Counting Permutations by Putting Balls into Boxes

Size: px
Start display at page:

Download "Counting Permutations by Putting Balls into Boxes"

Transcription

1 Counting Permutations by Putting Balls into Boxes Ira M. Gessel Brandeis University Conference June 19, 2007

2 I will tell you shamelessly what my bottom line is: It is placing balls into boxes. Gian-Carlo Rota, Indiscrete Thoughts

3 Eulerian polynomials If π is a permutation of [n] = {1, 2,..., n}, a descent of π is an i, with 1 i n 1, such that π(i) > π(i + 1). Example: has two descents. Let S n be the group of permutations of [n]. How many permutations in S n have i descents? Let us define the Eulerian polynomials E n (t) = t des(π). π S n Then E 1 (t) = 1, E 2 (t) = 1 + t, E 3 (t) = 1 + 4t + t 2.

4 Theorem. k n t k 1 = k=1 π S n t des(π) (1 t) n+1 Proof. k n is the number of placements of n balls, labeled 1, 2,..., n, into k boxes. We will associate to each placement a permutation π S n so that the total contribution from π is t des(π) /(1 t) n+1. We represent a placement more compactly as The balls in each box are in increasing order.

5 We remove the bars from the placement to get the permutation So we can think of a placement as a permutation with bars in it: a barred permutation. Which barred permutations correspond to ?

6 We remove the bars from the placement to get the permutation So we can think of a placement as a permutation with bars in it: a barred permutation. Which barred permutations correspond to ? We need at least one bar in every descent, so we start with

7 We remove the bars from the placement to get the permutation So we can think of a placement as a permutation with bars in it: a barred permutation. Which barred permutations correspond to ? We need at least one bar in every descent, so we start with Then we put any number of additional bars in each of the 6 spaces to get We assign the weight t to each bar. Then the contribution from this permutation is t(1 + t + t 2 + ) 6 = t (1 t) 6

8 In general, the contribution from a permutation π of [n] is t des(π) (1 t) n+1 so k n t k 1 = k=1 π S n t des(π) (1 t) n+1. Note that if there are k boxes then there are k 1 bars.

9 The Method of Barred Permutations A barred permutation is a permutation of balls numbered 1 to n with bars in it. Between (and before and after) the bars are boxes and between (and before and after) the balls are spaces. spaces boxes We can count barred permutations in two ways: 1) Start with bars, and put balls into boxes. 2) Start with a permutation, and put bars into spaces. Note: The method of barred permutations is closely related to the method of P-partitions (MacMahon, Knuth, Stanley).

10 2-descents We consider barred permutations in which consecutive balls cannot be in the same box How many placements of n balls in k boxes are there?

11 2-descents We consider barred permutations in which consecutive balls cannot be in the same box How many placements of n balls in k boxes are there? Ball 1: Ball 2: Ball 3: Ball n: k boxes k 1 boxes k 1 boxes... k 1 boxes So there are k(k 1) n 1 placements.

12 If we start with a permutation (for example, ) we must put a bar in each descent, but also in any space where m is followed by m + 1:

13 If we start with a permutation (for example, ) we must put a bar in each descent, but also in any space where m is followed by m + 1:

14 If we start with a permutation (for example, ) we must put a bar in each descent, but also in any space where m is followed by m + 1: Then we put an arbitrary number of additional bars in each space:

15 If we start with a permutation (for example, ) we must put a bar in each descent, but also in any space where m is followed by m + 1: Then we put an arbitrary number of additional bars in each space: We call i a 2-descent of π if π(i) + 2 > π(i + 1). Then by the same reasoning as before, k(k 1) n 1 t k 1 = k=1 π S n t 2-des(π) (1 t) n+1.

16 We could define r-descents similarly: π(i) + r > π(i + 1). The same reasoning would give k(k 1)(k 2) (k r+2)(k r+1) n r+1 t k 1 = k=1 π S n t r-des(π) (1 t) n+1. (Foata-Schützenberger)

17 We could define r-descents similarly: π(i) + r > π(i + 1). The same reasoning would give k(k 1)(k 2) (k r+2)(k r+1) n r+1 t k 1 = k=1 π S n t r-des(π) (1 t) n+1. (Foata-Schützenberger) Note that k(k 1)(k 2) (k r + 2)(k r + 1) n r+1 is the chromatic polynomial of the graph with vertex set [n] in which two vertices are adjacent if and only if they differ by at most r 1; i.e., they are not allowed in the same box. A similar result holds for the chromatic polynomial of any chordal graph.

18 Signed Permutations A signed permutation of [n] is permutation of [n] in which the entries may have minus signs: It s convenient to write ī for i so we ll write this signed permutation as Sometimes it s useful to think of a signed permutation as a permutation of the set { n, n + 1,..., n 1, n} (with or without 0) with the property that π( i) = π(i). We denote by B n the set (or group) of signed permutations of [n]. (This is the hyperoctahedral group, the Coxeter group of type B n.) Descents of signed permutations are defined as usual except that if π(1) < 0 then 0 is a descent of π. (Think of π(0) = 0.)

19 Theorem. (Steingrímsson) (2k + 1) n t k = k=0 π B n t des(π) (1 t) n+1

20 Theorem. (Steingrímsson) (2k + 1) n t k = k=0 π B n t des(π) (1 t) n+1 To prove this formula, we count barred signed permutations In the first box (box 0) only positive numbers can appear but in the other boxes, positive and negative numbers can appear. How many barred permutations have k bars? For each of the n balls, we can make it positive and put it in any of k + 1 boxes or make it negative and put it in any of k boxes. So there are (k + 1) + k = 2k + 1 possibilities for each ball, so (2k + 1) n in all.

21 Flag descents Adin, Brenti, and Roichman (2001) defined the flag-descent number of a signed permutation π by fdes(π) = 2 des π χ(π(1) < 0). In other words all descents are counted twice, except that a descent in position 0 is counted only once. They proved π B k n t k 1 = n t fdes(π) (1 t)(1 t 2 ) n. k=1

22 Flag descents Adin, Brenti, and Roichman (2001) defined the flag-descent number of a signed permutation π by fdes(π) = 2 des π χ(π(1) < 0). In other words all descents are counted twice, except that a descent in position 0 is counted only once. They proved π B k n t k 1 = n t fdes(π) (1 t)(1 t 2 ) n. k=1 Comparing this with our formula for Eulerian polynomials, π S k n t k 1 = n t des(π) (1 t) n+1, k=1 we see that their result is equivalent to t fdes(π) = (1 + t) n t des(π). π B n π S n

23 Their proof was by induction, but we can give a direct proof using barred permutations. Let s first go back to the enumeration of signed permutations by descents. Instead of looking at the sequence π(1) π(2) π(n), let s look at π( n) π( 1) π(0) π(1) π(n), where π( i) = π(i) and in particular, π(0) = 0. We consider only symmetric" barred permutations, for example or These symmetric barred permutations have 2(n + 1) spaces and 2k bars for some k. (So if we want to weight all the bars equally, we should weight each one by t rather than t). If we know the right half of a such a barred permutation (the part to the right of the 0) then the left half is determined. So what have we gained?

24 We can give a slightly different argument from before that the number of barred permutations with 2k bars (corresponding to k bars before) is (2k + 1) n. With 2k bars there are now 2k + 1 spaces, so we put the numbers 1, 2,..., n arbitrarily into these 2k + 1 spaces, and then the locations of 1, 2,..., n (and 0) are determined

25 We can give a slightly different argument from before that the number of barred permutations with 2k bars (corresponding to k bars before) is (2k + 1) n. With 2k bars there are now 2k + 1 spaces, so we put the numbers 1, 2,..., n arbitrarily into these 2k + 1 spaces, and then the locations of 1, 2,..., n (and 0) are determined 3 2 1

26 We can give a slightly different argument from before that the number of barred permutations with 2k bars (corresponding to k bars before) is (2k + 1) n. With 2k bars there are now 2k + 1 spaces, so we put the numbers 1, 2,..., n arbitrarily into these 2k + 1 spaces, and then the locations of 1, 2,..., n (and 0) are determined

27 For flag descents, we do the same thing, but without 0. For example, if we start with the permutation 3 2 1, adding in its negative half gives There are now 7 spaces, rather than 8, and they are paired, except for the central space. Then if we count the barred permutations corresponding to this permutation (weighting each bar with t), the bars in the n noncentral spaces come in pairs, but the bars in the center space do not

28 For flag descents, we do the same thing, but without 0. For example, if we start with the permutation 3 2 1, adding in its negative half gives There are now 7 spaces, rather than 8, and they are paired, except for the central space. Then if we count the barred permutations corresponding to this permutation (weighting each bar with t), the bars in the n noncentral spaces come in pairs, but the bars in the center space do not So the sum of the weights of the barred permutation corresponding to a given permutation π is t fdes(π) (1 t)(1 t 2 ) n

29 To get the other side of the equation, we note that the number of bars need not be even; it can be any number. If there are k 1 bars, there are k boxes, and thus k n ways to put 1, 2,..., n into the boxes, and as before the locations of 1, 2,..., n are determined.

30 To get the other side of the equation, we note that the number of bars need not be even; it can be any number. If there are k 1 bars, there are k boxes, and thus k n ways to put 1, 2,..., n into the boxes, and as before the locations of 1, 2,..., n are determined. So we have Adin, Brenti, and Roichman s identity k n t k 1 = k=1 π B n t fdes(π) (1 t)(1 t 2 ) n.

31 We do not have a bijective proof of π B n t fdes(π) = (1 + t) n σ S n t des(σ). However, our approach gives a refinement of this formula, by telling us which permutations in B n correspond to each permutation in S n. For σ S n, let B(σ) be the set of 2 n signed permutations in B n obtained from σ by the following procedure: First we cut σ into two parts:

32 We do not have a bijective proof of π B n t fdes(π) = (1 + t) n σ S n t des(σ). However, our approach gives a refinement of this formula, by telling us which permutations in B n correspond to each permutation in S n. For σ S n, let B(σ) be the set of 2 n signed permutations in B n obtained from σ by the following procedure: First we cut σ into two parts: Next we reverse and negate the first part:

33 We do not have a bijective proof of π B n t fdes(π) = (1 + t) n σ S n t des(σ). However, our approach gives a refinement of this formula, by telling us which permutations in B n correspond to each permutation in S n. For σ S n, let B(σ) be the set of 2 n signed permutations in B n obtained from σ by the following procedure: First we cut σ into two parts: Next we reverse and negate the first part: Finally we shuffle the two parts:

34 Then π B(σ) t fdes(π) = (1 + t) n t des(σ)

35 Then π B(σ) t fdes(π) = (1 + t) n t des(σ) Proof sketch. The set of barred permutations of σ (in S n ) is the same as the set of barred permutations of elements of B(σ) (in B n ). Therefore t des(σ) π B(σ) (1 t) n+1 = tfdes(π) (1 t)(1 t 2 ) n. Example

Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration

Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration Ira M. Gessel Department of Mathematics Brandeis University Sapienza Università di Roma July 10, 2013 Exponential generating functions

More information

A Coloring Problem. Ira M. Gessel 1 Department of Mathematics Brandeis University Waltham, MA Revised May 4, 1989

A Coloring Problem. Ira M. Gessel 1 Department of Mathematics Brandeis University Waltham, MA Revised May 4, 1989 A Coloring Problem Ira M. Gessel Department of Mathematics Brandeis University Waltham, MA 02254 Revised May 4, 989 Introduction. Awell-known algorithm for coloring the vertices of a graph is the greedy

More information

Crossings and patterns in signed permutations

Crossings and patterns in signed permutations Crossings and patterns in signed permutations Sylvie Corteel, Matthieu Josuat-Vergès, Jang-Soo Kim Université Paris-sud 11, Université Paris 7 Permutation Patterns 1/28 Introduction A crossing of a permutation

More information

A combinatorial proof for the enumeration of alternating permutations with given peak set

A combinatorial proof for the enumeration of alternating permutations with given peak set AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 57 (2013), Pages 293 300 A combinatorial proof for the enumeration of alternating permutations with given peak set Alina F.Y. Zhao School of Mathematical Sciences

More information

On joint distribution of adjacencies, descents and some Mahonian statistics

On joint distribution of adjacencies, descents and some Mahonian statistics FPSAC 2010, San Francisco, USA DMTCS proc. AN, 2010, 469 480 On joint distriution of adjacencies, descents and some Mahonian statistics Alexander Burstein 1 1 Department of Mathematics, Howard University,

More information

Alternating Permutations

Alternating Permutations Alternating Permutations p. Alternating Permutations Richard P. Stanley M.I.T. Alternating Permutations p. Basic definitions A sequence a 1, a 2,..., a k of distinct integers is alternating if a 1 > a

More information

EXPLAINING THE SHAPE OF RSK

EXPLAINING THE SHAPE OF RSK EXPLAINING THE SHAPE OF RSK SIMON RUBINSTEIN-SALZEDO 1. Introduction There is an algorithm, due to Robinson, Schensted, and Knuth (henceforth RSK), that gives a bijection between permutations σ S n and

More information

Enumeration of Two Particular Sets of Minimal Permutations

Enumeration of Two Particular Sets of Minimal Permutations 3 47 6 3 Journal of Integer Sequences, Vol. 8 (05), Article 5.0. Enumeration of Two Particular Sets of Minimal Permutations Stefano Bilotta, Elisabetta Grazzini, and Elisa Pergola Dipartimento di Matematica

More information

132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers

132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers 132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers arxiv:math/0205206v1 [math.co] 19 May 2002 Eric S. Egge Department of Mathematics Gettysburg College Gettysburg, PA 17325

More information

ON SOME PROPERTIES OF PERMUTATION TABLEAUX

ON SOME PROPERTIES OF PERMUTATION TABLEAUX ON SOME PROPERTIES OF PERMUTATION TABLEAUX ALEXANDER BURSTEIN Abstract. We consider the relation between various permutation statistics and properties of permutation tableaux. We answer some of the questions

More information

Graphs of Tilings. Patrick Callahan, University of California Office of the President, Oakland, CA

Graphs of Tilings. Patrick Callahan, University of California Office of the President, Oakland, CA Graphs of Tilings Patrick Callahan, University of California Office of the President, Oakland, CA Phyllis Chinn, Department of Mathematics Humboldt State University, Arcata, CA Silvia Heubach, Department

More information

Evacuation and a Geometric Construction for Fibonacci Tableaux

Evacuation and a Geometric Construction for Fibonacci Tableaux Evacuation and a Geometric Construction for Fibonacci Tableaux Kendra Killpatrick Pepperdine University 24255 Pacific Coast Highway Malibu, CA 90263-4321 Kendra.Killpatrick@pepperdine.edu August 25, 2004

More information

Counting Permutations with Even Valleys and Odd Peaks

Counting Permutations with Even Valleys and Odd Peaks Counting Permutations with Even Valleys and Odd Peaks Ira M. Gessel Department of Mathematics Brandeis University IMA Workshop Geometric and Enumerative Combinatorics University of Minnesota, Twin Cities

More information

Solutions to Problem Set 7

Solutions to Problem Set 7 Massachusetts Institute of Technology 6.4J/8.6J, Fall 5: Mathematics for Computer Science November 9 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised November 3, 5, 3 minutes Solutions to Problem

More information

Symmetric Permutations Avoiding Two Patterns

Symmetric Permutations Avoiding Two Patterns Symmetric Permutations Avoiding Two Patterns David Lonoff and Jonah Ostroff Carleton College Northfield, MN 55057 USA November 30, 2008 Abstract Symmetric pattern-avoiding permutations are restricted permutations

More information

Cycle-up-down permutations

Cycle-up-down permutations AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 5 (211, Pages 187 199 Cycle-up-down permutations Emeric Deutsch Polytechnic Institute of New York University Brooklyn, NY 1121 U.S.A. Sergi Elizalde Department

More information

Generating trees and pattern avoidance in alternating permutations

Generating trees and pattern avoidance in alternating permutations Generating trees and pattern avoidance in alternating permutations Joel Brewster Lewis Massachusetts Institute of Technology jblewis@math.mit.edu Submitted: Aug 6, 2011; Accepted: Jan 10, 2012; Published:

More information

EQUIPOPULARITY CLASSES IN THE SEPARABLE PERMUTATIONS

EQUIPOPULARITY CLASSES IN THE SEPARABLE PERMUTATIONS EQUIPOPULARITY CLASSES IN THE SEPARABLE PERMUTATIONS Michael Albert, Cheyne Homberger, and Jay Pantone Abstract When two patterns occur equally often in a set of permutations, we say that these patterns

More information

Yet Another Triangle for the Genocchi Numbers

Yet Another Triangle for the Genocchi Numbers Europ. J. Combinatorics (2000) 21, 593 600 Article No. 10.1006/eujc.1999.0370 Available online at http://www.idealibrary.com on Yet Another Triangle for the Genocchi Numbers RICHARD EHRENBORG AND EINAR

More information

ON SOME PROPERTIES OF PERMUTATION TABLEAUX

ON SOME PROPERTIES OF PERMUTATION TABLEAUX ON SOME PROPERTIES OF PERMUTATION TABLEAUX ALEXANDER BURSTEIN Abstract. We consider the relation between various permutation statistics and properties of permutation tableaux. We answer some of the open

More information

Restricted Permutations Related to Fibonacci Numbers and k-generalized Fibonacci Numbers

Restricted Permutations Related to Fibonacci Numbers and k-generalized Fibonacci Numbers Restricted Permutations Related to Fibonacci Numbers and k-generalized Fibonacci Numbers arxiv:math/0109219v1 [math.co] 27 Sep 2001 Eric S. Egge Department of Mathematics Gettysburg College 300 North Washington

More information

Permutations with short monotone subsequences

Permutations with short monotone subsequences Permutations with short monotone subsequences Dan Romik Abstract We consider permutations of 1, 2,..., n 2 whose longest monotone subsequence is of length n and are therefore extremal for the Erdős-Szekeres

More information

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees.

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees. 7 Symmetries 7 Permutations A permutation of a set is a reordering of its elements Another way to look at it is as a function Φ that takes as its argument a set of natural numbers of the form {, 2,, n}

More information

Asymptotic behaviour of permutations avoiding generalized patterns

Asymptotic behaviour of permutations avoiding generalized patterns Asymptotic behaviour of permutations avoiding generalized patterns Ashok Rajaraman 311176 arajaram@sfu.ca February 19, 1 Abstract Visualizing permutations as labelled trees allows us to to specify restricted

More information

An evolution of a permutation

An evolution of a permutation An evolution of a permutation Huseyin Acan April 28, 204 Joint work with Boris Pittel Notation and Definitions S n is the set of permutations of {,..., n} Notation and Definitions S n is the set of permutations

More information

COMBINATORICS ON BIGRASSMANNIAN PERMUTATIONS AND ESSENTIAL SETS

COMBINATORICS ON BIGRASSMANNIAN PERMUTATIONS AND ESSENTIAL SETS COMBINATORICS ON BIGRASSMANNIAN PERMUTATIONS AND ESSENTIAL SETS MASATO KOBAYASHI Contents 1. Symmetric groups 2 Introduction 2 S n as a Coxeter group 3 Bigrassmannian permutations? 4 Bigrassmannian statistics

More information

Weighted Polya Theorem. Solitaire

Weighted Polya Theorem. Solitaire Weighted Polya Theorem. Solitaire Sasha Patotski Cornell University ap744@cornell.edu December 15, 2015 Sasha Patotski (Cornell University) Weighted Polya Theorem. Solitaire December 15, 2015 1 / 15 Cosets

More information

Combinatorics in the group of parity alternating permutations

Combinatorics in the group of parity alternating permutations Combinatorics in the group of parity alternating permutations Shinji Tanimoto (tanimoto@cc.kochi-wu.ac.jp) arxiv:081.1839v1 [math.co] 10 Dec 008 Department of Mathematics, Kochi Joshi University, Kochi

More information

Random permutations avoiding some patterns

Random permutations avoiding some patterns Random permutations avoiding some patterns Svante Janson Knuth80 Piteå, 8 January, 2018 Patterns in a permutation Let S n be the set of permutations of [n] := {1,..., n}. If σ = σ 1 σ k S k and π = π 1

More information

A Graph Theory of Rook Placements

A Graph Theory of Rook Placements A Graph Theory of Rook Placements Kenneth Barrese December 4, 2018 arxiv:1812.00533v1 [math.co] 3 Dec 2018 Abstract Two boards are rook equivalent if they have the same number of non-attacking rook placements

More information

Quarter Turn Baxter Permutations

Quarter Turn Baxter Permutations North Dakota State University June 26, 2017 Outline 1 2 Outline 1 2 What is a Baxter Permutation? Definition A Baxter permutation is a permutation that, when written in one-line notation, avoids the generalized

More information

MATH 433 Applied Algebra Lecture 12: Sign of a permutation (continued). Abstract groups.

MATH 433 Applied Algebra Lecture 12: Sign of a permutation (continued). Abstract groups. MATH 433 Applied Algebra Lecture 12: Sign of a permutation (continued). Abstract groups. Permutations Let X be a finite set. A permutation of X is a bijection from X to itself. The set of all permutations

More information

A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP

A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A31 A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP Shinji Tanimoto Department of Mathematics, Kochi Joshi University

More information

Quarter Turn Baxter Permutations

Quarter Turn Baxter Permutations Quarter Turn Baxter Permutations Kevin Dilks May 29, 2017 Abstract Baxter permutations are known to be in bijection with a wide number of combinatorial objects. Previously, it was shown that each of these

More information

RESTRICTED PERMUTATIONS AND POLYGONS. Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, Haifa, Israel

RESTRICTED PERMUTATIONS AND POLYGONS. Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, Haifa, Israel RESTRICTED PERMUTATIONS AND POLYGONS Ghassan Firro and Toufik Mansour Department of Mathematics, University of Haifa, 905 Haifa, Israel {gferro,toufik}@mathhaifaacil abstract Several authors have examined

More information

Problem Set 8 Solutions R Y G R R G

Problem Set 8 Solutions R Y G R R G 6.04/18.06J Mathematics for Computer Science April 5, 005 Srini Devadas and Eric Lehman Problem Set 8 Solutions Due: Monday, April 11 at 9 PM in Room 3-044 Problem 1. An electronic toy displays a 4 4 grid

More information

Reading 14 : Counting

Reading 14 : Counting CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Instructors: Beck Hasti, Gautam Prakriya Reading 14 : Counting In this reading we discuss counting. Often, we are interested in the cardinality

More information

MA 524 Midterm Solutions October 16, 2018

MA 524 Midterm Solutions October 16, 2018 MA 524 Midterm Solutions October 16, 2018 1. (a) Let a n be the number of ordered tuples (a, b, c, d) of integers satisfying 0 a < b c < d n. Find a closed formula for a n, as well as its ordinary generating

More information

Domino Tilings of Aztec Diamonds, Baxter Permutations, and Snow Leopard Permutations

Domino Tilings of Aztec Diamonds, Baxter Permutations, and Snow Leopard Permutations Domino Tilings of Aztec Diamonds, Baxter Permutations, and Snow Leopard Permutations Benjamin Caffrey 212 N. Blount St. Madison, WI 53703 bjc.caffrey@gmail.com Eric S. Egge Department of Mathematics and

More information

You ve seen them played in coffee shops, on planes, and

You ve seen them played in coffee shops, on planes, and Every Sudoku variation you can think of comes with its own set of interesting open questions There is math to be had here. So get working! Taking Sudoku Seriously Laura Taalman James Madison University

More information

Permutation Tableaux and the Dashed Permutation Pattern 32 1

Permutation Tableaux and the Dashed Permutation Pattern 32 1 Permutation Tableaux and the Dashed Permutation Pattern William Y.C. Chen, Lewis H. Liu, Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 7, P.R. China chen@nankai.edu.cn, lewis@cfc.nankai.edu.cn

More information

Dyck paths, standard Young tableaux, and pattern avoiding permutations

Dyck paths, standard Young tableaux, and pattern avoiding permutations PU. M. A. Vol. 21 (2010), No.2, pp. 265 284 Dyck paths, standard Young tableaux, and pattern avoiding permutations Hilmar Haukur Gudmundsson The Mathematics Institute Reykjavik University Iceland e-mail:

More information

Counting Snakes, Differentiating the Tangent Function, and Investigating the Bernoulli-Euler Triangle by Harold Reiter

Counting Snakes, Differentiating the Tangent Function, and Investigating the Bernoulli-Euler Triangle by Harold Reiter Counting Snakes, Differentiating the Tangent Function, and Investigating the Bernoulli-Euler Triangle by Harold Reiter In this paper we will examine three apparently unrelated mathematical objects One

More information

#A2 INTEGERS 18 (2018) ON PATTERN AVOIDING INDECOMPOSABLE PERMUTATIONS

#A2 INTEGERS 18 (2018) ON PATTERN AVOIDING INDECOMPOSABLE PERMUTATIONS #A INTEGERS 8 (08) ON PATTERN AVOIDING INDECOMPOSABLE PERMUTATIONS Alice L.L. Gao Department of Applied Mathematics, Northwestern Polytechnical University, Xi an, Shaani, P.R. China llgao@nwpu.edu.cn Sergey

More information

Pennies vs Paperclips

Pennies vs Paperclips Pennies vs Paperclips Today we will take part in a daring game, a clash of copper and steel. Today we play the game: pennies versus paperclips. Battle begins on a 2k by 2m (where k and m are natural numbers)

More information

The Classification of Quadratic Rook Polynomials of a Generalized Three Dimensional Board

The Classification of Quadratic Rook Polynomials of a Generalized Three Dimensional Board Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 3 (2017), pp. 1091-1101 Research India Publications http://www.ripublication.com The Classification of Quadratic Rook Polynomials

More information

Permutation Tableaux and the Dashed Permutation Pattern 32 1

Permutation Tableaux and the Dashed Permutation Pattern 32 1 Permutation Tableaux and the Dashed Permutation Pattern William Y.C. Chen and Lewis H. Liu Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin, P.R. China chen@nankai.edu.cn, lewis@cfc.nankai.edu.cn

More information

Postprint.

Postprint. http://www.diva-portal.org Postprint This is the accepted version of a paper presented at 2th International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC', Valparaiso, Chile, 23-2

More information

Algorithms. Abstract. We describe a simple construction of a family of permutations with a certain pseudo-random

Algorithms. Abstract. We describe a simple construction of a family of permutations with a certain pseudo-random Generating Pseudo-Random Permutations and Maimum Flow Algorithms Noga Alon IBM Almaden Research Center, 650 Harry Road, San Jose, CA 9510,USA and Sackler Faculty of Eact Sciences, Tel Aviv University,

More information

Permutation group and determinants. (Dated: September 19, 2018)

Permutation group and determinants. (Dated: September 19, 2018) Permutation group and determinants (Dated: September 19, 2018) 1 I. SYMMETRIES OF MANY-PARTICLE FUNCTIONS Since electrons are fermions, the electronic wave functions have to be antisymmetric. This chapter

More information

The Math Behind Futurama: The Prisoner of Benda

The Math Behind Futurama: The Prisoner of Benda of Benda May 7, 2013 The problem (informally) Professor Farnsworth has created a mind-switching machine that switches two bodies, but the switching can t be reversed using just those two bodies. Using

More information

Generating indecomposable permutations

Generating indecomposable permutations Discrete Mathematics 306 (2006) 508 518 www.elsevier.com/locate/disc Generating indecomposable permutations Andrew King Department of Computer Science, McGill University, Montreal, Que., Canada Received

More information

Corners in Tree Like Tableaux

Corners in Tree Like Tableaux Corners in Tree Like Tableaux Pawe l Hitczenko Department of Mathematics Drexel University Philadelphia, PA, U.S.A. phitczenko@math.drexel.edu Amanda Lohss Department of Mathematics Drexel University Philadelphia,

More information

A Combinatorial Proof of the Log-Concavity of the Numbers of Permutations with k Runs

A Combinatorial Proof of the Log-Concavity of the Numbers of Permutations with k Runs Journal of Combinatorial Theory, Series A 90, 293303 (2000) doi:10.1006jcta.1999.3040, available online at http:www.idealibrary.com on A Combinatorial Proof of the Log-Concavity of the Numbers of Permutations

More information

PROOFS OF SOME BINOMIAL IDENTITIES USING THE METHOD OF LAST SQUARES

PROOFS OF SOME BINOMIAL IDENTITIES USING THE METHOD OF LAST SQUARES PROOFS OF SOME BINOMIAL IDENTITIES USING THE METHOD OF LAST SQUARES MARK SHATTUCK AND TAMÁS WALDHAUSER Abstract. We give combinatorial proofs for some identities involving binomial sums that have no closed

More information

A Note on Downup Permutations and Increasing Trees DAVID CALLAN. Department of Statistics. Medical Science Center University Ave

A Note on Downup Permutations and Increasing Trees DAVID CALLAN. Department of Statistics. Medical Science Center University Ave A Note on Downup Permutations and Increasing 0-1- Trees DAVID CALLAN Department of Statistics University of Wisconsin-Madison Medical Science Center 1300 University Ave Madison, WI 53706-153 callan@stat.wisc.edu

More information

Connected Permutations, Hypermaps and Weighted Dyck Words. Robert Cori Mini course, Maps Hypermaps february 2008

Connected Permutations, Hypermaps and Weighted Dyck Words. Robert Cori Mini course, Maps Hypermaps february 2008 1 Connected Permutations, Hypermaps and Weighted Dyck Words 2 Why? Graph embeddings Nice bijection by Patrice Ossona de Mendez and Pierre Rosenstiehl. Deduce enumerative results. Extensions? 3 Cycles (or

More information

Fast Sorting and Pattern-Avoiding Permutations

Fast Sorting and Pattern-Avoiding Permutations Fast Sorting and Pattern-Avoiding Permutations David Arthur Stanford University darthur@cs.stanford.edu Abstract We say a permutation π avoids a pattern σ if no length σ subsequence of π is ordered in

More information

Principle of Inclusion-Exclusion Notes

Principle of Inclusion-Exclusion Notes Principle of Inclusion-Exclusion Notes The Principle of Inclusion-Exclusion (often abbreviated PIE is the following general formula used for finding the cardinality of a union of finite sets. Theorem 0.1.

More information

THE SIGN OF A PERMUTATION

THE SIGN OF A PERMUTATION THE SIGN OF A PERMUTATION KEITH CONRAD 1. Introduction Throughout this discussion, n 2. Any cycle in S n is a product of transpositions: the identity (1) is (12)(12), and a k-cycle with k 2 can be written

More information

Counting Things Solutions

Counting Things Solutions Counting Things Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles March 7, 006 Abstract These are solutions to the Miscellaneous Problems in the Counting Things article at:

More information

Taking Sudoku Seriously

Taking Sudoku Seriously Taking Sudoku Seriously Laura Taalman, James Madison University You ve seen them played in coffee shops, on planes, and maybe even in the back of the room during class. These days it seems that everyone

More information

Pin-Permutations and Structure in Permutation Classes

Pin-Permutations and Structure in Permutation Classes and Structure in Permutation Classes Frédérique Bassino Dominique Rossin Journées de Combinatoire de Bordeaux, feb. 2009 liafa Main result of the talk Conjecture[Brignall, Ruškuc, Vatter]: The pin-permutation

More information

Chapter 3 PRINCIPLE OF INCLUSION AND EXCLUSION

Chapter 3 PRINCIPLE OF INCLUSION AND EXCLUSION Chapter 3 PRINCIPLE OF INCLUSION AND EXCLUSION 3.1 The basics Consider a set of N obects and r properties that each obect may or may not have each one of them. Let the properties be a 1,a,..., a r. Let

More information

Staircases, dominoes, and the growth rate of Av(1324)

Staircases, dominoes, and the growth rate of Av(1324) Staircases, dominoes, and the growth rate of Av(1324) Robert Brignall Joint work with David Bevan, Andrew Elvey Price and Jay Pantone TU Wien, 28th August 2017 Permutation containment 101 1 3 5 2 4 4 1

More information

THE TAYLOR EXPANSIONS OF tan x AND sec x

THE TAYLOR EXPANSIONS OF tan x AND sec x THE TAYLOR EXPANSIONS OF tan x AND sec x TAM PHAM AND RYAN CROMPTON Abstract. The report clarifies the relationships among the completely ordered leveled binary trees, the coefficients of the Taylor expansion

More information

Generating trees for permutations avoiding generalized patterns

Generating trees for permutations avoiding generalized patterns Generating trees for permutations avoiding generalized patterns Sergi Elizalde Dartmouth College Permutation Patterns 2006, Reykjavik Permutation Patterns 2006, Reykjavik p.1 Generating trees for permutations

More information

Solutions to Exercises Chapter 6: Latin squares and SDRs

Solutions to Exercises Chapter 6: Latin squares and SDRs Solutions to Exercises Chapter 6: Latin squares and SDRs 1 Show that the number of n n Latin squares is 1, 2, 12, 576 for n = 1, 2, 3, 4 respectively. (b) Prove that, up to permutations of the rows, columns,

More information

1 Introduction and preliminaries

1 Introduction and preliminaries Generalized permutation patterns and a classification of the Mahonian statistics Eric Babson and Einar Steingrímsson Abstract We introduce generalized permutation patterns, where we allow the requirement

More information

On Hultman Numbers. 1 Introduction

On Hultman Numbers. 1 Introduction 47 6 Journal of Integer Sequences, Vol 0 (007, Article 076 On Hultman Numbers Jean-Paul Doignon and Anthony Labarre Université Libre de Bruxelles Département de Mathématique, cp 6 Bd du Triomphe B-050

More information

Harmonic numbers, Catalan s triangle and mesh patterns

Harmonic numbers, Catalan s triangle and mesh patterns Harmonic numbers, Catalan s triangle and mesh patterns arxiv:1209.6423v1 [math.co] 28 Sep 2012 Sergey Kitaev Department of Computer and Information Sciences University of Strathclyde Glasgow G1 1XH, United

More information

Axiom A-1: To every angle there corresponds a unique, real number, 0 < < 180.

Axiom A-1: To every angle there corresponds a unique, real number, 0 < < 180. Axiom A-1: To every angle there corresponds a unique, real number, 0 < < 180. We denote the measure of ABC by m ABC. (Temporary Definition): A point D lies in the interior of ABC iff there exists a segment

More information

PRIMES 2017 final paper. NEW RESULTS ON PATTERN-REPLACEMENT EQUIVALENCES: GENERALIZING A CLASSICAL THEOREM AND REVISING A RECENT CONJECTURE Michael Ma

PRIMES 2017 final paper. NEW RESULTS ON PATTERN-REPLACEMENT EQUIVALENCES: GENERALIZING A CLASSICAL THEOREM AND REVISING A RECENT CONJECTURE Michael Ma PRIMES 2017 final paper NEW RESULTS ON PATTERN-REPLACEMENT EQUIVALENCES: GENERALIZING A CLASSICAL THEOREM AND REVISING A RECENT CONJECTURE Michael Ma ABSTRACT. In this paper we study pattern-replacement

More information

See-Saw Swap Solitaire and Other Games on Permutations

See-Saw Swap Solitaire and Other Games on Permutations See-Saw Swap Solitaire and Other Games on Permutations Tom ( sven ) Roby (UConn) Joint research with Steve Linton, James Propp, & Julian West Canada/USA Mathcamp Lewis & Clark College Portland, OR USA

More information

Permutations of a Multiset Avoiding Permutations of Length 3

Permutations of a Multiset Avoiding Permutations of Length 3 Europ. J. Combinatorics (2001 22, 1021 1031 doi:10.1006/eujc.2001.0538 Available online at http://www.idealibrary.com on Permutations of a Multiset Avoiding Permutations of Length 3 M. H. ALBERT, R. E.

More information

Topics to be covered

Topics to be covered Basic Counting 1 Topics to be covered Sum rule, product rule, generalized product rule Permutations, combinations Binomial coefficients, combinatorial proof Inclusion-exclusion principle Pigeon Hole Principle

More information

Counting 1324-avoiding Permutations

Counting 1324-avoiding Permutations Counting 1324-avoiding Permutations Darko Marinov Laboratory for Computer Science Massachusetts Institute of Technology Cambridge, MA 02139, USA marinov@lcs.mit.edu Radoš Radoičić Department of Mathematics

More information

Combinatorics and Intuitive Probability

Combinatorics and Intuitive Probability Chapter Combinatorics and Intuitive Probability The simplest probabilistic scenario is perhaps one where the set of possible outcomes is finite and these outcomes are all equally likely. A subset of the

More information

Factorization of permutation

Factorization of permutation Department of Mathematics College of William and Mary Based on the paper: Zejun Huang,, Sharon H. Li, Nung-Sing Sze, Amidakuji/Ghost Leg Drawing Amidakuji/Ghost Leg Drawing It is a scheme for assigning

More information

Feedback via Message Passing in Interference Channels

Feedback via Message Passing in Interference Channels Feedback via Message Passing in Interference Channels (Invited Paper) Vaneet Aggarwal Department of ELE, Princeton University, Princeton, NJ 08544. vaggarwa@princeton.edu Salman Avestimehr Department of

More information

THE ERDŐS-KO-RADO THEOREM FOR INTERSECTING FAMILIES OF PERMUTATIONS

THE ERDŐS-KO-RADO THEOREM FOR INTERSECTING FAMILIES OF PERMUTATIONS THE ERDŐS-KO-RADO THEOREM FOR INTERSECTING FAMILIES OF PERMUTATIONS A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements for the Degree of Master

More information

NON-OVERLAPPING PERMUTATION PATTERNS. To Doron Zeilberger, for his Sixtieth Birthday

NON-OVERLAPPING PERMUTATION PATTERNS. To Doron Zeilberger, for his Sixtieth Birthday NON-OVERLAPPING PERMUTATION PATTERNS MIKLÓS BÓNA Abstract. We show a way to compute, to a high level of precision, the probability that a randomly selected permutation of length n is nonoverlapping. As

More information

How to Become a Mathemagician: Mental Calculations and Math Magic

How to Become a Mathemagician: Mental Calculations and Math Magic How to Become a Mathemagician: Mental Calculations and Math Magic Adam Gleitman (amgleit@mit.edu) Splash 2012 A mathematician is a conjurer who gives away his secrets. John H. Conway This document describes

More information

Universal Cycles for Permutations Theory and Applications

Universal Cycles for Permutations Theory and Applications Universal Cycles for Permutations Theory and Applications Alexander Holroyd Microsoft Research Brett Stevens Carleton University Aaron Williams Carleton University Frank Ruskey University of Victoria Combinatorial

More information

Counting in Algorithms

Counting in Algorithms Counting Counting in Algorithms How many comparisons are needed to sort n numbers? How many steps to compute the GCD of two numbers? How many steps to factor an integer? Counting in Games How many different

More information

Chapter 6.1. Cycles in Permutations

Chapter 6.1. Cycles in Permutations Chapter 6.1. Cycles in Permutations Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 6.1. Cycles in Permutations Math 184A / Fall 2017 1 / 27 Notations for permutations Consider a permutation in 1-line

More information

Asymptotic and exact enumeration of permutation classes

Asymptotic and exact enumeration of permutation classes Asymptotic and exact enumeration of permutation classes Michael Albert Department of Computer Science, University of Otago Nov-Dec 2011 Example 21 Question How many permutations of length n contain no

More information

Counting constrained domino tilings of Aztec diamonds

Counting constrained domino tilings of Aztec diamonds Counting constrained domino tilings of Aztec diamonds Ira Gessel, Alexandru Ionescu, and James Propp Note: The results described in this presentation will appear in several different articles. Overview

More information

28,800 Extremely Magic 5 5 Squares Arthur Holshouser. Harold Reiter.

28,800 Extremely Magic 5 5 Squares Arthur Holshouser. Harold Reiter. 28,800 Extremely Magic 5 5 Squares Arthur Holshouser 3600 Bullard St. Charlotte, NC, USA Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA hbreiter@uncc.edu

More information

Lower Bounds for the Number of Bends in Three-Dimensional Orthogonal Graph Drawings

Lower Bounds for the Number of Bends in Three-Dimensional Orthogonal Graph Drawings ÂÓÙÖÒÐ Ó ÖÔ ÐÓÖØÑ Ò ÔÔÐØÓÒ ØØÔ»»ÛÛÛº ºÖÓÛÒºÙ»ÔÙÐØÓÒ»» vol.?, no.?, pp. 1 44 (????) Lower Bounds for the Number of Bends in Three-Dimensional Orthogonal Graph Drawings David R. Wood School of Computer Science

More information

Edge-disjoint tree representation of three tree degree sequences

Edge-disjoint tree representation of three tree degree sequences Edge-disjoint tree representation of three tree degree sequences Ian Min Gyu Seong Carleton College seongi@carleton.edu October 2, 208 Ian Min Gyu Seong (Carleton College) Trees October 2, 208 / 65 Trees

More information

Recovery and Characterization of Non-Planar Resistor Networks

Recovery and Characterization of Non-Planar Resistor Networks Recovery and Characterization of Non-Planar Resistor Networks Julie Rowlett August 14, 1998 1 Introduction In this paper we consider non-planar conductor networks. A conductor is a two-sided object which

More information

FOURTEEN SPECIES OF SKEW HEXAGONS

FOURTEEN SPECIES OF SKEW HEXAGONS FOURTEEN SPECIES OF SKEW HEXAGONS H. S. WHITE. Hexagon and hexahedron. For a tentative definition, let a skew hexagon be a succession of six line segments or edges, finite or infinite, the terminal point

More information

Lecture 18 - Counting

Lecture 18 - Counting Lecture 18 - Counting 6.0 - April, 003 One of the most common mathematical problems in computer science is counting the number of elements in a set. This is often the core difficulty in determining a program

More information

arxiv: v3 [math.co] 19 Aug 2014

arxiv: v3 [math.co] 19 Aug 2014 THE DEPTH OF A PERMUTATION T. KYLE PETERSEN AND BRIDGET EILEEN TENNER arxiv:0.4765v [math.co] 9 Aug 04 Abstract. For the elements of a Coxeter group, we present a statistic called depth, defined in terms

More information

Permutation Patterns and RNA Secondary Structure Prediction

Permutation Patterns and RNA Secondary Structure Prediction Permutation Patterns and RNA Secondary Structure Prediction Jennifer R. Galovich St. John s University/College of St. Benedict Permutation Patterns 2017 27 June, 2017 Acknowledgments Robert S. Willenbring

More information

From permutations to graphs

From permutations to graphs From permutations to graphs well-quasi-ordering and infinite antichains Robert Brignall Joint work with Atminas, Korpelainen, Lozin and Vatter 28th November 2014 Orderings on Structures Pick your favourite

More information

Avoiding consecutive patterns in permutations

Avoiding consecutive patterns in permutations Avoiding consecutive patterns in permutations R. E. L. Aldred M. D. Atkinson D. J. McCaughan January 3, 2009 Abstract The number of permutations that do not contain, as a factor (subword), a given set

More information

A stack and a pop stack in series

A stack and a pop stack in series AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 8(1) (2014), Pages 17 171 A stack and a pop stack in series Rebecca Smith Department of Mathematics SUNY Brockport, New York U.S.A. Vincent Vatter Department

More information

Non-overlapping permutation patterns

Non-overlapping permutation patterns PU. M. A. Vol. 22 (2011), No.2, pp. 99 105 Non-overlapping permutation patterns Miklós Bóna Department of Mathematics University of Florida 358 Little Hall, PO Box 118105 Gainesville, FL 326118105 (USA)

More information