MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) 1 6


 Ashley Reeves
 2 years ago
 Views:
Transcription
1 Math 300 Exam 4 Review (Chapter 11) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Give the probability that the spinner shown would land on the indicated color. 1) black 1) A) 1 3 B) 2 3 C) 1 6 D) 1 2 Comment: 2/6 = 1/3 Find the probability. 2) Two 6sided dice are rolled. What is the probability that the two numbers obtained differ by more than 2? A) B) 1 3 C) 1 4 D) Answer: B Comment: We know there are 36 possible outcomes when rolling a pair of dice. The outcomes in which the two numbers obtained differ by more than 2 are: (1,4), (1,5), (1,6), (2,5), (2,6), (3,6), (4,1), (5,1),(5,2),(6,1),(6,2), (6,3). Thus 12 of the 36 outcomes are in the desired event, so the probability is 12/36 = 1/3 2) Solve the problem. 3) 3) What are the odds in favor of drawing an even number from these cards? A) 5:2 B) 2:5 C)2:3 D) 3:2 Comment: 4) The table shows the number of college students who prefer a given pizza topping. 4) toppings freshman sophomore junior senior cheese meat veggie Find the empirical probability that a randomly selected student prefers cheese toppings. A) B) C) D) Comment: There are 81 students who prefer cheese. There are 249 total students. Therefore, the probability that a randomly selected student prefers cheese is 81/
2 5) Two distinct even numbers are selected at random from the first ten even numbers greater than zero. What is the probability that the sum is 30? 5) A) 1 45 B) 1 10 C) 2 45 D) 1 15 Answer: D Comment: Using combinations, the number of pairs of even numbers (selected from the first 10 positive even numbers) is 10 C 2 = 45. The pairs whose sum is 30 are: (20, 10), (18, 12), and (16, 14). Thus the probability is 3/45 = 1/15. We could also use permutations (if we wanted order to matter). Then the number of ordered pairs possible would be 10 P 2 = 90, and the ordered pairs summing 30 would be (10, 20), (12, 18), (14, 16), (16, 14), (18, 12), and (20, 10). Thus the probability is 6/90 = 1/15 6) Mr. Larsen's third grade class has 22 students, 12 girls and 10 boys. Two students must be selected at random to be in the spring play. What is the probability that one boy and one girl will be chosen? Order is not important. A) 40 B) 1 C) 5 D) Comment: The number of combinations with one boy and one girl is 12 C 1 10 C 1 = 120. The number of possible combinations of two students chosen from the 22student class is 22 C 2 = 231. Thus the probability is 120/231 = 40/77. 6) Find the probability. 7) When two balanced dice are rolled, there are 36 possible outcomes. Find the probability that the sum is a multiple of 3 or greater than 4. A) 8 9 B) C) Comment: Multiples of 3: (1,2), (2,1), (1,5), (2,4), (3,3), (4,2), (5,1), (3,6), (4,5), (5,4), (6,3), (6,6) Not greater than 4: (1,1), (1,2), (1,3), (2,1), (2,2), (3,1). Thus there are 30 greater than 4. Notice that 10 of these 30 are also multiples of 3. P(3k or >4) = P(3k) + P(>4)  P(3k and >4) = 12/ /3610/36 = 32/36 = 8/9 D) 5 6 7)
3 Find the indicated probability. 8) The table shows the distribution of family size in a certain U.S. city 8) Family Size Probability A family is selected at random from the city. Find the probability that the size of the family is less than 5. Round approximations to three decimal places. A) B) C) D) Comment: P(<5) = P(2 or 3 or 4) = P(2) + P(3) + P(4) = = ) The distribution of B.A. degrees conferred by a local college is listed below, by major. 9) Major Frequency English 2073 Mathematics 2164 Chemistry 318 Physics 856 Liberal Arts 1358 Business 1676 Engineering What is the probability that a randomly selected degree is not in Mathematics? A) B) C) D) Comment: P(not Math) = 1P(Math) = ) The table below describes the smoking habits of a group of asthma sufferers. 10) Light Heavy Nonsmoker smoker smoker Total Men Women Total If one of the 1017 subjects is randomly selected, find the probability that the person chosen is a nonsmoker given that the person is a woman. A) B) C) D) Answer: B Comment: P(N W) = P(N and W) P(W) = n(n W) n(w) =
4 Find the probability. 11) In one town, 70% of adults have health insurance. What is the probability that 8 adults selected at random from the town all have health insurance? A) B) 0.7 C) D) 5.6 Comment: (0.7) Use the general multiplication rule to find the indicated probability. 12) An IRS auditor randomly selects 3 tax returns from 55 returns of which 10 contain errors. What is the probability that she selects none of those containing errors? A) B) C) D) Comment: There are 45 C 3 ways to select 3 returns containing no errors., and there are 55 C 3 ways to 11) 12) select 3 returns. Thus the probablility of selecting 3 with no errors is 45C 3 55 C Find the conditional probability. 13) If two cards are drawn at random without replacement from a standard deck, find the probability that the second card is a spade, given that the first card was a spade. A) 1 4 B) 3 13 C) 4 17 D) Comment: If the first card was a spade, then there are 12 spades left in the remaining 51 cards. Thus the probability that the second card is a spade is = ) Solve the problem. 14) A basket contains 6 oranges and 4 tangerines. A sample of 3 is drawn. Find the probability that they are all oranges. 14) A) 1 5 B) 1 3 C) 1 6 D) 4 9 Comment: = = 1 6 Use counting rules to determine the probability. 15) Determine the probability that in a class of 8 students, at least two students have the same birthday. Assume that there are always 365 days in a year and that birth rates are constant throughout the year. (Hint: First determine the probability that no two students have the same birthday and then apply the complementation rule.) A) B) C) D) Comment: The probability that no students have the same birthday is Thus the probability that at least 2 students have the same birthday is = )
5 Find the probability. 16) Find the probability that when a gardener plants 20 seeds, she harvests 16 radishes given the probability that a radish seed will germinate is 0.7. A) B) C) D) Answer: B Comment: This is the probability of 16 "successes" out of 20 "trials." We use the binomial probability formula with n = 20, p = 0.7, q = 0.3. P(16) = 20 C 16 (0.7)16(0.3)4 = ) A test consists of 10 true/false questions. To pass the test a student must answer at least 7 questions correctly. If a student guesses on each question, what is the probability that the student will pass the test? A) B) C) D) Comment: P(at least 7) = P(7 or 8 or 9 or 10) = P(7) + P(8) + P(9) + P(10) = 10 C 7 (0.5)7(0.5) C 8 (0.5)8(0.5) C 9 (0.5)9(0.5) C 10 (0.5) ) 17) Solve the problem. 18) An ice cream store has 5 flavors. If we pick flavors successively at random, what is the probability that the flavor strawberry will be selected for the first time on pick 3? [the same flavor can be picked more than once] A) B) C) D) None of the above is correct. Comment: This is the probability that the first and second picks are not strawberry, and the third is strawberry. This is = = ) If 5 apples in a barrel of 25 apples are rotten, what is the expected number of rotten apples in a random sample of 2 apples? 18) 19) A) 3 5 B) 1 C) 2 5 D) 4 5 Comment: Let x be the number of rotten apples picked. See the table of the probability distribution below: x P(x) x P(x) Adding the entries in the product column gives 2/5.
6 20) A certain game involves tossing 3 fair coins. It pays 28 cents for 3 heads, 14 cents for 2 heads, and 6 cents for 1 head. What is a fair price to pay to play this game? A) 16 cents B) 9 cents C)10 cents D) 11 cents Answer: D Comment: The "fair" price is equal to the expected winnings. Let x = number of heads 20) x P(x) Winnings Product 0 1/8 $ /8 $ /8 $ /8 $ Adding the product column gives the fair price, which is $0.11.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Mathematical Ideas Chapter 2 Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) In one town, 2% of all voters are Democrats. If two voters
More informationC) 1 4. Find the indicated probability. 2) A die with 12 sides is rolled. What is the probability of rolling a number less than 11?
Chapter Probability Practice STA03, Broward College Answer the question. ) On a multiple choice test with four possible answers (like this question), what is the probability of answering a question correctly
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Math 1324 Test 3 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Insert " " or " " in the blank to make the statement true. 1) {18, 27, 32}
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Statistics Homework Ch 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
6. Practice Problems Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the probability. ) A bag contains red marbles, blue marbles, and 8
More informationSpring 2015 Math227 Test #2 (Chapter 4 and Chapter 5) Name
Spring 2015 Math227 Test #2 (Chapter 4 and Chapter 5) Name Show all work neatly and systematically for full credit. You may use a TI calculator. Total points: 100 Provide an appropriate response. 1) (5)
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The letters "A", "B", "C", "D", "E", and "F" are written on six slips of paper, and the
More informationMATH CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #2  FALL DR. DAVID BRIDGE
MATH 2053  CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #2  FALL 2009  DR. DAVID BRIDGE MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even
More informationMATH CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #1  SPRING DR. DAVID BRIDGE
MATH 2053  CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #1  SPRING 2009  DR. DAVID BRIDGE MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the
More information6) A) both; happy B) neither; not happy C) one; happy D) one; not happy
MATH 00  PRACTICE TEST 2 Millersville University, Spring 202 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find all natural
More informationMath 146 Statistics for the Health Sciences Additional Exercises on Chapter 3
Math 46 Statistics for the Health Sciences Additional Exercises on Chapter 3 Student Name: Find the indicated probability. ) If you flip a coin three times, the possible outcomes are HHH HHT HTH HTT THH
More information4.1 Sample Spaces and Events
4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an
More information4.3 Rules of Probability
4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:
More informationWEEK 7 REVIEW. Multiplication Principle (6.3) Combinations and Permutations (6.4) Experiments, Sample Spaces and Events (7.1)
WEEK 7 REVIEW Multiplication Principle (6.3) Combinations and Permutations (6.4) Experiments, Sample Spaces and Events (7.) Definition of Probability (7.2) WEEK 87.3, 7.4 and Test Review THE MULTIPLICATION
More informationFALL 2012 MATH 1324 REVIEW EXAM 4
FALL 01 MATH 134 REVIEW EXAM 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Write the sample space for the given experiment. 1) An ordinary die
More informationTEST A CHAPTER 11, PROBABILITY
TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability
More informationWeek in Review #5 ( , 3.1)
Math 166 WeekinReview  S. Nite 10/6/2012 Page 1 of 5 Week in Review #5 (2.32.4, 3.1) n( E) In general, the probability of an event is P ( E) =. n( S) Distinguishable Permutations Given a set of n objects
More informationName: Probability, Part 1 March 4, 2013
1) Assuming all sections are equal in size, what is the probability of the spinner below stopping on a blue section? Write the probability as a fraction. 2) A bag contains 3 red marbles, 4 blue marbles,
More information7.1 Experiments, Sample Spaces, and Events
7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment
More information1) If P(E) is the probability that an event will occur, then which of the following is true? (1) 0 P(E) 1 (3) 0 P(E) 1 (2) 0 P(E) 1 (4) 0 P(E) 1
Algebra 2 Review for Unit 14 Test Name: 1) If P(E) is the probability that an event will occur, then which of the following is true? (1) 0 P(E) 1 (3) 0 P(E) 1 (2) 0 P(E) 1 (4) 0 P(E) 1 2) From a standard
More informationMATH CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #1  SPRING DR. DAVID BRIDGE
MATH 205  CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #  SPRING 2006  DR. DAVID BRIDGE TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Tell whether the statement is
More informationMath 1313 Section 6.2 Definition of Probability
Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability
More informationFundamentals of Probability
Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible
More informationProbability Homework
Probability Homework Section P 1. A pair of fair dice are tossed. What is the conditional probability that the two dice are the same given that the sum equals 8? 2. A die is tossed. a) Find the probability
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
MATH 1324 Review for Test 3 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the value(s) of the function on the given feasible region. 1) Find the
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Chapter 3: Practice SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) A study of 000 randomly selected flights of a major
More informationMAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions
MAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions 1. Appetizers: Salads: Entrées: Desserts: 2. Letters: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U,
More informationMutually Exclusive Events Algebra 1
Name: Mutually Exclusive Events Algebra 1 Date: Mutually exclusive events are two events which have no outcomes in common. The probability that these two events would occur at the same time is zero. Exercise
More informationName: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11
Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MATH 00  PRACTICE EXAM 3 Millersville University, Fall 008 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. For the given question,
More informationAP Statistics Ch InClass Practice (Probability)
AP Statistics Ch 1415 InClass Practice (Probability) #1a) A batter who had failed to get a hit in seven consecutive times at bat then hits a gamewinning home run. When talking to reporters afterward,
More informationCHAPTER 7 Probability
CHAPTER 7 Probability 7.1. Sets A set is a welldefined collection of distinct objects. Welldefined means that we can determine whether an object is an element of a set or not. Distinct means that we can
More informationUnit 19 Probability Review
. What is sample space? All possible outcomes Unit 9 Probability Review 9. I can use the Fundamental Counting Principle to count the number of ways an event can happen. 2. What is the difference between
More informationMath 227 Elementary Statistics. Bluman 5 th edition
Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical
More informationName (Place your name here and on the Scantron form.)
MATH 053  CALCULUS & STATISTICS/BUSN  CRN 0398  EXAM #  WEDNESDAY, FEB 09  DR. BRIDGE Name (Place your name here and on the Scantron form.) MULTIPLE CHOICE. Choose the one alternative that best completes
More informationSection The Multiplication Principle and Permutations
Section 2.1  The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different
More informationNorth Seattle Community College Winter ELEMENTARY STATISTICS 2617 MATH Section 05, Practice Questions for Test 2 Chapter 3 and 4
North Seattle Community College Winter 2012 ELEMENTARY STATISTICS 2617 MATH 109  Section 05, Practice Questions for Test 2 Chapter 3 and 4 1. Classify each statement as an example of empirical probability,
More informationProbability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37
Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete
More informationChapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance FreeResponse 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is
More informationMATH CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #1  SPRING DR. DAVID BRIDGE
MATH 205  CALCULUS & STATISTICS/BUSN  PRACTICE EXAM #1  SPRING 2009  DR. DAVID BRIDGE TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Tell whether the statement is
More informationBellwork Write each fraction as a percent Evaluate P P C C 6
Bellwork 21915 Write each fraction as a percent. 1. 2. 3. 4. Evaluate. 5. 6 P 3 6. 5 P 2 7. 7 C 4 8. 8 C 6 1 Objectives Find the theoretical probability of an event. Find the experimental probability
More informationAlgebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations
Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations Objective(s): Vocabulary: I. Fundamental Counting Principle: Two Events: Three or more Events: II. Permutation: (top of p. 684)
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Math 1342 Practice Test 2 Ch 4 & 5 Name 1) Nanette must pass through three doors as she walks from her company's foyer to her office. Each of these doors may be locked or unlocked. 1) List the outcomes
More informationProbability and Counting Techniques
Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each
More informationProbability: introduction
May 6, 2009 Probability: introduction page 1 Probability: introduction Probability is the part of mathematics that deals with the chance or the likelihood that things will happen The probability of an
More informationSection 5.4 Permutations and Combinations
Section 5.4 Permutations and Combinations Definition: nfactorial For any natural number n, n! n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
6.1 Practice Problems Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. 1) The probability of rolling an even number on a
More informationMAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability. Preliminary Concepts, Formulas, and Terminology
MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability Preliminary Concepts, Formulas, and Terminology Meanings of Basic Arithmetic Operations in Mathematics Addition: Generally
More informationClass XII Chapter 13 Probability Maths. Exercise 13.1
Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:
More informationSection 5.4 Permutations and Combinations
Section 5.4 Permutations and Combinations Definition: nfactorial For any natural number n, n! = n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch. 3 Probability 3.1 Basic Concepts of Probability and Counting 1 Find Probabilities 1) A coin is tossed. Find the probability that the result is heads. A) 0. B) 0.1 C) 0.9 D) 1 2) A single sixsided
More informationMATH STUDENT BOOK. 7th Grade Unit 6
MATH STUDENT BOOK 7th Grade Unit 6 Unit 6 Probability and Graphing Math 706 Probability and Graphing Introduction 3 1. Probability 5 Theoretical Probability 5 Experimental Probability 13 Sample Space 20
More informationM146  Chapter 5 Handouts. Chapter 5
Chapter 5 Objectives of chapter: Understand probability values. Know how to determine probability values. Use rules of counting. Section 51 Probability Rules What is probability? It s the of the occurrence
More informationProbability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College
Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical
More informationLC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.
A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply
More informationChapter 11: Probability and Counting Techniques
Chapter 11: Probability and Counting Techniques Diana Pell Section 11.3: Basic Concepts of Probability Definition 1. A sample space is a set of all possible outcomes of an experiment. Exercise 1. An experiment
More informationChapter 1: Sets and Probability
Chapter 1: Sets and Probability Section 1.31.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping
More informationNovember 6, Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern
More informationExam III Review Problems
c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous WeekinReviews
More informationUnit 1 Day 1: Sample Spaces and Subsets. Define: Sample Space. Define: Intersection of two sets (A B) Define: Union of two sets (A B)
Unit 1 Day 1: Sample Spaces and Subsets Students will be able to (SWBAT) describe events as subsets of sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions,
More informationQ1) 6 boys and 6 girls are seated in a row. What is the probability that all the 6 gurls are together.
Required Probability = where Q1) 6 boys and 6 girls are seated in a row. What is the probability that all the 6 gurls are together. Solution: As girls are always together so they are considered as a group.
More informationSTATISTICAL COUNTING TECHNIQUES
STATISTICAL COUNTING TECHNIQUES I. Counting Principle The counting principle states that if there are n 1 ways of performing the first experiment, n 2 ways of performing the second experiment, n 3 ways
More informationMGF 1106: Exam 2 Solutions
MGF 1106: Exam 2 Solutions 1. (15 points) A coin and a die are tossed together onto a table. a. What is the sample space for this experiment? For example, one possible outcome is heads on the coin and
More information1. A factory manufactures plastic bottles of 4 different sizes, 3 different colors, and 2 different shapes. How many different bottles are possible?
Unit 8 Quiz Review Short Answer 1. A factory manufactures plastic bottles of 4 different sizes, 3 different colors, and 2 different shapes. How many different bottles are possible? 2. A pizza corner offers
More informationBayes stuff Red Cross and Blood Example
Bayes stuff Red Cross and Blood Example 42% of the workers at Motor Works are female, while 67% of the workers at City Bank are female. If one of these companies is selected at random (assume a 5050 chance
More informationMATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG
MATH DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Counting and Probability Suggested Problems Basic Counting Skills, InclusionExclusion, and Complement. (a An office building contains 7 floors and has 7 offices
More informationAdvanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY
Advanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY 1. Jack and Jill do not like washing dishes. They decide to use a random method to select whose turn it is. They put some red and blue
More informationSection 7.1 Experiments, Sample Spaces, and Events
Section 7.1 Experiments, Sample Spaces, and Events Experiments An experiment is an activity with observable results. 1. Which of the follow are experiments? (a) Going into a room and turning on a light.
More informationSTAT Statistics I Midterm Exam One. Good Luck!
STAT 515  Statistics I Midterm Exam One Name: Instruction: You can use a calculator that has no connection to the Internet. Books, notes, cellphones, and computers are NOT allowed in the test. There are
More informationMAT Midterm Review
MAT 120  Midterm Review Name Identify the population and the sample. 1) When 1094 American households were surveyed, it was found that 67% of them owned two cars. Identify whether the statement describes
More informationUnit 6: Probability Summative Assessment. 2. The probability of a given event can be represented as a ratio between what two numbers?
Math 7 Unit 6: Probability Summative Assessment Name Date Knowledge and Understanding 1. Explain the difference between theoretical and experimental probability. 2. The probability of a given event can
More informationChapter 4: Probability and Counting Rules
Chapter 4: Probability and Counting Rules Before we can move from descriptive statistics to inferential statistics, we need to have some understanding of probability: Ch4: Probability and Counting Rules
More informationName. Is the game fair or not? Prove your answer with math. If the game is fair, play it 36 times and record the results.
Homework 5.1C You must complete table. Use math to decide if the game is fair or not. If Period the game is not fair, change the point system to make it fair. Game 1 Circle one: Fair or Not 2 six sided
More information1. Determine whether the following experiments are binomial.
Math 141 Exam 3 Review Problem Set Note: Not every topic is covered in this review. It is more heavily weighted on 8.48.6. Please also take a look at the previous Week in Reviews for more practice problems
More informationAlgebra II Chapter 12 Test Review
Sections: Counting Principle Permutations Combinations Probability Name Choose the letter of the term that best matches each statement or phrase. 1. An illustration used to show the total number of A.
More informationUnit 9: Probability Assignments
Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose
More information1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2)
Math 1090 Test 2 Review Worksheet Ch5 and Ch 6 Name Use the following distribution to answer the question. 1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2) 3) Estimate
More information10.2 Theoretical Probability and its Complement
warmup after 10.1 1. A traveler can choose from 3 airlines, 5 hotels and 4 rental car companies. How many arrangements of these services are possible? 2. Your school yearbook has an editor and assistant
More informationProbability I Sample spaces, outcomes, and events.
Probability I Sample spaces, outcomes, and events. When we perform an experiment, the result is called the outcome. The set of possible outcomes is the sample space and any subset of the sample space is
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Math 1332 Review Test 4 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Solve the problem by applying the Fundamental Counting Principle with two
More informationSection 7.2 Definition of Probability
Section 7.2 Definition of Probability Question: Suppose we have an experiment that consists of flipping a fair 2sided coin and observing if the coin lands on heads or tails? From section 7.1 weshouldknowthatthereare
More informationWhen a number cube is rolled once, the possible numbers that could show face up are
C3 Chapter 12 Understanding Probability Essential question: How can you describe the likelihood of an event? Example 1 Likelihood of an Event When a number cube is rolled once, the possible numbers that
More informationMath Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.
Math 166 Fall 2008 c Heather Ramsey Page 1 Math 166  Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 3.2  Measures of Central Tendency
More informationMath Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.
Math 166 Fall 2008 c Heather Ramsey Page 1 Math 166  Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 3.2  Measures of Central Tendency
More informationQuiz 2 Review  on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II??
Quiz 2 Review  on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II?? Some things to Know, Memorize, AND Understand how to use are n What are the formulas? Pr ncr Fill in the notation
More information1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?
1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 2. A particular brand of shirt comes in 12 colors, has a male version and a female version,
More information, the of all of a probability experiment. consists of outcomes. (b) List the elements of the event consisting of a number that is greater than 4.
41 Sample Spaces and Probability as a general concept can be defined as the chance of an event occurring. In addition to being used in games of chance, probability is used in the fields of,, and forecasting,
More informationNovember 8, Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance November 8, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Crystallographic notation The first symbol
More informationExam 2 Review F09 O Brien. Finite Mathematics Exam 2 Review
Finite Mathematics Exam Review Approximately 5 0% of the questions on Exam will come from Chapters, 4, and 5. The remaining 70 75% will come from Chapter 7. To help you prepare for the first part of the
More information2 C. 1 D. 2 4 D. 5 3 C. 25 D. 2
Discrete Math Exam Review Name:. A bag contains oranges, grapefruits, and tangerine. A piece of fruit is chosen from the bag at random. What is the probability that a grapefruit will be chosen from the
More informationA 21.0% B 34.3% C 49.0% D 70.0%
. For a certain kind of plant, 70% of the seeds that are planted grow into a flower. If Jenna planted 3 seeds, what is the probability that all of them grow into flowers? A 2.0% B 34.3% C 49.0% D 70.0%
More informationMath 1342 Exam 2 Review
Math 1342 Exam 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) If a sportscaster makes an educated guess as to how well a team will do this
More informationMTH 103 H Final Exam. 1. I study and I pass the course is an example of a. (a) conjunction (b) disjunction. (c) conditional (d) connective
MTH 103 H Final Exam Name: 1. I study and I pass the course is an example of a (a) conjunction (b) disjunction (c) conditional (d) connective 2. Which of the following is equivalent to (p q)? (a) p q (b)
More informationChapter 5 Probability
Chapter 5 Probability Math150 What s the likelihood of something occurring? Can we answer questions about probabilities using data or experiments? For instance: 1) If my parking meter expires, I will probably
More informationReview of Probability
Review of Probability 1) What is probability? ( ) Consider the following two problems: Select 2 cards from a standard deck of 52 cards with replacement. What is the probability of obtaining two kings?
More informationWeek 1: Probability models and counting
Week 1: Probability models and counting Part 1: Probability model Probability theory is the mathematical toolbox to describe phenomena or experiments where randomness occur. To have a probability model
More informationThis unit will help you work out probability and use experimental probability and frequency trees. Key points
Get started Probability This unit will help you work out probability and use experimental probability and frequency trees. AO Fluency check There are 0 marbles in a bag. 9 of the marbles are red, 7 are
More informationProbability Review 41
Probability Review 41 For the following problems, give the probability to four decimals, or give a fraction, or if necessary, use scientific notation. Use P(A) = 1  P(not A) 1) A coin is tossed 6 times.
More informationProbability WarmUp 2
Probability WarmUp 2 Directions Solve to the best of your ability. (1) Write out the sample space (all possible outcomes) for the following situation: A dice is rolled and then a color is chosen, blue
More information