Chapter 1. Set Theory

Size: px
Start display at page:

Download "Chapter 1. Set Theory"

Transcription

1 Chapter 1 Set Theory 1

2 Section 1.1: Types of Sets and Set Notation Set: A collection or group of distinguishable objects. Ex. set of books, the letters of the alphabet, the set of whole numbers. You can represent a set of elements by: listing the elements; for example, A = {1, 2, 3, 4, 5} using words or a sentence; for example, A = {all integers greater than 0 and less than 6} using set notation; for example, A = {x/ 0 < x < 6, x I} Element: An object in a set. Ex. 2 is an element of the set A. We write this as 2 A. (2 is a member of (or belongs to) the set A) The number of elements in the set A is denoted by n(a). In the above example n(a) = 5. Universal Set: Ex. A set of all the elements under consideration for a particular context (also called the sample space). A = {all letters of the alphabet} The set of digits D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 2

3 Subset: A set whose elements all belong to another set. Ex. The set of vowels V is a subset of A, the letters of the alphabet. Notation: V A. The set of even digits E = {0, 2, 4, 6, 8} is a subset of D, the set of digits. Notation: E D. Complement: Ex. All the elements of a universal set that do not belong to a subset of it. V' the set of all elements in the universal set that are not in V. So V' = {set of consonants} is the complement of V. E' is the set of all digits in the universal D that are not in E. So E' = {1, 3, 5, 7, 9} is the complement of E. The sum of the number of elements in a set and its complement is equal to the number of elements in the universal set: n(a) + n(a') = n(u) 3

4 Empty Set: A set with no elements. Notation {} or Ex. The set of months with 32 days. Disjoint Sets: The set of squares with 5 sides. Two or more sets having no elements in common. Ex. The set of odd numbers and the set of even numbers. The number of females and the number of males in a room. When two sets A and B are disjoint, n(a or B) = n(a) + n(b) The events that describe disjoint sets are mutually exclusive.they are two or more events that cannot occur at the same time. Ex. Flipping a coin and getting a head and a tail at the same time. The sum of two numbers cannot be less than 10 and greater than 10 at the same time. 4

5 A finite set is a set with a countable number of elements. Ex: The set of even numbers less than 10, is finite. E = { 0, 2, 4, 6, 8} An infinite set is a set with an infinite number of elements. Ex: The set of natural numbers, is infinite. N = { 1, 2, 3,... } 5

6 Examples 1. The universal set is defined as A, the set of all natural numbers. B is the set of all natural numbers from 1 to 5. A. List the members of each set. How many elements are in each set? B. Is one set a subset of the other? Why? C. Which elements of the universal set does not belong to the subset? D. What is the complement of B? 2. Mary created the sets P = {1, 2, 3} and Q = { 2, 3, 4, 5, 6}. John stated that P Q since the elements 2 and 3 are in both sets. Do you agree or disagree? Explain 6

7 7

8 3. Natasha drew the Venn diagram below. G = {plants in her garden} P = {perennials} A = {annuals} E = {edible plants} A. Is E P? Is E G? Explain. B. List the disjoint sets, if there are any. C. Is P' equal to A? Explain. D. Determine n(p) using n(g) and n(a). E. List the elements in E '. 8

9 4. Consider the following S = {4, 5, 6, 8, 9, 11, 15, 17, 20, 24, 30, 32} A) Complete the following Venn Diagram. B) Why do the circles overlap? C) What do the elements in the intersection represent? D) Why are some numbers not in either circle? E) Add another circle to represent the multiples of 4. Complete the following Venn Diagram. S = {4, 5, 6, 8, 9, 11, 15, 17, 20, 24, 30, 32} 9

10 5. A. Indicate the multiples of 2, 4, and 11, using set notation. Then draw a Venn diagram to represent these sets: U = {natural numbers from 1 to 20 inclusive} T = {multiples of 2) F = {multiples of 4} S = {multiples of 11} B. List the disjoint subsets, if there are any. 10

11 C. Is each statement true or false? Explain. i) F T ii) T F iii) T T iv) T' = {odd numbers from 1 to 20} v) In this example, the set of natural numbers from 21 to 50 is { }. 11

12 vi) Explain what the following statement means: F T but T F. vii) Suppose you choose one number from U. Are the events choosing a number that is a multiple of 2 and a multiple of 11 mutually exclusive? Explain. viii) Is the following statement correct? n(t or S) = n(t) + n(s) ix) Determine the value of n(t or S). 12

13 6. Consider the following information: U = {natural numbers from 1 to 100} X U n(x) = 19 Determine n(x '), if possible. If it is not possible, explain why. 7. Consider the following information: U = {natural numbers from 1 to 500} A B U U n(a) = 200 Determine n(b), if possible. If it is not possible, explain why. 8. Determine n(u), the universal set, given n(a) = 19 and n(a ') =

Name Date. Goal: Understand sets and set notation.

Name Date. Goal: Understand sets and set notation. F Math 12 3.1 Types of Sets and Set Notation p. 146 Name Date Goal: Understand sets and set notation. 1. set: A collection of distinguishable objects; for example, the set of whole numbers is W = {0, 1,

More information

1. The empty set is a proper subset of every set. Not true because the empty set is not a proper subset of itself! is the power set of A.

1. The empty set is a proper subset of every set. Not true because the empty set is not a proper subset of itself! is the power set of A. MAT 101 Solutions to Sample Questions for Exam 1 True or False Questions Answers: 1F, 2F, 3F, 4T, 5T, 6T, 7T 1. The empty set is a proper subset of every set. Not true because the empty set is not a proper

More information

Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set)

Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set) 12.3 and 12.4 Notes Geometry 1 Diagramming the Sample Space using Venn Diagrams A sample space represents all things that could occur for a given event. In set theory language this would be known as the

More information

Sample Spaces, Events, Probability

Sample Spaces, Events, Probability Sample Spaces, Events, Probability CS 3130/ECE 3530: Probability and Statistics for Engineers August 28, 2014 Sets A set is a collection of unique objects. Sets A set is a collection of unique objects.

More information

SETS OBJECTIVES EXPECTED BACKGROUND KNOWLEDGE 1.1 SOME STANDARD NOTATIONS. Sets. MODULE - I Sets, Relations and Functions

SETS OBJECTIVES EXPECTED BACKGROUND KNOWLEDGE 1.1 SOME STANDARD NOTATIONS. Sets. MODULE - I Sets, Relations and Functions 1 SETS Let us consider the following situation : One day Mrs. and Mr. Mehta went to the market. Mr. Mehta purchased the following objects/items. "a toy, one kg sweets and a magazine". Where as Mrs. Mehta

More information

Chapter 1 Math Set: a collection of objects. For example, the set of whole numbers is W = {0, 1, 2, 3, }

Chapter 1 Math Set: a collection of objects. For example, the set of whole numbers is W = {0, 1, 2, 3, } Chapter 1 Math 3201 1 Chapter 1: Set Theory: Organizing information into sets and subsets Graphically illustrating the relationships between sets and subsets using Venn diagrams Solving problems by using

More information

8.2 Union, Intersection, and Complement of Events; Odds

8.2 Union, Intersection, and Complement of Events; Odds 8.2 Union, Intersection, and Complement of Events; Odds Since we defined an event as a subset of a sample space it is natural to consider set operations like union, intersection or complement in the context

More information

ACHS Math Team Lecture: Introduction to Set Theory Peter S. Simon

ACHS Math Team Lecture: Introduction to Set Theory Peter S. Simon ACHS Math Team Lecture: Introduction to Set Theory Peter S. Simon Introduction to Set Theory A set is a collection of objects, called elements or members of the set. We will usually denote a set by a capital

More information

Class 8 - Sets (Lecture Notes)

Class 8 - Sets (Lecture Notes) Class 8 - Sets (Lecture Notes) What is a Set? A set is a well-defined collection of distinct objects. Example: A = {1, 2, 3, 4, 5} What is an element of a Set? The objects in a set are called its elements.

More information

A. M and D B. M and V C. M and F D. V and F 6. Which Venn diagram correctly represents the situation described? Rahim described the set as follows:

A. M and D B. M and V C. M and F D. V and F 6. Which Venn diagram correctly represents the situation described? Rahim described the set as follows: Multiple Choice 1. What is the universal set? A. a set with an infinite number of elements B. a set of all the elements under consideration for a particular context C. a set with a countable number of

More information

Section Introduction to Sets

Section Introduction to Sets Section 1.1 - Introduction to Sets Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

More information

Slide 1 Math 1520, Lecture 13

Slide 1 Math 1520, Lecture 13 Slide 1 Math 1520, Lecture 13 In chapter 7, we discuss background leading up to probability. Probability is one of the most commonly used pieces of mathematics in the world. Understanding the basic concepts

More information

SET THEORY AND VENN DIAGRAMS

SET THEORY AND VENN DIAGRAMS Mathematics Revision Guides Set Theory and Venn Diagrams Page 1 of 26 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier SET THEORY AND VENN DIAGRAMS Version: 2.1 Date: 15-10-2015 Mathematics

More information

Sets. Definition A set is an unordered collection of objects called elements or members of the set.

Sets. Definition A set is an unordered collection of objects called elements or members of the set. Sets Definition A set is an unordered collection of objects called elements or members of the set. Sets Definition A set is an unordered collection of objects called elements or members of the set. Examples:

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1 - Experiments, Sample Spaces,

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1 - Experiments, Sample Spaces,

More information

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch )

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch ) CS1802 Discrete Structures Recitation Fall 2017 October 9-12, 2017 CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch 8.5-9.3) Sets i. Set Notation: Draw an arrow from the box on

More information

Exam 2 Review (Sections Covered: 3.1, 3.3, , 7.1) 1. Write a system of linear inequalities that describes the shaded region.

Exam 2 Review (Sections Covered: 3.1, 3.3, , 7.1) 1. Write a system of linear inequalities that describes the shaded region. Exam 2 Review (Sections Covered: 3.1, 3.3, 6.1-6.4, 7.1) 1. Write a system of linear inequalities that describes the shaded region. 5x + 2y 30 x + 2y 12 x 0 y 0 2. Write a system of linear inequalities

More information

Mutually Exclusive Events

Mutually Exclusive Events Mutually Exclusive Events Suppose you are rolling a six-sided die. What is the probability that you roll an odd number and you roll a 2? Can these both occur at the same time? Why or why not? Mutually

More information

Probability. Ms. Weinstein Probability & Statistics

Probability. Ms. Weinstein Probability & Statistics Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

More information

Principles of Counting. Notation for counting elements of sets

Principles of Counting. Notation for counting elements of sets Principles of Counting MATH 107: Finite Mathematics University of Louisville February 26, 2014 Underlying Principles Set Counting 2 / 12 Notation for counting elements of sets We let n(a) denote the number

More information

CHAPTER 7 Probability

CHAPTER 7 Probability CHAPTER 7 Probability 7.1. Sets A set is a well-defined collection of distinct objects. Welldefined means that we can determine whether an object is an element of a set or not. Distinct means that we can

More information

4.1 Sample Spaces and Events

4.1 Sample Spaces and Events 4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

More information

Example: If A = {1, 2, 3} and B = {3, 4, 5}, then A B= {3}.

Example: If A = {1, 2, 3} and B = {3, 4, 5}, then A B= {3}. Section 1.3: Intersection and Union of Two Sets Exploring the Different Regions of a Venn Diagram There are 6 different set notations that you must become familiar with. 1. The intersection is the set

More information

7.1 Experiments, Sample Spaces, and Events

7.1 Experiments, Sample Spaces, and Events 7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment

More information

Chapter 5 - Elementary Probability Theory

Chapter 5 - Elementary Probability Theory Chapter 5 - Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling

More information

Probability. Engr. Jeffrey T. Dellosa.

Probability. Engr. Jeffrey T. Dellosa. Probability Engr. Jeffrey T. Dellosa Email: jtdellosa@gmail.com Outline Probability 2.1 Sample Space 2.2 Events 2.3 Counting Sample Points 2.4 Probability of an Event 2.5 Additive Rules 2.6 Conditional

More information

Probability and Randomness. Day 1

Probability and Randomness. Day 1 Probability and Randomness Day 1 Randomness and Probability The mathematics of chance is called. The probability of any outcome of a chance process is a number between that describes the proportion of

More information

Such a description is the basis for a probability model. Here is the basic vocabulary we use.

Such a description is the basis for a probability model. Here is the basic vocabulary we use. 5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

More information

Theory of Probability - Brett Bernstein

Theory of Probability - Brett Bernstein Theory of Probability - Brett Bernstein Lecture 3 Finishing Basic Probability Review Exercises 1. Model flipping two fair coins using a sample space and a probability measure. Compute the probability of

More information

Probability Models. Section 6.2

Probability Models. Section 6.2 Probability Models Section 6.2 The Language of Probability What is random? Empirical means that it is based on observation rather than theorizing. Probability describes what happens in MANY trials. Example

More information

Intermediate Math Circles November 1, 2017 Probability I

Intermediate Math Circles November 1, 2017 Probability I Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.

More information

Georgia Department of Education Georgia Standards of Excellence Framework GSE Geometry Unit 6

Georgia Department of Education Georgia Standards of Excellence Framework GSE Geometry Unit 6 How Odd? Standards Addressed in this Task MGSE9-12.S.CP.1 Describe categories of events as subsets of a sample space using unions, intersections, or complements of other events (or, and, not). MGSE9-12.S.CP.7

More information

Probability: Terminology and Examples Spring January 1, / 22

Probability: Terminology and Examples Spring January 1, / 22 Probability: Terminology and Examples 18.05 Spring 2014 January 1, 2017 1 / 22 Board Question Deck of 52 cards 13 ranks: 2, 3,..., 9, 10, J, Q, K, A 4 suits:,,,, Poker hands Consists of 5 cards A one-pair

More information

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch )

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch ) CS1802 Discrete Structures Recitation Fall 2017 October 9-12, 2017 CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch 8.5-9.3) Sets i. Set Notation: Draw an arrow from the box on

More information

Probability (Devore Chapter Two)

Probability (Devore Chapter Two) Probability (Devore Chapter Two) 1016-351-01 Probability Winter 2011-2012 Contents 1 Axiomatic Probability 2 1.1 Outcomes and Events............................... 2 1.2 Rules of Probability................................

More information

Probability Rules. 2) The probability, P, of any event ranges from which of the following?

Probability Rules. 2) The probability, P, of any event ranges from which of the following? Name: WORKSHEET : Date: Answer the following questions. 1) Probability of event E occurring is... P(E) = Number of ways to get E/Total number of outcomes possible in S, the sample space....if. 2) The probability,

More information

Probability and Counting Rules. Chapter 3

Probability and Counting Rules. Chapter 3 Probability and Counting Rules Chapter 3 Probability as a general concept can be defined as the chance of an event occurring. Many people are familiar with probability from observing or playing games of

More information

November 6, Chapter 8: Probability: The Mathematics of Chance

November 6, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern

More information

An art collector might own a collection of paintings, while a music lover might keep a collection of CDs. Any collection of items can form a set.

An art collector might own a collection of paintings, while a music lover might keep a collection of CDs. Any collection of items can form a set. Sets 319 Sets It is natural for us to classify items into groups, or sets, and consider how those sets overlap with each other. We can use these sets understand relationships between groups, and to analyze

More information

Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules

Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules + Chapter 5: Probability: What are the Chances? Section 5.2 + Two-Way Tables and Probability When finding probabilities involving two events, a two-way table can display the sample space in a way that

More information

Chapter 1. Probability

Chapter 1. Probability Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

More information

EDULABZ INTERNATIONAL SETS AND VENN DIAGRAMS

EDULABZ INTERNATIONAL SETS AND VENN DIAGRAMS 12 SETS ND VENN DIGRMS Section I : Sets 1. Describe the following sets in roster form : (i) 2 { x / x = n, n N, 2 n 5} (ii) {x / x is composite number and 11 < x < 25} (iii) {x / x W, x is divisible by

More information

Chapter 1. Probability

Chapter 1. Probability Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

More information

Chapter 2. Permutations and Combinations

Chapter 2. Permutations and Combinations 2. Permutations and Combinations Chapter 2. Permutations and Combinations In this chapter, we define sets and count the objects in them. Example Let S be the set of students in this classroom today. Find

More information

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza Probability Theory Mohamed I. Riffi Islamic University of Gaza Table of contents 1. Chapter 1 Probability Properties of probability Counting techniques 1 Chapter 1 Probability Probability Theorem P(φ)

More information

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1:

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1: Block 1 - Sets and Basic Combinatorics Main Topics in Block 1: A short revision of some set theory Sets and subsets. Venn diagrams to represent sets. Describing sets using rules of inclusion. Set operations.

More information

Quiz 2 Review - on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II??

Quiz 2 Review - on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II?? Quiz 2 Review - on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II?? Some things to Know, Memorize, AND Understand how to use are n What are the formulas? Pr ncr Fill in the notation

More information

Math 365 Wednesday 2/20/19 Section 6.1: Basic counting

Math 365 Wednesday 2/20/19 Section 6.1: Basic counting Math 365 Wednesday 2/20/19 Section 6.1: Basic counting Exercise 19. For each of the following, use some combination of the sum and product rules to find your answer. Give an un-simplified numerical answer

More information

Chapter 1: Sets and Probability

Chapter 1: Sets and Probability Chapter 1: Sets and Probability Section 1.3-1.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping

More information

Solutions for Exam I, Math 10120, Fall 2016

Solutions for Exam I, Math 10120, Fall 2016 Solutions for Exam I, Math 10120, Fall 2016 1. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} A = {1, 2, 3} B = {2, 4, 6, 8, 10}. C = {4, 5, 6, 7, 8}. Which of the following sets is equal to (A B) C? {1, 2, 3,

More information

Exercise Class XI Chapter 16 Probability Maths

Exercise Class XI Chapter 16 Probability Maths Exercise 16.1 Question 1: Describe the sample space for the indicated experiment: A coin is tossed three times. A coin has two faces: head (H) and tail (T). When a coin is tossed three times, the total

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even

More information

Day 5: Mutually Exclusive and Inclusive Events. Honors Math 2 Unit 6: Probability

Day 5: Mutually Exclusive and Inclusive Events. Honors Math 2 Unit 6: Probability Day 5: Mutually Exclusive and Inclusive Events Honors Math 2 Unit 6: Probability Warm-up on Notebook paper (NOT in notes) 1. A local restaurant is offering taco specials. You can choose 1, 2 or 3 tacos

More information

2. Let E and F be two events of the same sample space. If P (E) =.55, P (F ) =.70, and

2. Let E and F be two events of the same sample space. If P (E) =.55, P (F ) =.70, and c Dr. Patrice Poage, August 23, 2017 1 1324 Exam 1 Review NOTE: This review in and of itself does NOT prepare you for the test. You should be doing this review in addition to all your suggested homework,

More information

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following:

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following: CS 70 Discrete Mathematics for CS Fall 2004 Rao Lecture 14 Introduction to Probability The next several lectures will be concerned with probability theory. We will aim to make sense of statements such

More information

PROBABILITY FOR RISK MANAGEMENT. Second Edition

PROBABILITY FOR RISK MANAGEMENT. Second Edition Solutions Manual for PROBABILITY FOR RISK MANAGEMENT Second Edition by Donald G. Stewart, Ph.D. and Matthew J. Hassett, ASA, Ph.D. ACTEX Publications Winsted, Connecticut Copyright 2006, by ACTEX Publications,

More information

PERMUTATIONS AND COMBINATIONS

PERMUTATIONS AND COMBINATIONS 8 PERMUTATIONS AND COMBINATIONS FUNDAMENTAL PRINCIPLE OF COUNTING Multiplication Principle : If an operation can be performed in 'm' different ways; following which a second operation can be performed

More information

Week 3 Classical Probability, Part I

Week 3 Classical Probability, Part I Week 3 Classical Probability, Part I Week 3 Objectives Proper understanding of common statistical practices such as confidence intervals and hypothesis testing requires some familiarity with probability

More information

Unit 11 Probability. Round 1 Round 2 Round 3 Round 4

Unit 11 Probability. Round 1 Round 2 Round 3 Round 4 Study Notes 11.1 Intro to Probability Unit 11 Probability Many events can t be predicted with total certainty. The best thing we can do is say how likely they are to happen, using the idea of probability.

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 1324 Review for Test 3 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the value(s) of the function on the given feasible region. 1) Find the

More information

LEVEL I. 3. In how many ways 4 identical white balls and 6 identical black balls be arranged in a row so that no two white balls are together?

LEVEL I. 3. In how many ways 4 identical white balls and 6 identical black balls be arranged in a row so that no two white balls are together? LEVEL I 1. Three numbers are chosen from 1,, 3..., n. In how many ways can the numbers be chosen such that either maximum of these numbers is s or minimum of these numbers is r (r < s)?. Six candidates

More information

CHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events

CHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events CHAPTER 2 PROBABILITY 2.1 Sample Space A probability model consists of the sample space and the way to assign probabilities. Sample space & sample point The sample space S, is the set of all possible outcomes

More information

4. Let U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, X = {2, 3, 4}, Y = {1, 4, 5}, Z = {2, 5, 7}. Find a) (X Y) b) X Y c) X (Y Z) d) (X Y) Z

4. Let U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, X = {2, 3, 4}, Y = {1, 4, 5}, Z = {2, 5, 7}. Find a) (X Y) b) X Y c) X (Y Z) d) (X Y) Z Exercises 1. Write formal descriptions of the following sets. a) The set containing the numbers 1, 10, and 100 b) The set containing all integers that are greater than 5 c) The set containing all natural

More information

Sets, Venn Diagrams & Counting

Sets, Venn Diagrams & Counting MT 142 College Mathematics Sets, Venn Diagrams & Counting Module SC Terri Miller revised December 13, 2010 What is a set? Sets set is a collection of objects. The objects in the set are called elements

More information

CSC/MATA67 Tutorial, Week 12

CSC/MATA67 Tutorial, Week 12 CSC/MATA67 Tutorial, Week 12 November 23, 2017 1 More counting problems A class consists of 15 students of whom 5 are prefects. Q: How many committees of 8 can be formed if each consists of a) exactly

More information

Basic Probability Models. Ping-Shou Zhong

Basic Probability Models. Ping-Shou Zhong asic Probability Models Ping-Shou Zhong 1 Deterministic model n experiment that results in the same outcome for a given set of conditions Examples: law of gravity 2 Probabilistic model The outcome of the

More information

The topic for the third and final major portion of the course is Probability. We will aim to make sense of statements such as the following:

The topic for the third and final major portion of the course is Probability. We will aim to make sense of statements such as the following: CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 17 Introduction to Probability The topic for the third and final major portion of the course is Probability. We will aim to make sense of

More information

Grade 7/8 Math Circles February 21 st /22 nd, Sets

Grade 7/8 Math Circles February 21 st /22 nd, Sets Faculty of Mathematics Waterloo, Ontario N2L 3G1 Sets Grade 7/8 Math Circles February 21 st /22 nd, 2017 Sets Centre for Education in Mathematics and Computing A set is a collection of unique objects i.e.

More information

Strings. A string is a list of symbols in a particular order.

Strings. A string is a list of symbols in a particular order. Ihor Stasyuk Strings A string is a list of symbols in a particular order. Strings A string is a list of symbols in a particular order. Examples: 1 3 0 4 1-12 is a string of integers. X Q R A X P T is a

More information

POLYA'S FOUR STEP PROBLEM SOLVING PROCESS Understand. Devise a Plan. Carry out Plan. Look Back. PROBLEM SOLVING STRATEGIES (exmples) Making a Drawlnq

POLYA'S FOUR STEP PROBLEM SOLVING PROCESS Understand. Devise a Plan. Carry out Plan. Look Back. PROBLEM SOLVING STRATEGIES (exmples) Making a Drawlnq 1.1 KEY IDEAS POLYA'S FOUR STEP PROBLEM SOLVING PROCESS Understand Devise a Plan Carry out Plan Look Back PROBLEM SOLVING STRATEGIES (exmples) Making a Drawlnq Guesslnc and Checking Making a Table UsinQ

More information

PROBABILITY. 1. Introduction. Candidates should able to:

PROBABILITY. 1. Introduction. Candidates should able to: PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation

More information

Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37

Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37 Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete

More information

Before giving a formal definition of probability, we explain some terms related to probability.

Before giving a formal definition of probability, we explain some terms related to probability. probability 22 INTRODUCTION In our day-to-day life, we come across statements such as: (i) It may rain today. (ii) Probably Rajesh will top his class. (iii) I doubt she will pass the test. (iv) It is unlikely

More information

Probability Review before Quiz. Unit 6 Day 6 Probability

Probability Review before Quiz. Unit 6 Day 6 Probability Probability Review before Quiz Unit 6 Day 6 Probability Warm-up: Day 6 1. A committee is to be formed consisting of 1 freshman, 1 sophomore, 2 juniors, and 2 seniors. How many ways can this committee be

More information

( ) = A. 2. Write the following sets using the roster method. 3. Write the following sets using set-builder notation.

( ) = A. 2. Write the following sets using the roster method. 3. Write the following sets using set-builder notation. 2.6. EXERISES 1. True or False? a. The empty set has no subsets. b. No set has exactly 14 distinct subsets. c. For any two finite sets and,

More information

Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11 Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

More information

Math 3201 Midterm Chapter 3

Math 3201 Midterm Chapter 3 Math 3201 Midterm Chapter 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which expression correctly describes the experimental probability P(B), where

More information

The probability set-up

The probability set-up CHAPTER 2 The probability set-up 2.1. Introduction and basic theory We will have a sample space, denoted S (sometimes Ω) that consists of all possible outcomes. For example, if we roll two dice, the sample

More information

Chapter 1 - Set Theory

Chapter 1 - Set Theory Midterm review Math 3201 Name: Chapter 1 - Set Theory Part 1: Multiple Choice : 1) U = {hockey, basketball, golf, tennis, volleyball, soccer}. If B = {sports that use a ball}, which element would be in

More information

Chapter 3: Elements of Chance: Probability Methods

Chapter 3: Elements of Chance: Probability Methods Chapter 3: Elements of Chance: Methods Department of Mathematics Izmir University of Economics Week 3-4 2014-2015 Introduction In this chapter we will focus on the definitions of random experiment, outcome,

More information

Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Chapter 4: Probability and Counting Rules Before we can move from descriptive statistics to inferential statistics, we need to have some understanding of probability: Ch4: Probability and Counting Rules

More information

Business Statistics. Chapter 4 Using Probability and Probability Distributions QMIS 120. Dr. Mohammad Zainal

Business Statistics. Chapter 4 Using Probability and Probability Distributions QMIS 120. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 4 Using Probability and Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter,

More information

In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors?

In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors? What can we count? In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors? In how many different ways 10 books can be arranged

More information

CHAPTER 8 Additional Probability Topics

CHAPTER 8 Additional Probability Topics CHAPTER 8 Additional Probability Topics 8.1. Conditional Probability Conditional probability arises in probability experiments when the person performing the experiment is given some extra information

More information

Basic Probability. Let! = # 8 # < 13, # N -,., and / are the subsets of! such that - = multiples of four. = factors of 24 / = square numbers

Basic Probability. Let! = # 8 # < 13, # N -,., and / are the subsets of! such that - = multiples of four. = factors of 24 / = square numbers Basic Probability Let! = # 8 # < 13, # N -,., and / are the subsets of! such that - = multiples of four. = factors of 24 / = square numbers (a) List the elements of!. (b) (i) Draw a Venn diagram to show

More information

Probability: introduction

Probability: introduction May 6, 2009 Probability: introduction page 1 Probability: introduction Probability is the part of mathematics that deals with the chance or the likelihood that things will happen The probability of an

More information

MATH 1324 (Finite Mathematics or Business Math I) Lecture Notes Author / Copyright: Kevin Pinegar

MATH 1324 (Finite Mathematics or Business Math I) Lecture Notes Author / Copyright: Kevin Pinegar MATH 1324 Module 4 Notes: Sets, Counting and Probability 4.2 Basic Counting Techniques: Addition and Multiplication Principles What is probability? In layman s terms it is the act of assigning numerical

More information

Probability - Chapter 4

Probability - Chapter 4 Probability - Chapter 4 In this chapter, you will learn about probability its meaning, how it is computed, and how to evaluate it in terms of the likelihood of an event actually happening. A cynical person

More information

Unit 1 Day 1: Sample Spaces and Subsets. Define: Sample Space. Define: Intersection of two sets (A B) Define: Union of two sets (A B)

Unit 1 Day 1: Sample Spaces and Subsets. Define: Sample Space. Define: Intersection of two sets (A B) Define: Union of two sets (A B) Unit 1 Day 1: Sample Spaces and Subsets Students will be able to (SWBAT) describe events as subsets of sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions,

More information

Cardinality and Bijections

Cardinality and Bijections Countable and Cardinality and Bijections Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 13, 2012 Countable and Countable and Countable and How to count elements in a set? How

More information

CSE 21 Math for Algorithms and Systems Analysis. Lecture 2 Lists Without Repe>>on

CSE 21 Math for Algorithms and Systems Analysis. Lecture 2 Lists Without Repe>>on CSE 21 Math for Algorithms and Systems Analysis Lecture 2 Lists Without Repe>>on Review of Last Lecture Sets and Lists Sets are unordered collec>on Lists are ordered collec>ons Rule of product # of lists

More information

MATHEMATICS 152, FALL 2004 METHODS OF DISCRETE MATHEMATICS Outline #10 (Sets and Probability)

MATHEMATICS 152, FALL 2004 METHODS OF DISCRETE MATHEMATICS Outline #10 (Sets and Probability) MATHEMATICS 152, FALL 2004 METHODS OF DISCRETE MATHEMATICS Outline #10 (Sets and Probability) Last modified: November 10, 2004 This follows very closely Apostol, Chapter 13, the course pack. Attachments

More information

CHAPTERS 14 & 15 PROBABILITY STAT 203

CHAPTERS 14 & 15 PROBABILITY STAT 203 CHAPTERS 14 & 15 PROBABILITY STAT 203 Where this fits in 2 Up to now, we ve mostly discussed how to handle data (descriptive statistics) and how to collect data. Regression has been the only form of statistical

More information

Algebra II Probability and Statistics

Algebra II Probability and Statistics Slide 1 / 241 Slide 2 / 241 Algebra II Probability and Statistics 2016-01-15 www.njctl.org Slide 3 / 241 Table of Contents click on the topic to go to that section Sets Independence and Conditional Probability

More information

Name: Final Exam May 7, 2014

Name: Final Exam May 7, 2014 MATH 10120 Finite Mathematics Final Exam May 7, 2014 Name: Be sure that you have all 16 pages of the exam. The exam lasts for 2 hrs. There are 30 multiple choice questions, each worth 5 points. You may

More information

INDIAN STATISTICAL INSTITUTE

INDIAN STATISTICAL INSTITUTE INDIAN STATISTICAL INSTITUTE B1/BVR Probability Home Assignment 1 20-07-07 1. A poker hand means a set of five cards selected at random from usual deck of playing cards. (a) Find the probability that it

More information

Applications of Probability

Applications of Probability Applications of Probability CK-12 Kaitlyn Spong Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

( ) Online MC Practice Quiz KEY Chapter 5: Probability: What Are The Chances?

( ) Online MC Practice Quiz KEY Chapter 5: Probability: What Are The Chances? Online MC Practice Quiz KEY Chapter 5: Probability: What Are The Chances? 1. Research on eating habits of families in a large city produced the following probabilities if a randomly selected household

More information

12 Probability. Introduction Randomness

12 Probability. Introduction Randomness 2 Probability Assessment statements 5.2 Concepts of trial, outcome, equally likely outcomes, sample space (U) and event. The probability of an event A as P(A) 5 n(a)/n(u ). The complementary events as

More information