CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch )

Size: px
Start display at page:

Download "CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch )"

Transcription

1 CS1802 Discrete Structures Recitation Fall 2017 October 9-12, 2017 CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch ) Sets i. Set Notation: Draw an arrow from the box on the left to the box on the right to match notation or phrases to the equivalent definition. 1. Notation Definition A B Intersection A B Subset and not equal (i.e. a proper subset such that A is inside B but not equal. A has less elements) A B The complement A B Union A B Subset and may be equal (i.e. A = B) Ā The union of A and B without the intersection of A and B (i.e.a B disjoint (Also a gate we have learned about)) The empty set 1. Notation Definition A B Subset and not equal (i.e. a proper subset such that A is inside B but not equal. A has less elements) A B Subset and may be equal (i.e. A = B) A B The union of A and B without the intersection of A and B (i.e.a B disjoint (Also a gate we have learned about)) A B Union A B Intersection Ā The complement The empty set ii. Express the following in English. Then write the equivalent set expressed and its cardinality. 1. x = 5 : {x, x 2, x 3, x 4 } 1

2 2. {x x Z and x < 4} 1. Given x equals 5, the set is equivalent to {5, 25, 125, 625} with a cardinality of 4 2. Given x such that x is in the domain of integers, and the absolute value is less than 4. The set is {-3,-2,-1,0,1,2,3 } with a cardinality of 7 2

3 iii. Compute the following set given: A = {1, 2, 3, 4, 5}, B = { 1, 2, 3, 4, 5}, C = { 4, 2, 0, 2, 4}. Draw a Venn Diagram to visually represent each resulting set (Note you do not need to add in the numbers). Let U = set of all integers 1. A B 2. A B 3. (A B) C 4. C U (Note Venn Diagrams are omitted) 1. {2, 4} 2. { 5, 3, 1, 1, 2, 3, 4, 5} 3. {2, 4} 4. { 4, 2, 0, 2, 4} iv. Compute the Cartesian product of the given sets to generate all of the ordered tuples. A = {a, b, c}, B = {1, 2, 3}, C = {6}. 1. A B 2. A C 1. {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)} 3

4 2. {(a, 6), (b, 6), (c, 6)} v. Compute the power sets below given the following. X = {1, 2, 3}, Y = { }. Note to yourself, if given a set of 3 elements, how many subsets total will you have in your power set? 1. P(X) 2. P(Y ) 1. P(X) = {, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3, }}. Note that you should get 2 to the 3rd subsets. 2. P(Y ) = vi. Given the following Set, compute the computer representation(i.e. a bit-string) using 0s and 1s. 1. A = {0, 1, 2, 3, 4, 5, 7} 2. Ā = {6} 3. B = {0, 2, 4, 6} 4. B {1, 3, 5} Set Operations 4

5 i. Given U = {pink, red, blue, white, yellow, black} A = {red, blue, yellow, black} B= {pink, red, white, yellow} C = {white} Determine: A-B B-A A B B-A-C P(A) {V P(A): V = 1} 1. A-B are the elements in A but not in B this is the set = { blue, black} 2. B-A are the elements in set B but not in A this is the set = {pink,white} 3. A B is the set {blue, black,pink,white} 4. B-A-C = {pink} 5. P(A) {, {red}, {blue}, {yellow}, {black}, {red, blue}, {red, yellow}, {red, black}, {blue, yellow}, {blue, black}, {yellow, black}, {red, blue, yellow}, {red, blue, black}, {blue, yellow, black}, {red, yellow, black}, {red, blue, yellow, black} } 6. {V P(A): V = 1} {{red}, {blue}, {yellow}, {black} } 5

6 Cross Product Operation i. Given the sets defined above, determine A B and draw the results in a color x color 2 dimensional coordinate system ii. { (red,pink), (red,red), (red,white),(red,yellow), (blue,pink),(blue,red),(blue,white),(blue,yellow) (yellow,pink),(yellow,red),(yellow,white),(yellow,yellow), (black,pink), (black,red),(black,white),(black,yellow)} Sets as bit strings i. Represent U, A, B, C, A-B, B-A, B-A-C, A B from problem 1 as a bit string. 1. A= B= C= A-B =

7 5. B-A = A B = B-A-C =

8 Proof with sets i. Prove that { x Z: 26 x} { x Z: 13 x} 1. Suppose {a Z: 26 x}. This means that a Z and 18 x. By the definition of divisibility, there is an integer c such that a=26c. Consequently, a=2(13c) and from this we can deduce that 13 a. Therefore a is one of the integers that 13 divides. So a { x Z: 13 x}. We ve shown a {Z: 26 x} implies { x Z: 13 x} so it follows that { x Z: 26 x} { x Z: 13 x} Counting i. Greta plans to register for one course at MyWay University. The school has 4 departments: English, Math, History and Science. The English department offers 7 courses Greta is eligible to take, the Math department offers 3 courses Greta is eligible to take, the History department offers 5 courses Greta is eligible to take and the Science department offers 9 courses Greta is eligible to take. How many different choices does Greta have for her course? 1. Greta chooses one course from either the English or the Math or the History or the Science department. There are 7 English courses, 3 Math courses, 9 Science courses and 5 History courses for a total of 24 different selections Greta could make. ii. Bob is building a garden. He has dug out 6 different plots. He arrives at the garden center to see that the store is offering seven different perennials for sale. How many different perennial garden configurations are available for Bob s garden? 1. For each of the 6 plots Bob has 7 choices, so 7 6 8

9 iii. How many positive integers less than 111 are divisible by 11 or 2 or 5? 1. {2, 4} 55 positive integers are divisible by 2 22 positive integers are divisible by 5 10 positive integers are divisible by 11 for a total of 76 numbers but this counted is inflated since we have counted the numbers that are divisible by 2 and 5 twice. There are 11 numbers divisible by 10. Similarly, we doubly counted the numbers divided by 11 and 2 (divisible by 22) and there are 5 of those. We also double counted the numbers that are divisible by 55 - there are 2 of those. We need to add in the number of integers that are divisible by 11 and 2 and 5 (i.e. 110), there is 1 such number = 70 positive integers. Basic Set Operations Consider subsets A = {a, f, d}, B = {b, d, h, e} of the universal set U = {a, b, c, d, e, f, g, h}. Compute each of the following. 1. A B {a, b, d, e, f, h} 2. A B {d} 3. B A 4. B {b, e, h} {a, c, f, g} 5. A B {a, b, e, f, h} 6. {a, b} {b, c} {(a, b), (a, c), (b, b), (b, c)} 7. (A B) (B A) {a, f} {b, e, h} = {(a, b), (a, e), (a, h), (f, b), (f, e), (f, h)} 9

10 More Basic Set Operations 1. If A B, what is A B? B 2. If A B, what is A B? A 3. When is A B =? when A = B 4. Do sets A B exist such that A B = B A? Yes, select A = and B any non empty set 5. Are there sets A and B such that A B = {(1, 2)}? Yes A = {1} and B = {2} 6. Are there sets A and B such that A B = {(1, 2), (1, 5), (2, 3), (2, 5), (3, 3), (3, 5)}? No as this would imply 1, 2, 3 A and 2, 3, 5 B, but then pairs (1,3), (2,2), (3,2) sould also be in A B Inclusion-Exclusion two sets, basic In a group of 20 students, 11 play the piano and 7 play the guitar. If two play both the piano and the guitar, how many play: 1. at least one of these instruments (piano or guitar)? piano + guitar - (piano guitar) = = neither instrument (neither the piano nor the guitar)? = 4 Venn Diagrams True or false: The oldest chess player among mathematicians and the oldest mathematician amongst chess players can be two different people. 10

11 False. The set of mathematicians and chess players can be represented as M C. In both cases chess players in the mathematicians and mathematicians in the set of chess players is the same set (presuming the set of mathematicians and chess players being referred to in both cases are the same group...not New York Chess Players and Boston mathematicians for example. However age is the same measure for both set descriptions (and the same set). Thus false. The best chess player among mathematicians and the best mathematician among chess players can be two different people. True. Both sets can be represented as M C but if that intersection was { Virgil, David, Jay, Kevin, Jacek} Jay could be the best chess player while Jacek is the best mathematician. 11

12 Equality of Sets State True or False for each of the following. Justify your argument by either giving a proof or a counter-example. You may use Venn diagrams to present your argument. 1. (A B) C = A (B C) False. Elements in C but not in A are in the LHS but not RHS 2. (A B) = A B True. This is DeMorgan s for sets 3. (A C) B = A (C B) False. A = (123), B = (234)C = (345). LHS is (1) RHS is (1 2) 4. (A C) (A B) = A (B C) False. A B = A B. Thus (A C) (A = B) = ((A C) (A B)), then by the distributive law we get A ( C B) = A ( C B) = A (C B) Counter example: A = (123), B = (245)C = (345) gives LHS = (123) while RHS = (1) 5. (A (B C)) ((A C) (D C) (B C)) = ((A B) (C A) (A B)) (((A D) B) C) False. Draw the first part of the left hand side: (A (B C)) which is intersection of A with B and C. Now the second part is just C since it is the only common term for all the various parts in the intersect. That means the whole expression is just (A B) The RHS, is A, B and the intersection of AB and AC - A B C and D (union is associative and commutative). Therefore you remove EVERYTHING possible from the set. The RHS is while the LHS is A B. Take any 4 with unique elements in A and B and it will demonstrate this counter-example. 12

13 EXTRA: Cutting parts from a large sheet Can one cut three 3x3 squares and six 2x3 rectangles from a sheet of paper 8x8 square? Can one cut four 3x3 squares and eight 2x4 rectangles from a sheet of paper 10x10 square? Can one cut four 4x4 squares and and six 2x4 rectangles from a sheet of paper 11x11 square? EXTRA: remainders mod 15 Given any 7 integers, show that there are 2 of them with either sum or difference or product = multiple of

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch )

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch ) CS1802 Discrete Structures Recitation Fall 2017 October 9-12, 2017 CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch 8.5-9.3) Sets i. Set Notation: Draw an arrow from the box on

More information

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1:

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1: Block 1 - Sets and Basic Combinatorics Main Topics in Block 1: A short revision of some set theory Sets and subsets. Venn diagrams to represent sets. Describing sets using rules of inclusion. Set operations.

More information

Sets. Definition A set is an unordered collection of objects called elements or members of the set.

Sets. Definition A set is an unordered collection of objects called elements or members of the set. Sets Definition A set is an unordered collection of objects called elements or members of the set. Sets Definition A set is an unordered collection of objects called elements or members of the set. Examples:

More information

Chapter 1. Set Theory

Chapter 1. Set Theory Chapter 1 Set Theory 1 Section 1.1: Types of Sets and Set Notation Set: A collection or group of distinguishable objects. Ex. set of books, the letters of the alphabet, the set of whole numbers. You can

More information

1. The empty set is a proper subset of every set. Not true because the empty set is not a proper subset of itself! is the power set of A.

1. The empty set is a proper subset of every set. Not true because the empty set is not a proper subset of itself! is the power set of A. MAT 101 Solutions to Sample Questions for Exam 1 True or False Questions Answers: 1F, 2F, 3F, 4T, 5T, 6T, 7T 1. The empty set is a proper subset of every set. Not true because the empty set is not a proper

More information

Counting: Basics. Four main concepts this week 10/12/2016. Product rule Sum rule Inclusion-exclusion principle Pigeonhole principle

Counting: Basics. Four main concepts this week 10/12/2016. Product rule Sum rule Inclusion-exclusion principle Pigeonhole principle Counting: Basics Rosen, Chapter 5.1-2 Motivation: Counting is useful in CS Application domains such as, security, telecom How many password combinations does a hacker need to crack? How many telephone

More information

Sample Spaces, Events, Probability

Sample Spaces, Events, Probability Sample Spaces, Events, Probability CS 3130/ECE 3530: Probability and Statistics for Engineers August 28, 2014 Sets A set is a collection of unique objects. Sets A set is a collection of unique objects.

More information

4. Let U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, X = {2, 3, 4}, Y = {1, 4, 5}, Z = {2, 5, 7}. Find a) (X Y) b) X Y c) X (Y Z) d) (X Y) Z

4. Let U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, X = {2, 3, 4}, Y = {1, 4, 5}, Z = {2, 5, 7}. Find a) (X Y) b) X Y c) X (Y Z) d) (X Y) Z Exercises 1. Write formal descriptions of the following sets. a) The set containing the numbers 1, 10, and 100 b) The set containing all integers that are greater than 5 c) The set containing all natural

More information

Reading 14 : Counting

Reading 14 : Counting CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Instructors: Beck Hasti, Gautam Prakriya Reading 14 : Counting In this reading we discuss counting. Often, we are interested in the cardinality

More information

DVA325 Formal Languages, Automata and Models of Computation (FABER)

DVA325 Formal Languages, Automata and Models of Computation (FABER) DVA325 Formal Languages, Automata and Models of Computation (FABER) Lecture 1 - Introduction School of Innovation, Design and Engineering Mälardalen University 11 November 2014 Abu Naser Masud FABER November

More information

With Question/Answer Animations. Chapter 6

With Question/Answer Animations. Chapter 6 With Question/Answer Animations Chapter 6 Chapter Summary The Basics of Counting The Pigeonhole Principle Permutations and Combinations Binomial Coefficients and Identities Generalized Permutations and

More information

Grade 7/8 Math Circles February 21 st /22 nd, Sets

Grade 7/8 Math Circles February 21 st /22 nd, Sets Faculty of Mathematics Waterloo, Ontario N2L 3G1 Sets Grade 7/8 Math Circles February 21 st /22 nd, 2017 Sets Centre for Education in Mathematics and Computing A set is a collection of unique objects i.e.

More information

Slide 1 Math 1520, Lecture 13

Slide 1 Math 1520, Lecture 13 Slide 1 Math 1520, Lecture 13 In chapter 7, we discuss background leading up to probability. Probability is one of the most commonly used pieces of mathematics in the world. Understanding the basic concepts

More information

Park Forest Math Team. Meet #5. Number Theory. Self-study Packet

Park Forest Math Team. Meet #5. Number Theory. Self-study Packet Park Forest Math Team Meet #5 Number Theory Self-study Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements

More information

Counting. Chapter 6. With Question/Answer Animations

Counting. Chapter 6. With Question/Answer Animations . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Counting Chapter

More information

( ) = A. 2. Write the following sets using the roster method. 3. Write the following sets using set-builder notation.

( ) = A. 2. Write the following sets using the roster method. 3. Write the following sets using set-builder notation. 2.6. EXERISES 1. True or False? a. The empty set has no subsets. b. No set has exactly 14 distinct subsets. c. For any two finite sets and,

More information

Class 8 - Sets (Lecture Notes)

Class 8 - Sets (Lecture Notes) Class 8 - Sets (Lecture Notes) What is a Set? A set is a well-defined collection of distinct objects. Example: A = {1, 2, 3, 4, 5} What is an element of a Set? The objects in a set are called its elements.

More information

CSE 21 Mathematics for Algorithm and System Analysis

CSE 21 Mathematics for Algorithm and System Analysis CSE 21 Mathematics for Algorithm and System Analysis Unit 1: Basic Count and List Section 3: Set CSE21: Lecture 3 1 Reminder Piazza forum address: http://piazza.com/ucsd/summer2013/cse21/hom e Notes on

More information

Multiple Choice Questions for Review

Multiple Choice Questions for Review Review Questions Multiple Choice Questions for Review 1. Suppose there are 12 students, among whom are three students, M, B, C (a Math Major, a Biology Major, a Computer Science Major. We want to send

More information

LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE

LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE The inclusion-exclusion principle (also known as the sieve principle) is an extended version of the rule of the sum. It states that, for two (finite) sets, A

More information

TOPOLOGY, LIMITS OF COMPLEX NUMBERS. Contents 1. Topology and limits of complex numbers 1

TOPOLOGY, LIMITS OF COMPLEX NUMBERS. Contents 1. Topology and limits of complex numbers 1 TOPOLOGY, LIMITS OF COMPLEX NUMBERS Contents 1. Topology and limits of complex numbers 1 1. Topology and limits of complex numbers Since we will be doing calculus on complex numbers, not only do we need

More information

The probability set-up

The probability set-up CHAPTER 2 The probability set-up 2.1. Introduction and basic theory We will have a sample space, denoted S (sometimes Ω) that consists of all possible outcomes. For example, if we roll two dice, the sample

More information

In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors?

In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors? What can we count? In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors? In how many different ways 10 books can be arranged

More information

Section Introduction to Sets

Section Introduction to Sets Section 1.1 - Introduction to Sets Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

More information

Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set)

Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set) 12.3 and 12.4 Notes Geometry 1 Diagramming the Sample Space using Venn Diagrams A sample space represents all things that could occur for a given event. In set theory language this would be known as the

More information

Chapter 1. Probability

Chapter 1. Probability Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

More information

Topics to be covered

Topics to be covered Basic Counting 1 Topics to be covered Sum rule, product rule, generalized product rule Permutations, combinations Binomial coefficients, combinatorial proof Inclusion-exclusion principle Pigeon Hole Principle

More information

Chapter 1 Math Set: a collection of objects. For example, the set of whole numbers is W = {0, 1, 2, 3, }

Chapter 1 Math Set: a collection of objects. For example, the set of whole numbers is W = {0, 1, 2, 3, } Chapter 1 Math 3201 1 Chapter 1: Set Theory: Organizing information into sets and subsets Graphically illustrating the relationships between sets and subsets using Venn diagrams Solving problems by using

More information

SETS OBJECTIVES EXPECTED BACKGROUND KNOWLEDGE 1.1 SOME STANDARD NOTATIONS. Sets. MODULE - I Sets, Relations and Functions

SETS OBJECTIVES EXPECTED BACKGROUND KNOWLEDGE 1.1 SOME STANDARD NOTATIONS. Sets. MODULE - I Sets, Relations and Functions 1 SETS Let us consider the following situation : One day Mrs. and Mr. Mehta went to the market. Mr. Mehta purchased the following objects/items. "a toy, one kg sweets and a magazine". Where as Mrs. Mehta

More information

Counting in Algorithms

Counting in Algorithms Counting Counting in Algorithms How many comparisons are needed to sort n numbers? How many steps to compute the GCD of two numbers? How many steps to factor an integer? Counting in Games How many different

More information

8.2 Union, Intersection, and Complement of Events; Odds

8.2 Union, Intersection, and Complement of Events; Odds 8.2 Union, Intersection, and Complement of Events; Odds Since we defined an event as a subset of a sample space it is natural to consider set operations like union, intersection or complement in the context

More information

Elementary Combinatorics

Elementary Combinatorics 184 DISCRETE MATHEMATICAL STRUCTURES 7 Elementary Combinatorics 7.1 INTRODUCTION Combinatorics deals with counting and enumeration of specified objects, patterns or designs. Techniques of counting are

More information

Lecture 1, CS 2050, Intro Discrete Math for Computer Science

Lecture 1, CS 2050, Intro Discrete Math for Computer Science Lecture 1, 08--11 CS 050, Intro Discrete Math for Computer Science S n = 1++ 3+... +n =? Note: Recall that for the above sum we can also use the notation S n = n i. We will use a direct argument, in this

More information

Lecture 2: Sum rule, partition method, difference method, bijection method, product rules

Lecture 2: Sum rule, partition method, difference method, bijection method, product rules Lecture 2: Sum rule, partition method, difference method, bijection method, product rules References: Relevant parts of chapter 15 of the Math for CS book. Discrete Structures II (Summer 2018) Rutgers

More information

The probability set-up

The probability set-up CHAPTER The probability set-up.1. Introduction and basic theory We will have a sample space, denoted S sometimes Ω that consists of all possible outcomes. For example, if we roll two dice, the sample space

More information

MATH 135 Algebra, Solutions to Assignment 7

MATH 135 Algebra, Solutions to Assignment 7 MATH 135 Algebra, Solutions to Assignment 7 1: (a Find the smallest non-negative integer x such that x 41 (mod 9. Solution: The smallest such x is the remainder when 41 is divided by 9. We have 41 = 9

More information

CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague 7 November, CS1800 Discrete Structures Midterm Version C

CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague 7 November, CS1800 Discrete Structures Midterm Version C CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague 7 November, 2016 CS1800 Discrete Structures Midterm Version C Instructions: 1. The exam is closed book and closed notes.

More information

Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules

Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules + Chapter 5: Probability: What are the Chances? Section 5.2 + Two-Way Tables and Probability When finding probabilities involving two events, a two-way table can display the sample space in a way that

More information

An art collector might own a collection of paintings, while a music lover might keep a collection of CDs. Any collection of items can form a set.

An art collector might own a collection of paintings, while a music lover might keep a collection of CDs. Any collection of items can form a set. Sets 319 Sets It is natural for us to classify items into groups, or sets, and consider how those sets overlap with each other. We can use these sets understand relationships between groups, and to analyze

More information

G E N E R A L A P T I T U D E

G E N E R A L A P T I T U D E G E N E R A L A P T I T U D E Aptitude for GATE The GATE syllabus for General Aptitude is as follows: Verbal Ability: English grammar, sentence completion, verbal analogies, word groups, instructions,

More information

EDULABZ INTERNATIONAL SETS AND VENN DIAGRAMS

EDULABZ INTERNATIONAL SETS AND VENN DIAGRAMS 12 SETS ND VENN DIGRMS Section I : Sets 1. Describe the following sets in roster form : (i) 2 { x / x = n, n N, 2 n 5} (ii) {x / x is composite number and 11 < x < 25} (iii) {x / x W, x is divisible by

More information

7.4, 9.42, 55,

7.4, 9.42, 55, Good Luck to: Period: Date DIRECTIONS: Show all work in the space provided. 1. Which of the following equations is equivalent to: 2 1 3 x + 3 2 a. 7x + 18 7 b. 3 x + 18 c. 2.3x + 4.2 d. 2.13x + 4.2 2.

More information

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees.

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees. 7 Symmetries 7 Permutations A permutation of a set is a reordering of its elements Another way to look at it is as a function Φ that takes as its argument a set of natural numbers of the form {, 2,, n}

More information

POLYA'S FOUR STEP PROBLEM SOLVING PROCESS Understand. Devise a Plan. Carry out Plan. Look Back. PROBLEM SOLVING STRATEGIES (exmples) Making a Drawlnq

POLYA'S FOUR STEP PROBLEM SOLVING PROCESS Understand. Devise a Plan. Carry out Plan. Look Back. PROBLEM SOLVING STRATEGIES (exmples) Making a Drawlnq 1.1 KEY IDEAS POLYA'S FOUR STEP PROBLEM SOLVING PROCESS Understand Devise a Plan Carry out Plan Look Back PROBLEM SOLVING STRATEGIES (exmples) Making a Drawlnq Guesslnc and Checking Making a Table UsinQ

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Define and compute the cardinality of a set. Use functions to compare the sizes of sets. Classify sets

More information

Math236 Discrete Maths with Applications

Math236 Discrete Maths with Applications Math236 Discrete Maths with Applications P. Ittmann UKZN, Pietermaritzburg Semester 1, 2012 Ittmann (UKZN PMB) Math236 2012 1 / 43 The Multiplication Principle Theorem Let S be a set of k-tuples (s 1,

More information

Probability. Ms. Weinstein Probability & Statistics

Probability. Ms. Weinstein Probability & Statistics Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

More information

1) 1) 2) 2) 3) 3) 4) 4) 5) 5) 6) 6) 7) 7) 8) 8) 9) 9) 10) 10) 11) 11) 12) 12)

1) 1) 2) 2) 3) 3) 4) 4) 5) 5) 6) 6) 7) 7) 8) 8) 9) 9) 10) 10) 11) 11) 12) 12) Review Test 1 Math 1332 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Write a word description of the set. 1) 1) {26, 28, 30, 32,..., 100} List

More information

ACHS Math Team Lecture: Introduction to Set Theory Peter S. Simon

ACHS Math Team Lecture: Introduction to Set Theory Peter S. Simon ACHS Math Team Lecture: Introduction to Set Theory Peter S. Simon Introduction to Set Theory A set is a collection of objects, called elements or members of the set. We will usually denote a set by a capital

More information

Probability Models. Section 6.2

Probability Models. Section 6.2 Probability Models Section 6.2 The Language of Probability What is random? Empirical means that it is based on observation rather than theorizing. Probability describes what happens in MANY trials. Example

More information

4.3 Finding Probability Using Sets

4.3 Finding Probability Using Sets 4.3 Finding Probability Using ets When rolling a die with sides numbered from 1 to 20, if event A is the event that a number divisible by 5 is rolled: a) What is the sample space,? b) What is the event

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1 - Experiments, Sample Spaces,

More information

Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37

Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37 Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete

More information

FOM 11 Ch. 1 Practice Test Name: Inductive and Deductive Reasoning

FOM 11 Ch. 1 Practice Test Name: Inductive and Deductive Reasoning FOM 11 Ch. 1 Practice Test Name: Inductive and Deductive Reasoning Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Justin gathered the following evidence.

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1 - Experiments, Sample Spaces,

More information

Sets, Venn Diagrams & Counting

Sets, Venn Diagrams & Counting MT 142 College Mathematics Sets, Venn Diagrams & Counting Module SC Terri Miller revised December 13, 2010 What is a set? Sets set is a collection of objects. The objects in the set are called elements

More information

Launchpad Maths. Arithmetic II

Launchpad Maths. Arithmetic II Launchpad Maths. Arithmetic II LAW OF DISTRIBUTION The Law of Distribution exploits the symmetries 1 of addition and multiplication to tell of how those operations behave when working together. Consider

More information

SET THEORY AND VENN DIAGRAMS

SET THEORY AND VENN DIAGRAMS Mathematics Revision Guides Set Theory and Venn Diagrams Page 1 of 26 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier SET THEORY AND VENN DIAGRAMS Version: 2.1 Date: 15-10-2015 Mathematics

More information

Fall. Spring. Possible Summer Topics

Fall. Spring. Possible Summer Topics Fall Paper folding: equilateral triangle (parallel postulate and proofs of theorems that result, similar triangles), Trisect a square paper Divisibility by 2-11 and by combinations of relatively prime

More information

Principles of Counting. Notation for counting elements of sets

Principles of Counting. Notation for counting elements of sets Principles of Counting MATH 107: Finite Mathematics University of Louisville February 26, 2014 Underlying Principles Set Counting 2 / 12 Notation for counting elements of sets We let n(a) denote the number

More information

NIM Games: Handout 1

NIM Games: Handout 1 NIM Games: Handout 1 Based on notes by William Gasarch 1 One-Pile NIM Games Consider the following two-person game in which players alternate making moves. There are initially n stones on the board. During

More information

Final Exam, Math 6105

Final Exam, Math 6105 Final Exam, Math 6105 SWIM, June 29, 2006 Your name Throughout this test you must show your work. 1. Base 5 arithmetic (a) Construct the addition and multiplication table for the base five digits. (b)

More information

Sets. Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 6, Outline Sets Equality Subset Empty Set Cardinality Power Set

Sets. Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 6, Outline Sets Equality Subset Empty Set Cardinality Power Set Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 6, 2012 Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) Gazihan Alankuş (Based on original slides by Brahim Hnich

More information

Solutions to Exercises on Page 86

Solutions to Exercises on Page 86 Solutions to Exercises on Page 86 #. A number is a multiple of, 4, 5 and 6 if and only if it is a multiple of the greatest common multiple of, 4, 5 and 6. The greatest common multiple of, 4, 5 and 6 is

More information

There are three types of mathematicians. Those who can count and those who can t.

There are three types of mathematicians. Those who can count and those who can t. 1 Counting There are three types of mathematicians. Those who can count and those who can t. 1.1 Orderings The details of the question always matter. So always take a second look at what is being asked

More information

Example: If A = {1, 2, 3} and B = {3, 4, 5}, then A B= {3}.

Example: If A = {1, 2, 3} and B = {3, 4, 5}, then A B= {3}. Section 1.3: Intersection and Union of Two Sets Exploring the Different Regions of a Venn Diagram There are 6 different set notations that you must become familiar with. 1. The intersection is the set

More information

Compound Probability. Set Theory. Basic Definitions

Compound Probability. Set Theory. Basic Definitions Compound Probability Set Theory A probability measure P is a function that maps subsets of the state space Ω to numbers in the interval [0, 1]. In order to study these functions, we need to know some basic

More information

Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2 Solutions

Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2 Solutions CS 70 Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2 Solutions PRINT Your Name: Oski Bear SIGN Your Name: OS K I PRINT Your Student ID: CIRCLE your exam room: Pimentel

More information

Lesson 4. Unit 2. Home Gardening. Diagramming Numbers

Lesson 4. Unit 2. Home Gardening. Diagramming Numbers Math 4 Lesson 4 Diagramming Numbers Home Gardening Growing flowers or vegetables can be an interesting and fun hobby. Your garden might be small and just have a few plants. It might be as big as your whole

More information

Principle of Inclusion-Exclusion Notes

Principle of Inclusion-Exclusion Notes Principle of Inclusion-Exclusion Notes The Principle of Inclusion-Exclusion (often abbreviated PIE is the following general formula used for finding the cardinality of a union of finite sets. Theorem 0.1.

More information

FOM 11 Ch. 1 Practice Test Name: Inductive and Deductive Reasoning

FOM 11 Ch. 1 Practice Test Name: Inductive and Deductive Reasoning FOM 11 Ch. 1 Practice Test Name: Inductive and Deductive Reasoning Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Justin gathered the following evidence.

More information

Modular arithmetic Math 2320

Modular arithmetic Math 2320 Modular arithmetic Math 220 Fix an integer m 2, called the modulus. For any other integer a, we can use the division algorithm to write a = qm + r. The reduction of a modulo m is the remainder r resulting

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even

More information

If you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics

If you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics If you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics probability that you get neither? Class Notes The Addition Rule (for OR events) and Complements

More information

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis Lecture 3 Class URL: http://vlsicad.ucsd.edu/courses/cse21-s14/ Lecture 3 Notes Goal for today: CL Section 3 Subsets,

More information

Combinatorics and Intuitive Probability

Combinatorics and Intuitive Probability Chapter Combinatorics and Intuitive Probability The simplest probabilistic scenario is perhaps one where the set of possible outcomes is finite and these outcomes are all equally likely. A subset of the

More information

Cardinality revisited

Cardinality revisited Cardinality revisited A set is finite (has finite cardinality) if its cardinality is some (finite) integer n. Two sets A,B have the same cardinality iff there is a one-to-one correspondence from A to B

More information

CPCS 222 Discrete Structures I Counting

CPCS 222 Discrete Structures I Counting King ABDUL AZIZ University Faculty Of Computing and Information Technology CPCS 222 Discrete Structures I Counting Dr. Eng. Farag Elnagahy farahelnagahy@hotmail.com Office Phone: 67967 The Basics of counting

More information

Crossing Game Strategies

Crossing Game Strategies Crossing Game Strategies Chloe Avery, Xiaoyu Qiao, Talon Stark, Jerry Luo March 5, 2015 1 Strategies for Specific Knots The following are a couple of crossing game boards for which we have found which

More information

Such a description is the basis for a probability model. Here is the basic vocabulary we use.

Such a description is the basis for a probability model. Here is the basic vocabulary we use. 5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

More information

Probability: Terminology and Examples Spring January 1, / 22

Probability: Terminology and Examples Spring January 1, / 22 Probability: Terminology and Examples 18.05 Spring 2014 January 1, 2017 1 / 22 Board Question Deck of 52 cards 13 ranks: 2, 3,..., 9, 10, J, Q, K, A 4 suits:,,,, Poker hands Consists of 5 cards A one-pair

More information

Chapter 1 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal.

Chapter 1 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal. 1 Relations This book starts with one of its most abstract topics, so don't let the abstract nature deter you. Relations are quite simple but like virtually all simple mathematical concepts they have their

More information

12. 6 jokes are minimal.

12. 6 jokes are minimal. Pigeonhole Principle Pigeonhole Principle: When you organize n things into k categories, one of the categories has at least n/k things in it. Proof: If each category had fewer than n/k things in it then

More information

Discrete Mathematics: Logic. Discrete Mathematics: Lecture 15: Counting

Discrete Mathematics: Logic. Discrete Mathematics: Lecture 15: Counting Discrete Mathematics: Logic Discrete Mathematics: Lecture 15: Counting counting combinatorics: the study of the number of ways to put things together into various combinations basic counting principles

More information

CS103 Handout 25 Spring 2017 May 5, 2017 Problem Set 5

CS103 Handout 25 Spring 2017 May 5, 2017 Problem Set 5 CS103 Handout 25 Spring 2017 May 5, 2017 Problem Set 5 This problem set the last one purely on discrete mathematics is designed as a cumulative review of the topics we ve covered so far and a proving ground

More information

Week 3 Classical Probability, Part I

Week 3 Classical Probability, Part I Week 3 Classical Probability, Part I Week 3 Objectives Proper understanding of common statistical practices such as confidence intervals and hypothesis testing requires some familiarity with probability

More information

CS100: DISCRETE STRUCTURES. Lecture 8 Counting - CH6

CS100: DISCRETE STRUCTURES. Lecture 8 Counting - CH6 CS100: DISCRETE STRUCTURES Lecture 8 Counting - CH6 Lecture Overview 2 6.1 The Basics of Counting: THE PRODUCT RULE THE SUM RULE THE SUBTRACTION RULE THE DIVISION RULE 6.2 The Pigeonhole Principle. 6.3

More information

9.5 Counting Subsets of a Set: Combinations. Answers for Test Yourself

9.5 Counting Subsets of a Set: Combinations. Answers for Test Yourself 9.5 Counting Subsets of a Set: Combinations 565 H 35. H 36. whose elements when added up give the same sum. (Thanks to Jonathan Goldstine for this problem. 34. Let S be a set of ten integers chosen from

More information

Worksheets for GCSE Mathematics. Probability. mr-mathematics.com Maths Resources for Teachers. Handling Data

Worksheets for GCSE Mathematics. Probability. mr-mathematics.com Maths Resources for Teachers. Handling Data Worksheets for GCSE Mathematics Probability mr-mathematics.com Maths Resources for Teachers Handling Data Probability Worksheets Contents Differentiated Independent Learning Worksheets Probability Scales

More information

MATHEMATICS E-102, FALL 2005 SETS, COUNTING, AND PROBABILITY Outline #1 (Probability, Intuition, and Axioms)

MATHEMATICS E-102, FALL 2005 SETS, COUNTING, AND PROBABILITY Outline #1 (Probability, Intuition, and Axioms) MATHEMATICS E-102, FALL 2005 SETS, COUNTING, AND PROBABILITY Outline #1 (Probability, Intuition, and Axioms) Last modified: September 19, 2005 Reference: EP(Elementary Probability, by Stirzaker), Chapter

More information

SALES AND MARKETING Department MATHEMATICS. Combinatorics and probabilities. Tutorials and exercises

SALES AND MARKETING Department MATHEMATICS. Combinatorics and probabilities. Tutorials and exercises SALES AND MARKETING Department MATHEMATICS 2 nd Semester Combinatorics and probabilities Tutorials and exercises Online document : http://jff-dut-tc.weebly.com section DUT Maths S2 IUT de Saint-Etienne

More information

MODULAR ARITHMETIC II: CONGRUENCES AND DIVISION

MODULAR ARITHMETIC II: CONGRUENCES AND DIVISION MODULAR ARITHMETIC II: CONGRUENCES AND DIVISION MATH CIRCLE (BEGINNERS) 02/05/2012 Modular arithmetic. Two whole numbers a and b are said to be congruent modulo n, often written a b (mod n), if they give

More information

1 = 3 2 = 3 ( ) = = = 33( ) 98 = = =

1 = 3 2 = 3 ( ) = = = 33( ) 98 = = = Math 115 Discrete Math Final Exam December 13, 2000 Your name It is important that you show your work. 1. Use the Euclidean algorithm to solve the decanting problem for decanters of sizes 199 and 98. In

More information

Chapter 5 - Elementary Probability Theory

Chapter 5 - Elementary Probability Theory Chapter 5 - Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling

More information

Final exam. Question Points Score. Total: 150

Final exam. Question Points Score. Total: 150 MATH 11200/20 Final exam DECEMBER 9, 2016 ALAN CHANG Please present your solutions clearly and in an organized way Answer the questions in the space provided on the question sheets If you run out of room

More information

Math 365 Wednesday 2/20/19 Section 6.1: Basic counting

Math 365 Wednesday 2/20/19 Section 6.1: Basic counting Math 365 Wednesday 2/20/19 Section 6.1: Basic counting Exercise 19. For each of the following, use some combination of the sum and product rules to find your answer. Give an un-simplified numerical answer

More information

MATHEMATICS 152, FALL 2004 METHODS OF DISCRETE MATHEMATICS Outline #10 (Sets and Probability)

MATHEMATICS 152, FALL 2004 METHODS OF DISCRETE MATHEMATICS Outline #10 (Sets and Probability) MATHEMATICS 152, FALL 2004 METHODS OF DISCRETE MATHEMATICS Outline #10 (Sets and Probability) Last modified: November 10, 2004 This follows very closely Apostol, Chapter 13, the course pack. Attachments

More information

Solution: This is sampling without repetition and order matters. Therefore

Solution: This is sampling without repetition and order matters. Therefore June 27, 2001 Your name It is important that you show your work. The total value of this test is 220 points. 1. (10 points) Use the Euclidean algorithm to solve the decanting problem for decanters of sizes

More information

LEVEL I. 3. In how many ways 4 identical white balls and 6 identical black balls be arranged in a row so that no two white balls are together?

LEVEL I. 3. In how many ways 4 identical white balls and 6 identical black balls be arranged in a row so that no two white balls are together? LEVEL I 1. Three numbers are chosen from 1,, 3..., n. In how many ways can the numbers be chosen such that either maximum of these numbers is s or minimum of these numbers is r (r < s)?. Six candidates

More information

7.1 Experiments, Sample Spaces, and Events

7.1 Experiments, Sample Spaces, and Events 7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment

More information