilings. Patrick Callahan, University of California Office of the President, Oakland, CA

Graphs of Tilings. Patrick Callahan, University of California Office of the President, Oakland, CA Graphs of Tilings Patrick Callahan, University of California Office of the President, Oakland, CA Phyllis Chinn, Department of Mathematics Humboldt State University, Arcata, CA Silvia Heubach, Department

More information

From Fibonacci to Catalan permutations

From Fibonacci to Catalan permutations PUMA Vol 7 (2006), No 2, pp 7 From Fibonacci to Catalan permutations E Barcucci Dipartimento di Sistemi e Informatica, Università di Firenze, Viale G B Morgagni 65, 5034 Firenze - Italy e-mail: barcucci@dsiunifiit

More information

Classes of permutations avoiding 231 or 321

Classes of permutations avoiding 231 or 321 Classes of permutations avoiding 231 or 321 Nik Ruškuc nik.ruskuc@st-andrews.ac.uk School of Mathematics and Statistics, University of St Andrews Dresden, 25 November 2015 Aim Introduce the area of pattern

More information

Fast Sorting and Pattern-Avoiding Permutations

Fast Sorting and Pattern-Avoiding Permutations Fast Sorting and Pattern-Avoiding Permutations David Arthur Stanford University darthur@cs.stanford.edu Abstract We say a permutation π avoids a pattern σ if no length σ subsequence of π is ordered in

More information

Pattern Avoidance in Poset Permutations

Pattern Avoidance in Poset Permutations Pattern Avoidance in Poset Permutations Sam Hopkins and Morgan Weiler Massachusetts Institute of Technology and University of California, Berkeley Permutation Patterns, Paris; July 5th, 2013 1 Definitions

More information

Restricted Dumont permutations, Dyck paths, and noncrossing partitions

Restricted Dumont permutations, Dyck paths, and noncrossing partitions Formal Power Series and Algebraic Combinatorics Séries Formelles et Combinatoire Algébrique San Diego, California 2006 Restricted Dumont permutations, Dyck paths, and noncrossing partitions Alexander Burstein,

More information

Quarter Turn Baxter Permutations

Quarter Turn Baxter Permutations Quarter Turn Baxter Permutations Kevin Dilks May 29, 2017 Abstract Baxter permutations are known to be in bijection with a wide number of combinatorial objects. Previously, it was shown that each of these

More information

#A13 INTEGERS 15 (2015) THE LOCATION OF THE FIRST ASCENT IN A 123-AVOIDING PERMUTATION

#A13 INTEGERS 15 (2015) THE LOCATION OF THE FIRST ASCENT IN A 123-AVOIDING PERMUTATION #A13 INTEGERS 15 (2015) THE LOCATION OF THE FIRST ASCENT IN A 123-AVOIDING PERMUTATION Samuel Connolly Department of Mathematics, Brown University, Providence, Rhode Island Zachary Gabor Department of

More information

Completion of the Wilf-Classification of 3-5 Pairs Using Generating Trees

Completion of the Wilf-Classification of 3-5 Pairs Using Generating Trees Completion of the Wilf-Classification of 3-5 Pairs Using Generating Trees Mark Lipson Harvard University Department of Mathematics Cambridge, MA 02138 mark.lipson@gmail.com Submitted: Jan 31, 2006; Accepted:

More information

BIJECTIONS FOR PERMUTATION TABLEAUX

BIJECTIONS FOR PERMUTATION TABLEAUX BIJECTIONS FOR PERMUTATION TABLEAUX SYLVIE CORTEEL AND PHILIPPE NADEAU Authors affiliations: LRI, CNRS et Université Paris-Sud, 945 Orsay, France Corresponding author: Sylvie Corteel Sylvie. Corteel@lri.fr

More information

arxiv: v1 [math.co] 24 Nov 2018

arxiv: v1 [math.co] 24 Nov 2018 The Problem of Pawns arxiv:1811.09606v1 [math.co] 24 Nov 2018 Tricia Muldoon Brown Georgia Southern University Abstract Using a bijective proof, we show the number of ways to arrange a maximum number of

More information

PATTERN AVOIDANCE IN PERMUTATIONS ON THE BOOLEAN LATTICE

PATTERN AVOIDANCE IN PERMUTATIONS ON THE BOOLEAN LATTICE PATTERN AVOIDANCE IN PERMUTATIONS ON THE BOOLEAN LATTICE SAM HOPKINS AND MORGAN WEILER Abstract. We extend the concept of pattern avoidance in permutations on a totally ordered set to pattern avoidance

More information

THE ENUMERATION OF PERMUTATIONS SORTABLE BY POP STACKS IN PARALLEL

THE ENUMERATION OF PERMUTATIONS SORTABLE BY POP STACKS IN PARALLEL THE ENUMERATION OF PERMUTATIONS SORTABLE BY POP STACKS IN PARALLEL REBECCA SMITH Department of Mathematics SUNY Brockport Brockport, NY 14420 VINCENT VATTER Department of Mathematics Dartmouth College

More information

Harmonic numbers, Catalan s triangle and mesh patterns

Harmonic numbers, Catalan s triangle and mesh patterns Harmonic numbers, Catalan s triangle and mesh patterns arxiv:1209.6423v1 [math.co] 28 Sep 2012 Sergey Kitaev Department of Computer and Information Sciences University of Strathclyde Glasgow G1 1XH, United

More information

On uniquely k-determined permutations

On uniquely k-determined permutations Discrete Mathematics 308 (2008) 1500 1507 www.elsevier.com/locate/disc On uniquely k-determined permutations Sergey Avgustinovich a, Sergey Kitaev b a Sobolev Institute of Mathematics, Acad. Koptyug prospect

More information

Random permutations avoiding some patterns

Random permutations avoiding some patterns Random permutations avoiding some patterns Svante Janson Knuth80 Piteå, 8 January, 2018 Patterns in a permutation Let S n be the set of permutations of [n] := {1,..., n}. If σ = σ 1 σ k S k and π = π 1

More information

Combinatorics in the group of parity alternating permutations

Combinatorics in the group of parity alternating permutations Combinatorics in the group of parity alternating permutations Shinji Tanimoto (tanimoto@cc.kochi-wu.ac.jp) arxiv:081.1839v1 [math.co] 10 Dec 008 Department of Mathematics, Kochi Joshi University, Kochi

More information

A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP

A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A31 A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP Shinji Tanimoto Department of Mathematics, Kochi Joshi University

More information

PRIMES 2017 final paper. NEW RESULTS ON PATTERN-REPLACEMENT EQUIVALENCES: GENERALIZING A CLASSICAL THEOREM AND REVISING A RECENT CONJECTURE Michael Ma

PRIMES 2017 final paper. NEW RESULTS ON PATTERN-REPLACEMENT EQUIVALENCES: GENERALIZING A CLASSICAL THEOREM AND REVISING A RECENT CONJECTURE Michael Ma PRIMES 2017 final paper NEW RESULTS ON PATTERN-REPLACEMENT EQUIVALENCES: GENERALIZING A CLASSICAL THEOREM AND REVISING A RECENT CONJECTURE Michael Ma ABSTRACT. In this paper we study pattern-replacement

More information

Generating trees and pattern avoidance in alternating permutations

Generating trees and pattern avoidance in alternating permutations Generating trees and pattern avoidance in alternating permutations Joel Brewster Lewis Massachusetts Institute of Technology jblewis@math.mit.edu Submitted: Aug 6, 2011; Accepted: Jan 10, 2012; Published:

More information

PD-SETS FOR CODES RELATED TO FLAG-TRANSITIVE SYMMETRIC DESIGNS. Communicated by Behruz Tayfeh Rezaie. 1. Introduction

PD-SETS FOR CODES RELATED TO FLAG-TRANSITIVE SYMMETRIC DESIGNS. Communicated by Behruz Tayfeh Rezaie. 1. Introduction Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 7 No. 1 (2018), pp. 37-50. c 2018 University of Isfahan www.combinatorics.ir www.ui.ac.ir PD-SETS FOR CODES RELATED

More information

Simple permutations and pattern restricted permutations

Simple permutations and pattern restricted permutations Simple permutations and pattern restricted permutations M.H. Albert and M.D. Atkinson Department of Computer Science University of Otago, Dunedin, New Zealand. Abstract A simple permutation is one that

More information

EQUIPOPULARITY CLASSES IN THE SEPARABLE PERMUTATIONS

EQUIPOPULARITY CLASSES IN THE SEPARABLE PERMUTATIONS EQUIPOPULARITY CLASSES IN THE SEPARABLE PERMUTATIONS Michael Albert, Cheyne Homberger, and Jay Pantone Abstract When two patterns occur equally often in a set of permutations, we say that these patterns

More information

Equivalence Classes of Permutations Modulo Replacements Between 123 and Two-Integer Patterns

Equivalence Classes of Permutations Modulo Replacements Between 123 and Two-Integer Patterns Equivalence Classes of Permutations Modulo Replacements Between 123 and Two-Integer Patterns Vahid Fazel-Rezai Phillips Exeter Academy Exeter, New Hampshire, U.S.A. vahid fazel@yahoo.com Submitted: Sep

More information

NON-OVERLAPPING PERMUTATION PATTERNS. To Doron Zeilberger, for his Sixtieth Birthday

NON-OVERLAPPING PERMUTATION PATTERNS. To Doron Zeilberger, for his Sixtieth Birthday NON-OVERLAPPING PERMUTATION PATTERNS MIKLÓS BÓNA Abstract. We show a way to compute, to a high level of precision, the probability that a randomly selected permutation of length n is nonoverlapping. As

More information

Corners in Tree Like Tableaux

Corners in Tree Like Tableaux Corners in Tree Like Tableaux Pawe l Hitczenko Department of Mathematics Drexel University Philadelphia, PA, U.S.A. phitczenko@math.drexel.edu Amanda Lohss Department of Mathematics Drexel University Philadelphia,

More information

Some Fine Combinatorics

Some Fine Combinatorics Some Fine Combinatorics David P. Little Department of Mathematics Penn State University University Park, PA 16802 Email: dlittle@math.psu.edu August 3, 2009 Dedicated to George Andrews on the occasion

More information

Symmetric Permutations Avoiding Two Patterns

Symmetric Permutations Avoiding Two Patterns Symmetric Permutations Avoiding Two Patterns David Lonoff and Jonah Ostroff Carleton College Northfield, MN 55057 USA November 30, 2008 Abstract Symmetric pattern-avoiding permutations are restricted permutations

More information

Quarter Turn Baxter Permutations

Quarter Turn Baxter Permutations North Dakota State University June 26, 2017 Outline 1 2 Outline 1 2 What is a Baxter Permutation? Definition A Baxter permutation is a permutation that, when written in one-line notation, avoids the generalized

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Define and compute the cardinality of a set. Use functions to compare the sizes of sets. Classify sets

More information

Section Summary. Permutations Combinations Combinatorial Proofs

Section Summary. Permutations Combinations Combinatorial Proofs Section 6.3 Section Summary Permutations Combinations Combinatorial Proofs Permutations Definition: A permutation of a set of distinct objects is an ordered arrangement of these objects. An ordered arrangement

More information

EXPLAINING THE SHAPE OF RSK

EXPLAINING THE SHAPE OF RSK EXPLAINING THE SHAPE OF RSK SIMON RUBINSTEIN-SALZEDO 1. Introduction There is an algorithm, due to Robinson, Schensted, and Knuth (henceforth RSK), that gives a bijection between permutations σ S n and

More information

International Journal of Combinatorial Optimization Problems and Informatics. E-ISSN:

International Journal of Combinatorial Optimization Problems and Informatics. E-ISSN: International Journal of Combinatorial Optimization Problems and Informatics E-ISSN: 2007-1558 editor@ijcopi.org International Journal of Combinatorial Optimization Problems and Informatics México Karim,

More information

An Optimal Algorithm for a Strategy Game

An Optimal Algorithm for a Strategy Game International Conference on Materials Engineering and Information Technology Applications (MEITA 2015) An Optimal Algorithm for a Strategy Game Daxin Zhu 1, a and Xiaodong Wang 2,b* 1 Quanzhou Normal University,

More information

Gray code for permutations with a fixed number of cycles

Gray code for permutations with a fixed number of cycles Discrete Mathematics ( ) www.elsevier.com/locate/disc Gray code for permutations with a fixed number of cycles Jean-Luc Baril LE2I UMR-CNRS 5158, Université de Bourgogne, B.P. 47 870, 21078 DIJON-Cedex,

More information

Stackable and queueable permutations

Stackable and queueable permutations Stackable and queueable permutations Peter G. Doyle Version 1.0 dated 30 January 2012 No Copyright Abstract There is a natural bijection between permutations obtainable using a stack (those avoiding the

More information

A stack and a pop stack in series

A stack and a pop stack in series AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 8(1) (2014), Pages 17 171 A stack and a pop stack in series Rebecca Smith Department of Mathematics SUNY Brockport, New York U.S.A. Vincent Vatter Department

More information

What Does the Future Hold for Restricted Patterns? 1

What Does the Future Hold for Restricted Patterns? 1 What Does the Future Hold for Restricted Patterns? by Zvezdelina Stankova Berkeley Math Circle Advanced Group November 26, 203. An Exhaustive Survey versus Paths for Further Research Restricted patterns

More information

Connected Permutations, Hypermaps and Weighted Dyck Words. Robert Cori Mini course, Maps Hypermaps february 2008

Connected Permutations, Hypermaps and Weighted Dyck Words. Robert Cori Mini course, Maps Hypermaps february 2008 1 Connected Permutations, Hypermaps and Weighted Dyck Words 2 Why? Graph embeddings Nice bijection by Patrice Ossona de Mendez and Pierre Rosenstiehl. Deduce enumerative results. Extensions? 3 Cycles (or

More information

Arithmetic Properties of Combinatorial Quantities

Arithmetic Properties of Combinatorial Quantities A tal given at the National Center for Theoretical Sciences (Hsinchu, Taiwan; August 4, 2010 Arithmetic Properties of Combinatorial Quantities Zhi-Wei Sun Nanjing University Nanjing 210093, P. R. China

More information

A Note on Downup Permutations and Increasing Trees DAVID CALLAN. Department of Statistics. Medical Science Center University Ave

A Note on Downup Permutations and Increasing Trees DAVID CALLAN. Department of Statistics. Medical Science Center University Ave A Note on Downup Permutations and Increasing 0-1- Trees DAVID CALLAN Department of Statistics University of Wisconsin-Madison Medical Science Center 1300 University Ave Madison, WI 53706-153 callan@stat.wisc.edu

More information

Domino Tilings of Aztec Diamonds, Baxter Permutations, and Snow Leopard Permutations

Domino Tilings of Aztec Diamonds, Baxter Permutations, and Snow Leopard Permutations Domino Tilings of Aztec Diamonds, Baxter Permutations, and Snow Leopard Permutations Benjamin Caffrey 212 N. Blount St. Madison, WI 53703 bjc.caffrey@gmail.com Eric S. Egge Department of Mathematics and

More information

1 Introduction and preliminaries

1 Introduction and preliminaries Generalized permutation patterns and a classification of the Mahonian statistics Eric Babson and Einar Steingrímsson Abstract We introduce generalized permutation patterns, where we allow the requirement

More information

Enumeration of permutations sorted with two passes through a stack and D 8 symmetries

Enumeration of permutations sorted with two passes through a stack and D 8 symmetries FPSAC 2012, Nagoya, Japan DMTCS proc. AR, 2012, 765 778 Enumeration of permutations sorted with two passes through a stack and D 8 symmetries Mathilde Bouvel 1,2 and Olivier Guibert 1 1 LaBRI UMR 5800,

More information

Yet Another Triangle for the Genocchi Numbers

Yet Another Triangle for the Genocchi Numbers Europ. J. Combinatorics (2000) 21, 593 600 Article No. 10.1006/eujc.1999.0370 Available online at http://www.idealibrary.com on Yet Another Triangle for the Genocchi Numbers RICHARD EHRENBORG AND EINAR

More information

MA 524 Midterm Solutions October 16, 2018

MA 524 Midterm Solutions October 16, 2018 MA 524 Midterm Solutions October 16, 2018 1. (a) Let a n be the number of ordered tuples (a, b, c, d) of integers satisfying 0 a < b c < d n. Find a closed formula for a n, as well as its ordinary generating

More information

Pin-Permutations and Structure in Permutation Classes

Pin-Permutations and Structure in Permutation Classes and Structure in Permutation Classes Frédérique Bassino Dominique Rossin Journées de Combinatoire de Bordeaux, feb. 2009 liafa Main result of the talk Conjecture[Brignall, Ruškuc, Vatter]: The pin-permutation

More information

PUTNAM PROBLEMS FINITE MATHEMATICS, COMBINATORICS

PUTNAM PROBLEMS FINITE MATHEMATICS, COMBINATORICS PUTNAM PROBLEMS FINITE MATHEMATICS, COMBINATORICS 2014-B-5. In the 75th Annual Putnam Games, participants compete at mathematical games. Patniss and Keeta play a game in which they take turns choosing

More information

Bijections for Permutation Tableaux

Bijections for Permutation Tableaux FPSAC 2008, Valparaiso-Viña del Mar, Chile DMTCS proc. AJ, 2008, 13 24 Bijections for Permutation Tableaux Sylvie Corteel 1 and Philippe Nadeau 2 1 LRI,Université Paris-Sud, 91405 Orsay, France 2 Fakultät

More information

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees.

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees. 7 Symmetries 7 Permutations A permutation of a set is a reordering of its elements Another way to look at it is as a function Φ that takes as its argument a set of natural numbers of the form {, 2,, n}

More information

Non-overlapping permutation patterns

Non-overlapping permutation patterns PU. M. A. Vol. 22 (2011), No.2, pp. 99 105 Non-overlapping permutation patterns Miklós Bóna Department of Mathematics University of Florida 358 Little Hall, PO Box 118105 Gainesville, FL 326118105 (USA)

More information

arxiv: v1 [math.co] 16 Aug 2018

arxiv: v1 [math.co] 16 Aug 2018 Two first-order logics of permutations arxiv:1808.05459v1 [math.co] 16 Aug 2018 Michael Albert, Mathilde Bouvel, Valentin Féray August 17, 2018 Abstract We consider two orthogonal points of view on finite

More information

arxiv: v1 [math.co] 7 Aug 2012

arxiv: v1 [math.co] 7 Aug 2012 arxiv:1208.1532v1 [math.co] 7 Aug 2012 Methods of computing deque sortable permutations given complete and incomplete information Dan Denton Version 1.04 dated 3 June 2012 (with additional figures dated

More information

Evacuation and a Geometric Construction for Fibonacci Tableaux

Evacuation and a Geometric Construction for Fibonacci Tableaux Evacuation and a Geometric Construction for Fibonacci Tableaux Kendra Killpatrick Pepperdine University 24255 Pacific Coast Highway Malibu, CA 90263-4321 Kendra.Killpatrick@pepperdine.edu August 25, 2004

More information

A Combinatorial Proof of the Log-Concavity of the Numbers of Permutations with k Runs

A Combinatorial Proof of the Log-Concavity of the Numbers of Permutations with k Runs Journal of Combinatorial Theory, Series A 90, 293303 (2000) doi:10.1006jcta.1999.3040, available online at http:www.idealibrary.com on A Combinatorial Proof of the Log-Concavity of the Numbers of Permutations

More information

Permutations avoiding an increasing number of length-increasing forbidden subsequences

Permutations avoiding an increasing number of length-increasing forbidden subsequences Permutations avoiding an increasing number of length-increasing forbidden subsequences Elena Barcucci, Alberto Del Lungo, Elisa Pergola, Renzo Pinzani To cite this version: Elena Barcucci, Alberto Del

More information

Crossings and patterns in signed permutations

Crossings and patterns in signed permutations Crossings and patterns in signed permutations Sylvie Corteel, Matthieu Josuat-Vergès, Jang-Soo Kim Université Paris-sud 11, Université Paris 7 Permutation Patterns 1/28 Introduction A crossing of a permutation

More information

Postprint.

Postprint. http://www.diva-portal.org Postprint This is the accepted version of a paper presented at 2th International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC', Valparaiso, Chile, 23-2

More information

arxiv: v1 [math.co] 11 Jul 2016

arxiv: v1 [math.co] 11 Jul 2016 OCCURRENCE GRAPHS OF PATTERNS IN PERMUTATIONS arxiv:160703018v1 [mathco] 11 Jul 2016 BJARNI JENS KRISTINSSON AND HENNING ULFARSSON Abstract We define the occurrence graph G p (π) of a pattern p in a permutation

More information

Greedy Flipping of Pancakes and Burnt Pancakes

Greedy Flipping of Pancakes and Burnt Pancakes Greedy Flipping of Pancakes and Burnt Pancakes Joe Sawada a, Aaron Williams b a School of Computer Science, University of Guelph, Canada. Research supported by NSERC. b Department of Mathematics and Statistics,

More information

Finite homomorphism-homogeneous permutations via edge colourings of chains

Finite homomorphism-homogeneous permutations via edge colourings of chains Finite homomorphism-homogeneous permutations via edge colourings of chains Igor Dolinka dockie@dmi.uns.ac.rs Department of Mathematics and Informatics, University of Novi Sad First of all there is Blue.

More information

A survey of stack-sorting disciplines

A survey of stack-sorting disciplines A survey of stack-sorting disciplines Miklós Bóna Department of Mathematics, University of Florida Gainesville FL 32611-8105 bona@math.ufl.edu Submitted: May 19, 2003; Accepted: Jun 18, 2003; Published:

More information

Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration

Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration Ira M. Gessel Department of Mathematics Brandeis University Sapienza Università di Roma July 10, 2013 Exponential generating functions

More information

The Combinatorics of Convex Permutominoes

The Combinatorics of Convex Permutominoes Southeast Asian Bulletin of Mathematics (2008) 32: 883 912 Southeast Asian Bulletin of Mathematics c SEAMS. 2008 The Combinatorics of Convex Permutominoes Filippo Disanto, Andrea Frosini and Simone Rinaldi

More information

Some algorithmic and combinatorial problems on permutation classes

Some algorithmic and combinatorial problems on permutation classes Some algorithmic and combinatorial problems on permutation classes The point of view of decomposition trees PhD Defense, 2009 December the 4th Outline 1 Objects studied : Permutations, Patterns and Classes

More information

132-avoiding two-stack sortable permutations, Fibonacci numbers, and Pell numbers

132-avoiding two-stack sortable permutations, Fibonacci numbers, and Pell numbers Discrete Applied Mathematics 143 (004) 7 83 www.elsevier.com/locate/dam 13-avoiding two-stack sortable permutations, Fibonacci numbers, Pell numbers Eric S. Egge a, Touk Mansour b a Department of Mathematics,

More information

Sec$on Summary. Permutations Combinations Combinatorial Proofs

Sec$on Summary. Permutations Combinations Combinatorial Proofs Section 6.3 Sec$on Summary Permutations Combinations Combinatorial Proofs 2 Coun$ng ordered arrangements Ex: How many ways can we select 3 students from a group of 5 students to stand in line for a picture?

More information

Discrete Mathematics with Applications MATH236

Discrete Mathematics with Applications MATH236 Discrete Mathematics with Applications MATH236 Dr. Hung P. Tong-Viet School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Pietermaritzburg Campus Semester 1, 2013 Tong-Viet

More information

A Coloring Problem. Ira M. Gessel 1 Department of Mathematics Brandeis University Waltham, MA Revised May 4, 1989

A Coloring Problem. Ira M. Gessel 1 Department of Mathematics Brandeis University Waltham, MA Revised May 4, 1989 A Coloring Problem Ira M. Gessel Department of Mathematics Brandeis University Waltham, MA 02254 Revised May 4, 989 Introduction. Awell-known algorithm for coloring the vertices of a graph is the greedy

More information

Know how to represent permutations in the two rowed notation, and how to multiply permutations using this notation.

Know how to represent permutations in the two rowed notation, and how to multiply permutations using this notation. The third exam will be on Monday, November 21, 2011. It will cover Sections 5.1-5.5. Of course, the material is cumulative, and the listed sections depend on earlier sections, which it is assumed that

More information

Counting 1324-avoiding Permutations

Counting 1324-avoiding Permutations Counting 1324-avoiding Permutations Darko Marinov Laboratory for Computer Science Massachusetts Institute of Technology Cambridge, MA 02139, USA marinov@lcs.mit.edu Radoš Radoičić Department of Mathematics

More information

arxiv: v7 [math.co] 5 Apr 2012

arxiv: v7 [math.co] 5 Apr 2012 A UNIFICATION OF PERMUTATION PATTERNS RELATED TO SCHUBERT VARIETIES HENNING ÚLFARSSON arxiv:002.436v7 [math.co] 5 Apr 202 Abstract. We obtain new connections between permutation patterns and singularities

More information

On k-crossings and k-nestings of permutations

On k-crossings and k-nestings of permutations FPSAC 2010, San Francisco, USA DMTCS proc. AN, 2010, 461 468 On k-crossings and k-nestings of permutations Sophie Burrill 1 and Marni Mishna 1 and Jacob Post 2 1 Department of Mathematics, Simon Fraser

More information

UNIVERSALITY IN SUBSTITUTION-CLOSED PERMUTATION CLASSES. with Frédérique Bassino, Mathilde Bouvel, Valentin Féray, Lucas Gerin and Mickaël Maazoun

UNIVERSALITY IN SUBSTITUTION-CLOSED PERMUTATION CLASSES. with Frédérique Bassino, Mathilde Bouvel, Valentin Féray, Lucas Gerin and Mickaël Maazoun UNIVERSALITY IN SUBSTITUTION-CLOSED PERMUTATION CLASSES ADELINE PIERROT with Frédérique Bassino, Mathilde Bouvel, Valentin Féray, Lucas Gerin and Mickaël Maazoun The aim of this work is to study the asymptotic

More information

ON THE INVERSE IMAGE OF PATTERN CLASSES UNDER BUBBLE SORT. 1. Introduction

ON THE INVERSE IMAGE OF PATTERN CLASSES UNDER BUBBLE SORT. 1. Introduction ON THE INVERSE IMAGE OF PATTERN CLASSES UNDER BUBBLE SORT MICHAEL H. ALBERT, M. D. ATKINSON, MATHILDE BOUVEL, ANDERS CLAESSON, AND MARK DUKES Abstract. Let B be the operation of re-ordering a sequence

More information

A FAMILY OF t-regular SELF-COMPLEMENTARY k-hypergraphs. Communicated by Behruz Tayfeh Rezaie. 1. Introduction

A FAMILY OF t-regular SELF-COMPLEMENTARY k-hypergraphs. Communicated by Behruz Tayfeh Rezaie. 1. Introduction Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 6 No. 1 (2017), pp. 39-46. c 2017 University of Isfahan www.combinatorics.ir www.ui.ac.ir A FAMILY OF t-regular SELF-COMPLEMENTARY

More information

Generating Trees of (Reducible) 1324-avoiding Permutations

Generating Trees of (Reducible) 1324-avoiding Permutations Generating Trees of (Reducible) 1324-avoiding Permutations Darko Marinov Radoš Radoičić October 9, 2003 Abstract We consider permutations that avoid the pattern 1324. We give exact formulas for the number

More information

Enumeration of Pin-Permutations

Enumeration of Pin-Permutations Enumeration of Pin-Permutations Frédérique Bassino, athilde Bouvel, Dominique Rossin To cite this version: Frédérique Bassino, athilde Bouvel, Dominique Rossin. Enumeration of Pin-Permutations. 2008.

More information

Reflections on the N + k Queens Problem

Reflections on the N + k Queens Problem Integre Technical Publishing Co., Inc. College Mathematics Journal 40:3 March 12, 2009 2:02 p.m. chatham.tex page 204 Reflections on the N + k Queens Problem R. Douglas Chatham R. Douglas Chatham (d.chatham@moreheadstate.edu)

More information

Counting Permutations by Putting Balls into Boxes

Counting Permutations by Putting Balls into Boxes Counting Permutations by Putting Balls into Boxes Ira M. Gessel Brandeis University C&O@40 Conference June 19, 2007 I will tell you shamelessly what my bottom line is: It is placing balls into boxes. Gian-Carlo

More information