ATLCE - B5 07/03/2016. Analog and Telecommunication Electronics 2016 DDC 1. Politecnico di Torino - ICT School. Lesson B5: multipliers and mixers

Similar documents
Analog and Telecommunication Electronics

Analog and Telecommunication Electronics

TLCE - A3 08/09/ /09/ TLCE - A DDC. IF channel Zc. - Low noise, wide dynamic Ie Vo 08/09/ TLCE - A DDC

Analog and Telecommunication Electronics

High Speed Communication Circuits and Systems Lecture 10 Mixers

Page 1. Telecommunication Electronics TLCE - A1 03/05/ DDC 1. Politecnico di Torino ICT School. Lesson A1

Analog and Telecommunication Electronics

Analog Circuits and Systems

Experiment 7: Frequency Modulation and Phase Locked Loops Fall 2009

Analog and Telecommunication Electronics

Philadelphia University Faculty of Engineering Communication and Electronics Engineering. Amplifier Circuits-III

Page 1. Telecommunication Electronics ETLCE - A2 06/09/ DDC 1. Politecnico di Torino ICT School. Amplifiers

6.976 High Speed Communication Circuits and Systems Lecture 16 Noise in Integer-N Frequency Synthesizers

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics

Chapter 25: Transmitters and Receivers

Lock-In Amplifiers SR510 and SR530 Analog lock-in amplifiers

RF/IF Terminology and Specs

Analog and Telecommunication Electronics

Lecture 17 - Microwave Mixers

ATLCE - A3 01/03/2016. Analog and Telecommunication Electronics 2016 DDC 1. Politecnico di Torino - ICT School. Lesson A3: BJT Amplifiers

RF Integrated Circuits

OSCILLATORS. Introduction

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics

Berkeley. Mixers: An Overview. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder

Telecommunication Electronics

Advanced RFIC Design ELEN359A, Lecture 3: Gilbert Cell Mixers. Instructor: Dr. Allen A Sweet

Measuring the Speed of Light

IC design for wireless system

Software Defined Radio Forum Contribution

An image rejection re-configurable multi-carrier 3G base-station transmitter

Mixer. General Considerations V RF VLO. Noise. nonlinear, R ON

Analog and Telecommunication Electronics

Amplitude Modulated Systems

Chapter VII. MIXERS and DETECTORS

Instantaneous frequency Up to now, we have defined the frequency as the speed of rotation of a phasor (constant frequency phasor) φ( t) = A exp

Master Degree in Electronic Engineering

Code No: R Set No. 1

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407

Analog and Telecommunication Electronics

Technician License Course Chapter 3 Types of Radios and Radio Circuits. Module 7

UNIT III ANALOG MULTIPLIER AND PLL

Analog and Telecommunication Electronics

LINEAR IC APPLICATIONS

Telecommunication Electronics. Alberto Tibaldi

Page 1. Telecommunication Electronics TLCE - C4 27/10/ DDC 1. Politecnico di Torino ICT School. Lesson C4: signal conditioning

Understanding Mixers Terms Defined, and Measuring Performance

Introduction to Receivers

ENGR-4300 Spring 2008 Test 4. Name SOLUTION. Section 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (24 points) Question II (16 points)

Control of Light and Fan with Whistle and Clap Sounds

DMI COLLEGE OF ENGINEERING

OBJECTIVES EQUIPMENT LIST

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering)

Session 3. CMOS RF IC Design Principles

Part I - Amplitude Modulation

Consumers are looking to wireless

Complex RF Mixers, Zero-IF Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. g(t)e j2πk t dt. G[k] = 1 T. G[k] = = k L. ) = g L (t)e j2π f k t dt.

PROJECT ON MIXED SIGNAL VLSI

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. G[k] = 1 T. g(t)e j2πk t dt. G[k] = = k L. ) = g L (t)e j2π f k t dt.

High Speed Communication Circuits and Systems Lecture 15 VCO Examples Mixers

Telecommunication Electronics

Tutorial on RF (Receiver Fundamentals) Frank Ludwig DESY

Study Guide for the First Exam

Radio Receiver Architectures and Analysis

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS

ADVANCED ANALOG CIRCUIT DESIGN TECHNIQUES

ISSUE: April Fig. 1. Simplified block diagram of power supply voltage loop.

Technician License Course Chapter 3. Lesson Plan Module 7 Types of Radio Circuits

Analog and Telecommunication Electronics

Analog Frequency Synthesizers: A Short Tutorial. IEEE Distinguished Lecture SSCS, Dallas Chapter

Amplifiers. Department of Computer Science and Engineering

HF Receivers, Part 2

ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design

250 MHz, Voltage Output 4-Quadrant Multiplier AD835

High Speed Voltage Feedback Op Amps

High-Linearity CMOS. RF Front-End Circuits

( ) D. An information signal x( t) = 5cos( 1000πt) LSSB modulates a carrier with amplitude A c

Introduction to Surface Acoustic Wave (SAW) Devices

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A 40MHZ TO 900MHZ DIRECT CONVERSION QUADRATURE DEMODULATOR

Low Distortion Mixer AD831

1. What is the unit of electromotive force? (a) volt (b) ampere (c) watt (d) ohm. 2. The resonant frequency of a tuned (LRC) circuit is given by

R (a) Explain characteristics and limitations of op-amp comparators. (b) Explain operation of free running Multivibrator using op-amp.

McGill University. Department. of Electrical and Computer Engineering. Communications systems A

RFIC DESIGN ELEN 351 Lecture 7: Mixer Design

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

TSEK38: Radio Frequency Transceiver Design Lecture 3: Superheterodyne TRX design

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21

RF Mixers. Iulian Rosu, YO3DAC / VA3IUL, A down-conversion system. An up-conversion system

KINGS COLLEGE OF ENGINEERING* DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

Analog and Telecommunication Electronics

ADI 2006 RF Seminar. Chapter VI A Detailed Look at Wireless Signal Chain Architectures

Mixer Goal. Translate the carrier frequency of a RF signal. Conceptually this implies a multiplication: cos. V V t t t.

Estimation and Compensation of IQ-Imbalances in Direct Down Converters

GATE: Electronics MCQs (Practice Test 1 of 13)

3.6 Intersymbol interference. 1 Your site here

Transcription:

Politecnico di Torino - ICT School Lesson B5: multipliers and mixers Analog and Telecommunication Electronics B5 - Multipliers/mixer circuits» Error taxonomy» Basic multiplier circuits» Gilbert cell» Bridge MOS and diode circuits» Balanced mixers AY 2015-16 Analog multipliers Parameters and errors Transconductance multipliers, 1/2/4 quadrant Gilbert cell Diode bridge Mixer parameters Balanced and I/Q mixers Noise, gain Reerences: Elettronica per Telecom.: 2.2.4 Moltiplicatori Analogici Design with Op Amp : 13.2 Analog multipliers 07/03/2016-1 ATLCE - B5-2016 DDC 07/03/2016-2 ATLCE - B5-2016 DDC Frequency translation basics (beats) Werner s relations sina x sinb = 0,5 [cos(a-b) - cos(a+b)] sina x cosb = 0,5 [sin(a-b) + sin(a+b)] cosa x cosb = 0,5 [cos(a-b) + cos(a+b)] Telecom applications Frequency translation: Heterodyne R and T» I, II, conversion, Image rejection mixers Mo-Demodulation» Standard AM mo-demod» Suppressed carrier (DSB), Single Side Band (SSB)» Digital AM (ASK. PAM)» Phase Detector». Mixers and Multipliers Mixers: Frequency translation» Frequency conversion in heterodyne receivers and transmitters Phase detectors» PLL and demodulators Multipliers: Mo-demodulators» AM and PAM modulation and demodulation Variable gain ampliiers (analog computation) digital 07/03/2016-3 ATLCE - B5-2016 DDC 07/03/2016-4 ATLCE - B5-2016 DDC Mixers in the handset Mixers in a GPS receiver Image reject mixer Mixer II RF Mixers (irst conversion) I/Q Mixers (second conversion) 07/03/2016-5 ATLCE - B5-2016 DDC 07/03/2016-6 ATLCE - B5-2016 DDC 2016 DDC 1

Many uses o multipliers: GP2015 Multiplier as mixer Mixers Phase detectors Variable gain ampliier Mixing is achieved by multiplication sena x senb = 0,5 [cos(a-b) cos(a+b)] With sine inputs, the output o a multiplier includes Dierence component Sum component Other terms, caused by nonlinearity and errors Only one term is used (sum or dierence beat) Filters Cancellation 07/03/2016-7 ATLCE - B5-2016 DDC 07/03/2016-8 ATLCE - B5-2016 DDC Ideal multipliers Errors in multipliers: real circuits Ideal multiplier: Vo = Km Vx Vy Sine input signals, requency Fx and Fy Vo spectrum includes only Fx - Fy and Fx + Fy x y-x x y x y+x Ideal multiplier: Vo = Km Vx Vy Sine input signals, requency Fx and Fy Vo spectrum includes only Fx - Fy and Fx + Fy Actual multiplier Oset Vo = Km (Vx + ΔVx) (Vy + ΔVy) + ΔVo Vo = Km Vx Vy + ΔVy Vx + ΔVx Vy + Eo + other terms order >2 Vo = Km Vx Vy + Ex Vx + Ey Vy + Eo +.. Sine input signals, requency Fx and Fy Feedthrough Vo spectrum includes Fx-Fy, Fx+Fy, Fx, Fy, DC + other higher order terms: 2Fx, 2Fx-Fy, 3Fx-2Fy,... Harmonics: M Fx ± N Fy Distortion 07/03/2016-9 ATLCE - B5-2016 DDC 07/03/2016-10 ATLCE - B5-2016 DDC Spectrum with real mixer Vo = Km Vx Vy + Ex Vx + Ey Vy + Eo +. Spurious outputs: eedthrough Input signals reach the output Mainly due to mixer unbalance or signal DC: Vo = Km Vx (Vy + ΔVy) = Km Vx Vy + Km Vx ΔVy x y DC error on Vy (oset) ΔVy causes Vx eedthrough o x a b y-x y y+x d o x y-x y y+x 07/03/2016-11 ATLCE - B5-2016 DDC 07/03/2016-12 ATLCE - B5-2016 DDC 2016 DDC 2

Nonlinearity Lesson B5: multipliers and mixers Nonlinearity causes higher order terms 2x, 2y, 2x+y, 2x-y, 2x+2y, 3x, 3y, 3x+y,.. Can be removed with tuned circuits o a b y-x c y+x d Analog multipliers Parameters and errors Transconductance multipliers, 1/2/4 quadrant Balanced mixer, Gilbert cell Diode bridge Mixer parameters Noise, gain, intermodulation, IP 07/03/2016-13 ATLCE - B5-2016 DDC 07/03/2016-14 ATLCE - B5-2016 DDC Example o mixer with nonlinear circuit BJT ampliier with input Vx on B and Vy on E Eective input voltage: V BE = Vx Vy (or V BE = Vx + Vy) Nonlinearity makes Vx Vy appear in Ic Tuned circuit isolates desired component Constraints on Vx and Vy: V BE > 0, that is Vx > Vy Need DC component high eedthrough errors Merged with input ampliier and local oscillator in (old) low-cost receivers Mixers with nonlinear networks Vi = Vx + Vy (requency Fx and Fy) Vo = Fnonlin(Vi) With power series expansion»vo = A 0 + A 1 (Vx + Vy) + A 2 (Vx+Vy) 2 +.. Vo components» Vx, Vy requency Fx e Fy»Vx Vy requency Fx - Fy and Fx + Fy»Vx 2, Vy 2 requency 2Fx, 2Fy» Other terms requency M Fx + N Fy» Order III intermodulation (2Fx - Fy) Useul component (di or sum beat) isolated by a tuned circuit 07/03/2016-15 ATLCE - B5-2016 DDC 07/03/2016-16 ATLCE - B5-2016 DDC Transconductance multiplier Transconductance circuit - 1 quadrant For small-signal ampliier: Vo = - Vx g m Rc Gain proportional to transconductance g m g m depends rom Ic (Id) Id is controlled by Vy: g m = K Vy V O = g m1 R C g m1 = I C /V T I C g m2 R C Vo = K Rc Vx Vy Single transistor: Vx, Vy > 0: 1 quadrant DC components high eedthrough Dierential circuits: 2/4-quadrants No DC, less eedthrough V O (g m2 /V T )g m1 R C V O K (polarity!) I C g m1 g m2 Limited to low-level signals 07/03/2016-17 ATLCE - B5-2016 DDC 07/03/2016-18 ATLCE - B5-2016 DDC 2016 DDC 3

Transconductance circuit tuned load Transconductance circuit - 2 quadrant Z C (ω) to isolate desired component (sum or di beat) Z C 2-quadrant: dierential Balanced mixer V O = K Z C (ω) and > 0 1 quadrant Feedtrough on and Y! Can be extended to 2/4-quadrant I C No eedthrough rom I = 0, V O = 0 or any ( seen as common mode) DC required on Feedthrough rom 07/03/2016-19 ATLCE - B5-2016 DDC 07/03/2016-20 ATLCE - B5-2016 DDC Dierential and : double balanced mixer No eedthrough on and Exploit g m Can use MOS or BJT Transconductance circuit - 4 quadrant V DD MOS Gilbert cell Output voltage depends on Drain current unbalance; Drain currents depend on input voltage and Source current I 1, I 2 Source current unbalance must depend on input voltage G D S I 1 I 2 07/03/2016-21 ATLCE - B5-2016 DDC 07/03/2016-22 ATLCE - B5-2016 DDC Multipliers with Gilbert cell Linearized dierential stage V I Conversion The dierential V(I) is linear only or low V Limited dynamic range or both inputs» To limit spurious outputs, only small signals Corrective actions Linearize by negative eedback» Re pair in the dierential ampliier Wide range V I converter Compensation o exponential nonlinearity» I = exp(log Vi) I = K Vi Emitter eedback Lower gain Wider input dynamic range I 1 -I 2 = ΔI /(2R E ) Needs matched R E (hard or ICs!) R E R E 07/03/2016-23 ATLCE - B5-2016 DDC 07/03/2016-24 ATLCE - B5-2016 DDC 2016 DDC 4

Wide dynamic V I converter V I dynamic range limits Dierential V I converter I 1 -I 2 = ΔI /R Needs matched current sources (OK or ICs!) Used also or instrumentation ampliiers Errors rom ΔV BE (I E ) Actual voltage drop on R is not Vx V BE change with current unbalance Io matching Beta matching. V BE1 V BE2 07/03/2016-25 ATLCE - B5-2016 DDC 07/03/2016-26 ATLCE - B5-2016 DDC Wide range multiplier: block diagram Complete wide range circuit I V log ΔV = K log Vx Gilbert cell Vz V I2 I1 2 R VY I3 I4 2 R Y Vo ΔIx = K Vx Vx V I wide dynamic Vy V I wide dynamic ΔIy = K Vy VBE5 VBE6 I5 VT e I6 V' V I8 I T 2 e I7 I1 V V 1 VO RC2 2 R R 2IA V 5 6 7 8 I 1 I 2 I 3 I 4 RC VO 2 V VY IA R RY I A I B 07/03/2016-27 ATLCE - B5-2016 DDC 07/03/2016-28 ATLCE - B5-2016 DDC Diode Mixer: single-balanced Single diode Single diode used as switch rom Vx to GND Input Vi = Vx + Vy Small Vx, sign deined by Vy» Diode acts as switch controlled by Vy» Output Vx/0» Multiplication by 0/1 Diode hal-bridge Couple o diodes as switch rom Vx to GND» Diodes act as switches controlled by Vy» Output Vx/0» Multiplication by 0/1 Diode Mixer: double-balanced Couple o diodes Switches Vout between two opposite polarity Vx Output +Vx/-Vx Diode bridge 1 inverts Vx towards the output Diode bridge 2 Sine on Vx, low level signal Squarewave on Vy, large signal Vx + Vy applied to a diagonal Each diode is a switch controlled by Vy Vx direct/inverter on the other diagonal 07/03/2016-29 ATLCE - B5-2016 DDC 07/03/2016-30 ATLCE - B5-2016 DDC 2016 DDC 5

Switch bridge Mixer Switch Mixer Switch bridge (switches /- at output) Command: Same as multiply by ±1 Strong nonlinearity Diode or MOS switches Double-balanced mixer V z analog digital Switches on linked side receive complementary commands The sign o the transer unction is controlled by = H V z = V x Used or high requencies = H = + = L = - = L V z = -V x 07/03/2016-31 ATLCE - B5-2016 DDC 07/03/2016-32 ATLCE - B5-2016 DDC Diode bridge circuits MOS/BJT bridge circuits Vx comes rom a transormer with center tap >> ( has no eect on diode bias) Same structure as diode bridge Input on diagonal H Input Y as command (on B or G) Output rom diagonal V + + + + 07/03/2016-33 ATLCE - B5-2016 DDC 07/03/2016-34 ATLCE - B5-2016 DDC Analog multipliers Parameters and errors Transconductance multipliers, 1/2/4 quadrant Balanced mixer, Gilbert cell Diode bridges Mixer parameters Noise, gain, intermodulation, IP Lesson B5: multipliers and mixers Mixers and ampliiers Mixer seen as ampliier with variable gain (VGA) Constant input = ixed gain or other input Constant Vy ampliier or Vx Constant Vx ampliier or Vy Same requirements as ampliiers No harmonics, no distortion Low noise, wide dynamic Parameters as ampliier + additional 1 db compression, IP2, IP3 Insulation, relection, Mixer-speciic parameters 07/03/2016-35 ATLCE - B5-2016 DDC 07/03/2016-36 ATLCE - B5-2016 DDC 2016 DDC 6

Mixer parameters Ideal multiplier linear mixer Conversion gain IFrms/RFrms Isolation Leakage in unwanted paths Noise igure Nonlinearity Input dynamic range Intermodulation Compression level Intercept Point (order 2, 3, ) Only sum and dierence spectral lines at output ( ), ( Y ) ( - Y, + Y ) Y - Y, + Y x-y y x y+x 07/03/2016-37 ATLCE - B5-2016 DDC 07/03/2016-38 ATLCE - B5-2016 DDC Sine ( Y ), Wideband (F A F B ) Output includes sum and dierence beats spectrum translated around 0 and 2 Y 0 Dierence y Fa Fb beat Ideal Mixer output spectrum Fb-y y 2y y+fb Sum beat Input nonlinearity generates harmonics Inputs to ideal mixer with order 2, 3 terms With multicomponent input signals Vx = Vxa(Fa) + Vxb(Fb), possible intermodulation Same problems as ampliiers Y Mixer and nonlinearity ± Y, 2 Y ±, 3 Y ±,... Y, 2 Y, 3 Y,... 07/03/2016-39 ATLCE - B5-2016 DDC 07/03/2016-40 ATLCE - B5-2016 DDC Eects o mixer nonlinearity Actual mixer real multiplier Input nonlinearity Products among Vx, Vy signals and their harmonics Fx±Fy, 2Fx±Fy, 2Fy±Fx, 2Fy±2Fx nonlinearity harmonics, 2, 3,... Output nonlinearity Products among Vx, Vy signals Harmonics o the product Fx±Fy, 2(Fx±Fy), 3(Fy±Fx), - Y, 2 - Y, -2 Y, 3,... Harmonics beat and intermodulation Inband terms more dangerous (intermodulation) 07/03/2016-41 ATLCE - B5-2016 DDC 07/03/2016-42 ATLCE - B5-2016 DDC 2016 DDC 7

Spectrum with nonlinearities Mixer vs. ampliiers Nonlinearity on Vy: components Y, 2 Y, 3 Y,... Multiple spectral translations: Vx to Y, 2 Y, 3 Y, 0 y y-fb 2y-Fb y Fb 3y-Fb 2y y+fb 4y-Fb 3y 2y+Fb Input signal: Two sine signal, requency 1 and 2 Ampliier output: Same requency Mixer output: Dierence/ sum requency From both: Harmonics: 21, 22, 31,... III ord. beats (intermodulation): 21-2, 22-1,... 07/03/2016-43 ATLCE - B5-2016 DDC 07/03/2016-44 ATLCE - B5-2016 DDC Mixer vs. ampliiers Lesson B5: inal test Good or an ampliier Good or a mixer Which are the techniques usable to build units with predeined nonlinearity? Which is the dierence among 1/2/4 quadrant multipliers? Deine eedthrough in a multiplier How can the Vx eedthrough error be compensated? Which is the main limit o transconductance multipliers? Draw the output spectrum or linear and nonlinear mixers with input signals: Vx: 2,3 + 2,5 MHz (2 components), Vy: 10 MHz An analog multiplier mixer receives on Vx a 100-120 MHz signal, and a pulse sequence (δ) a 25 MHz rate on Vy. Draw the complete output spectrum rom 0 to 400 MHz at the output Vz (assume a ully linear multiplier). 07/03/2016-45 ATLCE - B5-2016 DDC 07/03/2016-46 ATLCE - B5-2016 DDC 2016 DDC 8