EE 330 Lecture 34. Guest Lecture. Why are there so many Op Amps?

Similar documents
Op Amp Technology Overview. Developed by Art Kay, Thomas Kuehl, and Tim Green Presented by Ian Williams Precision Analog Op Amps

Hello, and welcome to the op amp technology overview, developed by Art Kay, Thomas Kuehl, and Tim Green of TI s Precision Op Amps group.

Input Offset Voltage (V OS ) & Input Bias Current (I B )

2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps

Amplifier Selection Guide 1Q 2003

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

MAX V, 50MHz, Low-Offset, Low-Power, Rail-to-Rail I/O Op Amp

Precision, Low-Power and Low-Noise Op Amp with RRIO

QUAD 5V RAIL-TO-RAIL PRECISION OPERATIONAL AMPLIFIER

Low Cost, General Purpose High Speed JFET Amplifier AD825

Dual Picoampere Input Current Bipolar Op Amp AD706. Data Sheet. Figure 1. Input Bias Current vs. Temperature

Low-Power, High-Efficiency, Single/Dual, Rail-to-Rail I/O Op Amps

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier

Precision Amplifiers (V OS < 1 mv, Bandwidth < 50 MHz)

AD864/AD8642/AD8643 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Absolute Maximum Ratings... 5 ESD Caution... 5 Typical Perfo

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643

EPAD OPERATIONAL AMPLIFIER

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

Ultralow Power, Rail-to-Rail Output Operational Amplifiers OP281/OP481

Dual Picoampere Input Current Bipolar Op Amp AD706

U U W PACKAGE I FOR ATIO. RH1498M 10MHz, 6V/µs, Dual Rail-to-Rail Input and Output Precision C-Load Op Amp DESCRIPTIO BUR -I CIRCUIT

Dual Picoampere Input Current Bipolar Op Amp AD706

TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... 2 Specifications... 3 Absolute Maximum

LF411 Low Offset, Low Drift JFET Input Operational Amplifier

Precision OPERATIONAL AMPLIFIER

High Precision OPERATIONAL AMPLIFIERS

Dual Picoampere Input Current Bipolar Op Amp AD706

Quad Picoampere Input Current Bipolar Op Amp AD704

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS

Low Power, Precision FET-INPUT OPERATIONAL AMPLIFIERS

Precision, High-Bandwidth Op Amp

Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER

V CC OUT MAX9945 IN+ V EE

1.8 V, Micropower, Zero-Drift, Rail-to-Rail Input/Output Op Amp ADA4051-2

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

Precision, Low Power, Micropower Dual Operational Amplifier OP290

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP

Dual Operational Amplifiers

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. LT1498/LT MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps

Precision Micropower Single Supply Operational Amplifier OP777

Dual Bipolar/JFET, Audio Operational Amplifier OP275*

Quad Picoampere Input Current Bipolar Op Amp AD704

Low Noise, CMOS Rail-to-Rail Output Operational Amplifiers. 1.8 V to 5 V Auto-Zero Instrumentation Amplifier with Shutdown

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers AD8610/AD8620

Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER

1.8 V Low Power CMOS Rail-to-Rail Input/Output Operational Amplifier AD8515

Micropower Precision CMOS Operational Amplifier AD8500

24 MHz Rail-to-Rail Amplifiers with Shutdown Option AD8646/AD8647/AD8648

UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS

Quad Picoampere Input Current Bipolar Op Amp AD704

FEATURES APPLICATIONS TYPICAL APPLICATION LT1466L/LT1467L Micropower Dual/Quad Precision Rail-to-Rail Input and Output Op Amps

300MHz, Low-Power, High-Output-Current, Differential Line Driver

V CC OUT MAX9945 IN+ V EE

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Low-Power Quad Operational Amplifier FEATURES: DESCRIPTION: Memory. Logic Diagram. RAD-PAK technology-hardened against natural space radiation

CA3140, CA3140A. 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output. Description. Features. Applications. Ordering Information

SINGLE-SUPPLY, RAIL-TO-RAIL OPERATIONAL AMPLIFIERS

1.8 V, Micropower, Zero-Drift, Rail-to-Rail Input/Output Op Amp ADA4051-1/ADA4051-2

TP5551/TP5552 / TP5554

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482

I/O Op Amps with Shutdown

LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier ADA4665-2

Precision High-Speed Difet OPERATIONAL AMPLIFIERS

Matched Monolithic Quad Transistor MAT04

OBSOLETE. High Performance, BiFET Operational Amplifiers AD542/AD544/AD547 REV. B

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Precision, Low Power, Micropower Dual Operational Amplifier OP290

EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp

LM4562 Dual High Performance, High Fidelity Audio Operational Amplifier

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

4 AD548. Precision, Low Power BiFET Op Amp

LF442 Dual Low Power JFET Input Operational Amplifier

High Precision OPERATIONAL AMPLIFIERS

16 V, 4 MHz RR0 Amplifiers AD8665/AD8666/AD8668

Single Supply, MicroPower INSTRUMENTATION AMPLIFIER

Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER

Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4

LMC2001 High Precision, 6MHz Rail-To-Rail Output Operational Amplifier

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER

High Speed FET-INPUT OPERATIONAL AMPLIFIERS

TL072 TL072A - TL072B

Low-Power Single/Dual, Rail-to-Rail Op Amps

CHARACTERIZATION OF OP-AMP

Low Noise, Low Distortion INSTRUMENTATION AMPLIFIER

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

Micropower, Rail-to-Rail, 300kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

Precision, 16 MHz CBFET Op Amp AD845

Dual operational amplifier

Lecture 14 Interface Electronics (Part 2) ECE 5900/6900 Fundamentals of Sensor Design

Dual, High Voltage Current Shunt Monitor AD8213

V OUT. +Denotes lead(pb)-free/rohs-compliant package. PART

Concepts to be Reviewed

High Voltage and Temperature Auto Zero Op-Amp Cell Features Applications Process Technology Introduction Parameter Unit Rating

Transcription:

EE 330 Lecture 34 Guest Lecture Why are there so many Op Amps? by Jerry Doorenbos of Texas Instruments 1

Op Amp Technology Overview Developed by Art Kay, Thomas Kuehl, and Tim Green Precision Amplifiers Applications Engineering Texas Instruments Tucson 2

Bipolar vs. CMOS / JFET Transistor technologies Bipolar, CMOS and JFET Vos and Ib and Drift Laser Trim, Package Trim, and Zero Drift Noise JFET, MOSFET, and Bipolar (1/f noise) Input Structures Rail-to-Rail, Charge Pump Chopper (Zero-Drift) Chopper Noise Sources Input crossover distortion 3

Bipolar, CMOS, JFET (Op Amp input device structures) c Ic + d Id + d Id + b + Ib Vce Vbe - Ie e - g + Vgs - s Vds - g - Vds Vgs + - NPN Bipolar N-Channel CMOS N-Channel JFET s 1) Current Controlled Device 2) Current Controlled Current Source 3) Ic = Ib *hfe 4) Ib = 0A turns bipolar off 5) Base is op amp +/- input 6) Highest Op Amp input current 1) Voltage Controlled Device 2) Voltage Controlled Resistor 3) Vgs > 2V controls Rds_on 4) Vgs=0V turns MOSFET off 5) Gate is op amp +/- input 6) Very Low Op Amp input current 1) Voltage Controlled Device 2) Voltage Controlled Resistor 3) 0V< Vgs < -2V controls Rds_on 4) Vgs < -2V turns JFET off 5) Gate is op amp +/- input 6) Very Low Op Amp input current 4

Vos & Ib: Model and Hand Calculations R eq = R f R 1 R f + R 1 G n = R f R 1 + 1 V o_vos = V os G n V oib + = I b R s G n V oib = I b R eq G n Equiv Noise Outpu Outpu Outpu Voltage offset adds a dc error to Vout The offset contributed is unique to each device V o_os_ib = V o_vos + V oib + + V oib 5 Outpu

What s inside the Amplifier Bipolar vs. CMOS VOS and Drift Trimming Bipolar input op amp CMOS input op amp Trim these resistors for Vos & Vos drift for CMOS Trim these resistors for Vos & Vos drift for Bipolar 6

Bipolar and CMOS Op amp examples Model Technology Railtorail Supply V+ to V- Op Current Offset Offset drift Bias Current Voltage noise 1 khz GBW Slew rate OPA211 Bipolar RRO 4.5-36 V 3.6 ma 60 uv 0.35 uv/ C 60 na 1.1 nv/ Hz 45 MHz 27 V/us OPA350 CMOS RRIO 2.7-5.5 V 5.2 ma 150 uv 4 uv/ C 0.5 pa 16 nv/ Hz 38 MHz 22 V/us OPA2x11 - Ultra low Noise, low power, precision op amp Ideal for driving high-precision 16-bit ADCs or buffering the output of high-resolution digital-toanalog converters DACs OPAx350 High-Speed, Single-Supply, Rail-to-Rail I/O High-performance ADC driver, very high C Load drive capability 7

Inherent Drift of Bipolar vs. CMOS Drift is proportional to offset When Vos trimmed to zero, drift is near zero. Simple one step trim: just trim offset Frequently more curvature than bipolar When Vos trimmed to zero, drift remains. More complex two part trim: drift first, then offset Offset and drift trims interact, difficult to optimize both 8

Laser Trim What does it look like? Bipolar, CMOS, JFET can be used o Only way to trim bipolar Trimmed in wafer form before package Laser makes narrow cuts in resistor Increases resistance continuously Circuit can be active, but laser may disturb circuit function requires cutting in bursts (long test time) Generally each trim has a pair of resistors for bidirectional trim 9

Bipolar vs. CMOS Op amps that utilize thin-film resistor laser trimming for improved offset and drift Model Technology Railto-rail Supply V+ to V- Op Current Offset Offset drift Bias Current Voltage noise 1 khz GBW Slew rate OPA1612 Bipolar Out 4.5 36 V 3.6 ma 100 uv 1 uv/ C 60 na 1.1 nv/ Hz 40 MHz 27 V/us OPA320S LV CMOS RRIO 1.8 5.5 V 1.5 ma 40 uv 1.5 uv/ C 0.2 pa 8.5 nv/ Hz 20 MHz 10 V/us OPA1612 - SoundPlus High-Performance, Bipolar-Input Audio Op Amp Achieves very low noise density with an ultralow distortion of 0.000015% at 1 khz. Rail-to-rail output swing to within 600 mv with a 2-kΩ load OPA320S - 20-MHz, Low-Noise, RRI/O, Low operating current, with shutdown A combination of very low noise, high gain-bandwidth, and fast slew make it ideal for signal conditioning and sensor amplification requiring high gain 10

Package level electronic trim, e-trim TM CMOS op amps only due to digital circuitry requirements Standard pinout Trim data is entered through output current load Blow and set internal fuses Disable trim mechanism after the trim is completed No customer access to trim function Programmed fuses are read at each poweron 11

e-trim TM OpAmps: OPA376 vs OPA192 Model Technology Railtorail Supply V+ to V- Op Current Offset Offset drift Bias Current Voltage noise 1 khz GBW Slew rate OPA376 OPA192 LV CMOS HV CMOS RRIO 2.2 5.5 V 760 ua 5 uv 0.26 uv/ C 0.2 pa 7.5 nv/ Hz 5.5 MHz 2 V/us RRIO 8 36 V 1 ma 5 uv 0.1 uv/ C 5 pa 5.5 nv/ Hz 10 MHz 20 V/us OPA376 Precision, Low-noise, Low offset, Low quiescent current Well-suited for driving SAR ADCs as well as 24-bit and higher resolution converters OPA192 - Precision, 36 V, Low offset, Fast slewing differential input-voltage range to the supply rail high output current (±65 ma) 12

What s inside the Amplifier Bipolar vs. CMOS Understanding I B Bipolar input op amp Ib from diode leakage Ib ±1pA CMOS input op amp Ib from base current 100nA Bipolar input does have ESD cells, but Ib >> I leak 13

Bipolar - Bias Current Cancellation Vcc Ib1 Ib Cancel Circuit R1 R2 Bipolar Ib w/o Ib cancellation Typical 100nA Vin1 Vin2 Σ Σ Q1 Q2 With Ib cancellation 1nA Ib2 IS1 Ib Cancel Circuit 14

Bipolar - Bias Current Cancellation Cancellation vs non-cancellation Model Technology Railtorail Supply V+ to V- Op Curren t Offset Offset drift Bias Current Voltage noise 1 khz GBW Slew rate OPA209 Bipolar with Ib cancel RRO 4.5-36 V 2.2 ma 35 uv 0.05 uv/ C 1 na 4.5 na max 2.2 nv/ Hz 18 MHz 6.4 V/us OPA211 Bipolar w/o Ib cancel RRO 4.5-36 V 3.6 ma 60 uv 0.35 uv/ C 60 na 175 na max 1.1 nv/ Hz 45 MHz 27 V/us OPA209 36 V, low power, noise, offset, drift and input bias current Suitable for fast, high-precision applications. Has fast settling time to 16-bit accuracy OPA2x11 - Ultra low Noise, low power, precision op amp Ideal for driving high-precision 16-bit ADCs, or buffering the output of high-resolution DACs 15

Bipolar vs. CMOS bias current drift (Ib vs Temp) OPA277 bipolar OPA350 CMOS Bipolar amplifier: In this case you see a dramatic increase in bias current at 75 C. CMOS amplifier: In this case you see a dramatic increase in bias current at 25 C. Note the logarithmic vertical bias current scale. Ib about doubles every 10 C. 16

JFET, Bipolar, and CMOS Noise Voltage Noise Current Noise performance CMOS: I n_350 = 4 fa/ Hz JFET: I n_827 = 2.2 fa/ Hz Bipolar: I n_277 = 200 fa/ Hz Note: CMOS current noise has minimal 1/f, but it may be significant in bipolar 17

JFET, Bipolar, and CMOS Noise Model Technology Railtorail Supply V+ to V- Op Current Offset Offset drift Bias Current Voltage noise 1 khz GBW Slew rate OPA827 JFET + Bipolar No 8 36 V 4.8 ma 75 uv 0.1 uv/ C 3 pa 4 nv/ Hz 22 MHz 28 V/us OPA227 Bipolar No 10 36 V 3.7 ma 10 uv 0.3 uv/ C 2.5 na 3 nv/ Hz 8 MHz 2.3 V/us OPA350 CMOS RRIO 2.7 5.5 V 5.2 ma 150 uv 4 uv/ C 0.5 pa 16 nv/ Hz 38 MHz 22 V/us OPA827 - Low-Noise, High-Precision, JFET-Input Precision 16-bit to 18-bit mixed signal systems, transimpedance amplifiers OPA227 - High Precision, Low Noise Ideal for applications requiring both AC and precision DC performance OPAx350 High-Speed, Single-Supply, Rail-to-Rail I/O High-performance ADC driver, very high C Load drive capability 18

OPA703 Complementary CMOS Rail-to-Rail +V S 200 V IN - V IN + Q 1 Q 2 Q 3 Q 4 Input Offset Voltage (µv) 100 0-100 -200-300 0.0 1.0 2.0 3.0 4.0 5.0 -V S Common Mode Voltage (V) 19

Complementary CMOS Rail-to-Rail Abrupt offset change at input P-ch/ N-ch switchover point Model Technology Railtorail Supply V+ to V- Op Current Offset Offset drift Bias Current CMRR rail-to-rail input PSRR Open-loop Gain OPA703 12 V CMOS RRIO 4-12 V 160 ua 35 uv 4 uv/ C 1 pa 90 db (V+)-0.3 V 20 uv/v 110 db RL = 20 k OPA314 LV CMOS RRIO 1.8 5.5 V 150 ua 60 uv 1 uv/ C 0.4 pa 96 db (V+)-1.3 V 25 uv/v 115 db RL = 2 k 200 Input Offset Voltage (µv) 100 0-100 -200 The CMRR is often specified Over an optimal range having higher performance The full rail-to-rail input range having somewhat reduced performance -300 0.0 1.0 2.0 3.0 4.0 5.0 Common Mode Voltage (V) OPA703 0 to +5 V input, V S ±5 V OPA314 ±2.75 V input, V S ±2.75 V 20

Vout (Volts) Input Offset Voltage (mv) Vout (Volts) + RL 1k Input Crossover Distortion 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 Vout vs. Time 0 0.2 0.4 0.6 0.8 1 1.2 Vin +5V - + Vout Vout vs. Time (Zoomed In) 5 4.2 4.15 2.5 4.1 4.05 0 4 3.95 3.9 3.85 Vout Ideal Vout Crossover -2.5-5 3.8 0.11 0.12 0.13 0.14 0.15 0.16-7.5 0.0 1.0 2.0 3.0 4.0 5.0 Common Mode Voltage (V) 21

OPA365 MOSFET Charge Pump Rail-to-Rail V OUT = +V S + 1.8V Uses charge pump to raise V+ rail and overcome Vsat + Vgs of input PMOS FETs Charge pump switches at 10 MHz which is within op amp 50 MHz GBW Pump design is patented and has very low ripple Charge pump noise is small relative to broadband noise 22

MOSFET Charge Pump Rail-to-Rail Eliminates input stage crossover distortion Model OPA365 OPA322 LV CMOS LV CMOS Technology Railtorail Supply V+ to V- Op Current Offset Offset drift Bias Current CMRR rail-torail input PSRR Open-loop Gain R L = 10 kω RRIO 2.2 5.5 V 4.6 ma 100 uv 1 uv/ C 0.2 pa 120 db 10 uv/v 120 db RRIO 1.8 5.5 V 1.5 ma 500 uv 1.5 uv/ C 0.2 pa 100 db 10 uv/v 130 db OPA365 RRIO, Wide 50 MHz bandwidth, Low distortion, High CMRR Features high performance that is optimized for low voltage, single-supply applications OPA322 RRIO, Wide 20 MHz bandwidth, Low current Features low distortion, 0.0005% THD+N and low noise, 8.5 nv/ Hz at 1 khz Excellent CMRR without the input crossover of traditional complementary P-N MOSFET input stages. Low offset and drift, high CMRR, PSRR, and AOL performances 23

Chopper and Zero Drift MOSFET Rail-to-Rail 200 Chopper and Zero-Drift CMOS Op Amps use complementary input P-ch/ N-ch concept with Digital Calibration for Offset Correction Input Offset Voltage (µv) 100 0-100 -200 No Offset Correction V IN - -300 0.0 1.0 2.0 3.0 4.0 5.0 Common Mode Voltage (V) Q 1 Q 2 200 V IN + -V SUPPLY Q 3 Q 4 Input Offset Voltage (uv) 100 0-100 -200-300 With Offset Correction 0.0 1.0 2.0 3.0 4.0 5.0 Common Mode Voltage (V) 24

Comparing Common Architectures vs. Chopper CMOS Vos/drift Typ Vos (uv) Typ Drift (uv/c) Uncorrected 1000 5 Zero Drift (chopper) 10 0.05 Package Trim 10 0.5 25

Chopper Op Amps Chopper techniques provide low offset voltage, near zero-drift over time and temperature Model Technology Railtorail Supply V+ to V- Op Current Offset Offset drift Bias Current CMRR rail-torail input PSRR Open-loop Gain R L = 10 kω OPA333 OPA188 LV CMOS HV CMOS RRIO 1.8 5.5 V 17 ua 2 uv 0.02 uv/ C 70 pa 130 db 1 uv/v 130 db RRO 4-36 V 425 ua 6 uv 0.03 uv/ C 160 pa 134 db 0.075 uv/v 134 db OPA333-1.8 V, Precision, micropower, Rail-to-Rail Input and Output OPA2188 36 V, Precision, Low-Noise, Rail-to-Rail Output They provide: Excellent CMRR without the crossover of traditional complementary P-N MOSFET input stages Very low offset and drift, high CMRR, PSRR, and AOL performances 26

Summary CMOS vs. Bipolar vs. JFET Parameter CMOS Bipolar JFET Vos Generally higher than bipolar. Complex trim. Inherent 5mV, Trimmed 500uV Can use zero drift tech, or and packagelevel e-trim. Vos Drift Generally higher than bipolar. Complex trim. Very low for chopper op amp design. Ib Low compared with bipolar Ib 1pA @ 25C Ib Drift Doubles every 10C, diode leakage I B_room 1pA, T = 25C I B_hot 1000pA, T = 125C Ibos Large offset current that is comparable to Ib. Don t use resistor to cancel effects. Ib ±1pA, Ibos = ±1pA Generally lower than JFET and CMOS. Laser Trim Only. Inherent 200uV, Trimmed 20uV Inherently linear and easer to trim. Laser Trim Only. Much higher than CMOS and JFET. Can use bias current cancellation. Inherent 100nA, Canceled 1nA Small compared to room temp I B_room 1nA, T = 25C I B_hot 3nA, T = 125C When bias current cancellation is not used Ibos is low relative to Ib. Resistor can help cancel effects. Ib = 100nA, Ibos = ±1nA When bias current cancellation is used Ibos is comparable to Ib. Don t use resistor to cancel effects. Ib = ±1nA, Ibos = ±1nA Generally higher than bipolar. Complex laser trim. Inherent 1mV, Trimmed 100uV Generally higher than bipolar. Complex trim. Laser Trim Only. Low compared with bipolar Ib 1pA @ 25C Doubles every 10C, diode leakage I B_room 1pA, T = 25C I B_hot 1000pA, T = 125C Large offset current that is comparable to Ib. Don t use resistor to cancel effects. Ib ±1pA, Ibos = ±1pA 27

Summary CMOS vs. Bipolar vs. JFET Parameter CMOS Bipolar JFET Broadband Noise Generally higher than bipolar. Noise decreases to the square root of Id. Generally lower than JFET and CMOS. Noise decreases directly with Id. Slightly higher than Bipolar 1/f Noise Generally worse than bipolar. Noise Corner > 1kHz Generally better than CMOS. Noise Corner < 10Hz Generally better than CMOS, but not as good as bipolar. Noise Corner < 100Hz Back-to-Back Diodes May or may not be required. Check Data Sheet! Generally required Not required. Check Data Sheet Integrated Digital? Yes. i.e. Chopper, package trim No No Rail to Rail Input Yes No. Not common. Difficult Rail to Rail Output Very close to the rail. 10mV Close to the rail. 200mV Same as bipolar Output vs. Load Falls off quickly with load. Ron of output transistor. Relatively flat until you reach current limit. Vsat not related to Ron as with CMOS. Same as bipolar 28

How do I Pick An Op Amp? 29

Op Amp Selection 1st Criteria Voltage, Current, and Speed Speed Iq Op Amp Bandwidth - + Supply Voltage 30

Speed Op Amp Selection 2nd Criteria Speed: 1) Bandwidth (1 st ) 2) Slew Rate 3) Output Impedance - + Current: 1) Supply Current (1 st ) 2) Output Current 3) Input Bias Current 4) Input Current Noise Op Amp Other: 1) Package 2) Single, Dual, Quad? 3) Price Voltage: 1) Supply (1 st ) 2) Input Offset Voltage 3) Input Noise Voltage 4) Common Mode Input 5) Output Swing 31

Thank you 32