ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.7

Similar documents
A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

MICRO RING MODULATOR. Dae-hyun Kwon. High-speed circuits and Systems Laboratory

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver

Introduction and concepts Types of devices

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8

An Example Design using the Analog Photonics Component Library. 3/21/2017 Benjamin Moss

Energy harvesting in silicon optical modulators

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.6

High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Comparison of FMCW-LiDAR system with optical- and electricaldomain swept light sources toward self-driving mobility application

Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect

50-Gb/s silicon optical modulator with travelingwave

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 12, DECEMBER

MA4AGSW2. AlGaAs SP2T PIN Diode Switch. MA4AGSW2 Layout. Features. Description. Absolute Maximum Ratings TA = +25 C (Unless otherwise specified)

CMOS-compatible dual-output silicon modulator for analog signal processing

Applications of Cladding Stress Induced Effects for Advanced Polarization Control in Silicon Photonics

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

Silicon Optical Modulator

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.4

Module 16 : Integrated Optics I

A 25 Gb/s Silicon Photonics Platform

Investigation of ultrasmall 1 x N AWG for SOI- Based AWG demodulation integration microsystem

Optical Polarization Filters and Splitters Based on Multimode Interference Structures using Silicon Waveguides

Heinrich-Hertz-Institut Berlin

Semiconductor Optical Communication Components and Devices Lecture 39: Optical Modulators

Si Photonics Technology Platform for High Speed Optical Interconnect. Peter De Dobbelaere 9/17/2012

FEATURES DESCRIPTION ABSOLUTE MAXIMUM RATINGS. T AMB = +25 C ( Unless otherwise specified )

Compact Low-power-consumption Optical Modulator

Light source approach for silicon photonics transceivers September Fiber to the Chip

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation

Electro-Optic Crosstalk in Parallel Silicon Photonic Mach-Zehnder Modulators

InP-based Waveguide Photodetector with Integrated Photon Multiplication

City, University of London Institutional Repository

IBM T. J. Watson Research Center IBM Corporation

Silicon Photonics: an Industrial Perspective

Lecture 9 External Modulators and Detectors

Semiconductor Detector Systems

Chapter 10 WDM concepts and components

Convergence Challenges of Photonics with Electronics

- no emitters/amplifiers available. - complex process - no CMOS-compatible

NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR WAVELENGTH SELEC- TIVE SWITCHING BASED OPTICAL NETWORKS

MODIFIED MILLIMETER-WAVE WILKINSON POWER DIVIDER FOR ANTENNA FEEDING NETWORKS

Analog front-end electronics in beam instrumentation

Bit error rate and cross talk performance in optical cross connect with wavelength converter

ISSCC 2006 / SESSION 10 / mm-wave AND BEYOND / 10.1

High-Speed Optical Modulators and Photonic Sideband Management

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects

Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions

An integrated recirculating optical buffer

CHAPTER 4 RESULTS. 4.1 Introduction

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.8

40Gb/s Optical Transmission System Testbed

Photo-Electronic Crossbar Switching Network for Multiprocessor Systems

AMACH Zehnder interferometer (MZI) based on the

New Waveguide Fabrication Techniques for Next-generation PLCs

Wavelength Interleaving Based Dispersion Tolerant RoF System with Double Sideband Carrier Suppression

Optically reconfigurable balanced dipole antenna

Silicon high-speed binary phase-shift keying modulator with a single-drive push pull high-speed traveling wave electrode

EE 232 Lightwave Devices Optical Interconnects

160-Gb/s Bidirectional Parallel Optical Transceiver Module for Board-Level Interconnects

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

CHAPTER 4. Practical Design

Silicon Photonics in Optical Communications. Lars Zimmermann, IHP, Frankfurt (Oder), Germany

SIMULATIVE INVESTIGATION OF SINGLE-TONE ROF SYSTEM USING VARIOUS DUOBINARY MODULATION FORMATS

Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects

Low-Driving-Voltage Silicon DP-IQ Modulator

InP-based Waveguide Photodetector with Integrated Photon Multiplication

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers

INTELLIGENT OPTICAL CROSS-CONNECT SUBSYSTEM ON A CHIP

Silicon photonics with low loss and small polarization dependency. Timo Aalto VTT Technical Research Centre of Finland

E LECTROOPTICAL(EO)modulatorsarekeydevicesinoptical

Ali A. Hussein Sawsan A. Majid Trevor J. Hall

A low-power, high-speed, 9-channel germaniumsilicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer

Low-voltage, high speed, compact silicon modulator for BPSK modulation

All-optical logic based on silicon micro-ring resonators

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

Supplementary Figures

Low-power 2.5 Gbps VCSEL driver in 0.5 µm CMOS technology

Opto-VLSI-based reconfigurable photonic RF filter

AWG OPTICAL DEMULTIPLEXERS: FROM DESIGN TO CHIP. D. Seyringer

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

High speed silicon Mach-Zehnder modulator

High Voltage Operational Amplifiers in SOI Technology

Optical Wavelength Interleaving

Basic Functional Analysis. Sample Report Richmond Road, Suite 500, Ottawa, ON K2H 5B7 Canada Tel:

Mechanis m Faliures. Group Leader Jepsy 1)Substrate Biasing 2) Minority Injection. Bob 1)Minority-Carrier Guard Rings

A NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR DWDM OPTICAL NETWORKS

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible

Fundamentals of CMOS Image Sensors

Detectors for Optical Communications

ECEN620: Network Theory Broadband Circuit Design Fall 2014

High Temperature Mixed Signal Capabilities

Application Note for LN Modulators

Contents Silicon Photonic Wire Waveguides: Fundamentals and Applications

Overview of technology for RF and Digital Optical Communications

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Transcription:

13.7 A 10Gb/s Photonic Modulator and WDM MUX/DEMUX Integrated with Electronics in 0.13µm SOI CMOS Andrew Huang, Cary Gunn, Guo-Liang Li, Yi Liang, Sina Mirsaidi, Adithyaram Narasimha, Thierry Pinguet Luxtera, Carlsbad, CA Integration of optical functions with CMOS electronics provides a low-cost solution for high-bandwidth fiber-optic links. Prior silicon modulators have been limited to <1GHz bandwidth [1]. Recent efforts have achieved 10Gb/s, but lacked process integration with electronics [2, 3]. In this paper, manufacturable yieldfriendly photonics components combined with electronics using a 0.13µm SOI process for PowerPC processors are described. A 10Gb/s optical modulator integrated with a driver and a 4-channel WDM MUX/DEMUX with integrated tuning circuits that improve manufacturing yield and crosstalk, is presented. C-band (1.5µm) optical waveguides are formed by a high refractive index core of transparent silicon and a cladding of lower refractive index silicon dioxide. The bottom cladding is the buried oxide layer found in the SOI wafer; the top cladding is the first ILD, and the lateral cladding is the field oxide used to isolate transistors. A holographic lens (HL) couples light normal to the surface of the die with <1.5dB loss. HL coupling also allows inexpensive wafer scale testability, a significant cost advantage. Figure 13.7.1 shows an SEM of a fabricated HL and demonstrates how a fiber can be used to illuminate the HL. The modulator uses a free-carrier-effect-based device in a Mach- Zehnder interferometer (MZI). The MZI is intuitively simple: light is split evenly into two arms, and then recombined. Along each of the two arms, the light is phase-modulated (delayed). Differential accumulation of phase ( φ) along each arm causes the recombined light to interfere according to the interferometer equation, P = 0.5 + cos(π/2 + φ)/2. The effect used to modulate optical phase is based on free-carrier plasma dispersion [4]. The transducer is a reverse-biased lateral PIN diode. High-speed modulation is obtained as majority carriers are swept in and out of the optical mode by electrical fields. Thus, the speed of the resulting device is entirely limited by RLC parasitics. This is in contrast to conventional methods based on diffusion/recombination processes of minority carriers in a forward-biased diode. Figure 13.7.2 depicts the phase modulator in one MZI arm. In a lumped configuration, the junction length needed for sufficient phase shift would be parasitic-limited to <10Gb/s. One way to overcome this lumped-rc speed limit is to design a travelingwave electrode. The modulation waveguide with its PN junction is designed as part of the microwave transmission line. The geometry of the microwave transmission line is chosen such that the electrical group delay and the optical phase velocity are approximately matched. On-chip terminations are integrated at the end of the microwave transmission lines to suppress backreflections. The characteristic impedance of the transmission line itself is >25Ω, but when loaded with the PIN diode, the total system achieved 25Ω. The modulator has a length of 2mm, also chosen to ensure that microwave loss would be sufficiently small to obtain a large bandwidth, and that optical insertion loss would be small. At the same time, the 2mm modulator achieves enough phase shift for a favorable extinction ratio at a performance of ~5 /mm/v/arm. A cascoded thin-gate-oxide transistor switch is used at the core of the integrated high-speed modulator driver. A schematic of the driver circuit is shown in Fig. 13.7.3. A pre-driver chain drives the switch transistor, and the cascode device is used to shield the high-performance switch from the relatively high voltages required by the modulator elements. The pull-down switch is used in conjunction with the far-side termination resistor of the CPW transmission line of the MZI device to complete the driver circuitry. The integrated MZI modulator plus driver yields a 10-12 BER with a 2 23-1 PRBS at 10Gb/s. Figure 13.7.4 presents the received optical eye diagram at 10Gb/s. The MZI is biased at quadrature. Performance of the optical modulator is entirely limited by the characteristics of this driver. The device is tested on-wafer using an electro-optical probe card arrangement. The active area for the modulator driver is 0.08mm 2 and the total area is 2.6mm 2 including the 2mm modulator, the termination network, and the pads. A key advantage of integrated electronics and photonics on a single chip is to raise yield of an optical device by electronic control circuitry that compensates process-induced errors. To this effect, an optical 4-channel DWDM AWG with an 8b DAC array is integrated in the same process. The die mircograph is shown in Fig. 13.7.5. The entire AWG plus DAC array is <0.6mm 2 in area. The ability of AWG to generate a desired spectral function depends on the phase relationship between arrayed waveguides. Errors in fabrication of optical waveguides cause changes in their structure that induce random delays to the optical signal. This results in a degraded phase relationship between the waveguides, manifesting itself as crosstalk. Forward-biased PIN junction phase modulators integrated into each arm of the AWG are used to restore the phase relationship. Forward-biased PIN modulators offer greater phase efficiency (90 /ma for a 100µm arm) at the cost of lower speed and higher loss when compared to reverse-biased PIN modulators. Each modulator is driven by an 8b 5/3 segmented DAC. The entire current source array is constructed using I/O-type transistors with body ties. The layout is optimized to enable the DAC to be pitchmatched to the AWG phase modulator array for easy integration. Figure 13.7.6 shows the spectral response of the AWG before and after tuning. The filter function is recovered and the crosstalk suppression is improved by over 16dB. This demonstrates that the on-chip DAC is able to recover a usable filter function from a previously defective AWG. In addition to yield enhancement, this same calibration mechanism is used to compensate for environmentally induced thermal offset during device operation. Acknowledgements: The authors would like to thank Behnam Analui, Erwin Balmater, Drew Guckenberger, Mark Harrison, Ryan Ingram, Daniel Kucharski, and the whole Luxtera team for making this paper opportunity possible. We would also like to thank Jagdeep Shah and DARPA for support under the EPIC program. References: [1]. A. Irace, et al., A. Fast Silicon-on-Silicon Optoelectronic Router Based on a BMFET Device, IEEE J. Select. Topics Quant. Elec., vol. 6, pp. 14-18, 2000. [2]. C.A. Barrios, et al., Electrooptic Modulation of Silicon-on-Insulator Submicrometer-Size Waveguide Devices, IEEE J. Lightwave Technol., vol. 21, pp. 2332-2339, 2003. [3]. L. Liao, et al., High speed silicon Mach-Zehnder modulator, Optics Express, vol. 13, pp. 3129-3135, 2005. [4]. R.A. Soref and B.R. Bennett, Electrooptical Effects in Silicon, IEEE J. Quant. Elec., vol. 23, pp. 123-129, 1987.

ISSCC 2006 / February 7, 2006 / 11:45 AM 10µm fiber core P majority carriers guided light ϕ waveguides N majority carriers Figure 13.7.1: SEM photograph of a holographic lens (upper right corner). Light is coupled from the optical fiber into the waveguides or vice-versa. Figure 13.7.2: Schematic diagram of a phase modulator in one arm of the MZI. Vterm one MZI arm Rterm Vcas predriver In Figure 13.7.3: Integrated driver connected to one MZI arm. Figure 13.7.4: Optical eye of integrated modulator plus driver at 10Gb/s. DAC array optical AWG before after calibration light in Figure 13.7.5: Die shot of DAC array plus AWG element. light out (more taps to the right) Figure 13.7.6: AWG transfer functions before and after tuning with an array of integrated DACs.

10µm fiber core waveguides Figure 13.7.1: SEM photograph of a holographic lens (upper right corner). Light is coupled from the optical fiber into the waveguides or vice-versa.

P guided light majority carriers ϕ N majority carriers Figure 13.7.2: Schematic diagram of a phase modulator in one arm of the MZI.

Vterm one MZI arm Rterm Vcas predriver In Figure 13.7.3: Integrated driver connected to one MZI arm.

Figure 13.7.4: Optical eye of integrated modulator plus driver at 10Gb/s.

DAC array optical AWG calibration light in light out (more taps to the right) Figure 13.7.5: Die shot of DAC array plus AWG element.

before after Figure 13.7.6: AWG transfer functions before and after tuning with an array of integrated DACs.