First Results of 0.15μm CMOS SOI Pixel Detector

Similar documents
Monolithic Pixel Detector in a 0.15µm SOI Technology

First Results of 0.15µm CMOS SOI Pixel Detector

Introduction to SoI pixel sensor. 27 Jan T. Tsuboyama (KEK) for KEK Detector R&D group Pixel Subgroup

Tests of monolithic CMOS SOI pixel detector prototype INTPIX3 MOHAMMED IMRAN AHMED. Supervisors Dr. Henryk Palka (IFJ-PAN) Dr. Marek Idzik(AGH-UST)

Progress on Silicon-on-Insulator Monolithic Pixel Process

SOI Monolithic Pixel Detector Technology

Deep sub-micron FD-SOI for front-end application

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL

Development of Integration-Type Silicon-On-Insulator Monolithic Pixel. Detectors by Using a Float Zone Silicon

A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector

Measurement results of DIPIX pixel sensor developed in SOI technology

arxiv: v2 [physics.ins-det] 14 Jul 2015

Session 3: Solid State Devices. Silicon on Insulator

Silicon Detectors in High Energy Physics

arxiv: v1 [physics.ins-det] 24 Jul 2015

Lecture #29. Moore s Law


Nuclear Instruments and Methods in Physics Research A

ILC VTX Issues being Addressed

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Simulation of High Resistivity (CMOS) Pixels

2.8 - CMOS TECHNOLOGY

SOFIST ver.2 for the ILC vertex detector

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Silicon on Insulator (SOI) Spring 2018 EE 532 Tao Chen

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic

arxiv: v1 [physics.ins-det] 21 Jul 2015

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

Radiation hardness improvement of FD-SOI MOSFETs for X-ray detector application

Initial Characteristics and Radiation Damage Compensation of Double Silicon-on-Insulator Pixel Device

Development of a monolithic pixel sensor based on SOI technology for the ILC vertex detector

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs

Muon detection in security applications and monolithic active pixel sensors

Alternatives to standard MOSFETs. What problems are we really trying to solve?

MAPS-based ECAL Option for ILC

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness

High Voltage and MEMS Process Integration

Development and Performance of. Kyoto s X-ray Astronomical SOI pixel sensor Sensor

SPECIAL REPORT SOI Wafer Technology for CMOS ICs

Topic 3. CMOS Fabrication Process

X-ray Radiation Hardness of Fully-Depleted SOI MOSFETs and Its Improvement

CMOS Detectors Ingeniously Simple!

Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias

LSI ON GLASS SUBSTRATES

Laser attacks on integrated circuits: from CMOS to FD-SOI

MONOLITHIC pixel devices are an ultimate dream for

3D SOI elements for System-on-Chip applications

on-chip Design for LAr Front-end Readout

D_RD_4: R&D on the new generation of Large area Silicon tracking systems

Improving CMOS Speed and Switching Energy with Vacuum-Gap Structures

SOI technology platforms for 5G: Opportunities of collaboration

The HGTD: A SOI Power Diode for Timing Detection Applications

3D devices for the ILC

INTRODUCTION: Basic operating principle of a MOSFET:

PoS(Vertex 2011)043. SOI detector developments

Christian Boit TUB Berlin University of Technology Sect. Semiconductor Devices. 1

Chapter 3 Basics Semiconductor Devices and Processing

6. LDD Design Tradeoffs on Latch-Up and Degradation in SOI MOSFET

Development of CMOS pixel sensors for tracking and vertexing in high energy physics experiments

EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

Power FINFET, a Novel Superjunction Power MOSFET

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers

Semiconductor TCAD Tools

irst: process development, characterization and first irradiation studies

Substrate Noise Isolation Improvement by Helium-3 Ion Irradiation Technique in a Triple-well CMOS Process

FUTURE PROSPECTS FOR CMOS ACTIVE PIXEL SENSORS

Layout of a Inverter. Topic 3. CMOS Fabrication Process. The CMOS Process - photolithography (2) The CMOS Process - photolithography (1) v o.

A new Vertical JFET Technology for Harsh Radiation Applications

Newer process technology (since 1999) includes :

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type.

IOLTS th IEEE International On-Line Testing Symposium

Basic Fabrication Steps

R D 5 3 R D 5 3. Recent Progress of RD53 Collaboration towards next generation Pixel ROC for HL_LHC

Signal Integrity Design of TSV-Based 3D IC

Quality Assurance for the ATLAS Pixel Sensor

Thin Silicon R&D for LC applications

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

This Week s Subject. DRAM & Flexible RRAM. p-channel MOSFET (PMOS) CMOS: Complementary Metal Oxide Semiconductor

Ryu et al. IEEE NSS 2010, Conf. Record (2010) Ryu et al. IEEE TNS 58, 2528 (2011) Nakashima et al. TIPP 2011 (2011) Submitted

ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs. Lecture Outline

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations

Design and characterisation of a capacitively coupled HV-CMOS sensor for the CLIC vertex detector

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

Jan Bogaerts imec

Development of Pixel Detectors for the Inner Tracker Upgrade of the ATLAS Experiment

Liejian Chen (IHEP) On behalf of IHEP ATLAS Group

PERSPECTIVES FOR DISRUPTIVE 200MM/8-INCH GAN POWER DEVICE AND GAN-IC TECHNOLOGY DR. DENIS MARCON SR. BUSINESS DEVELOPMENT MANAGER

Basic Layout Techniques

Active Pixel Sensors Fabricated in a Standard 0.18 um CMOS Technology

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

+1 (479)

Transcription:

First Results of 0.15μm CMOS SOI Pixel Detector International Symposium on Detector Development SLAC, CA, April 5, 2006 KEK Detector Technology Project : [SOIPIX Group] Yasuo Arai (KEK) Y. Arai Y. Ikegami H. Ushiroda Y. Unno O. Tajima T. Tsuboyama S. Terada M. Hazumi H. Ikeda A K. Hara B H. Ishino C T. Kawasaki D Gary Varner E, Elena Martin E, Hiro Tajima F KEK JAXA A U. Tsukuba B TIT C Niigata U. D U. Hawaii E, SLAC F 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 1

1. Introduction What is Silicon-On-Insulator? 2. SOI Pixel Development at KEK 3. Specific Issues on SOI Pixel TCAD Simulation 4. Test Results 5. Summary OUTLINE 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 2

1. Introduction What is Silicon-On-Insulator? A thin layer (50nm ~ 100μm) of Si layered on SiO 2 Higher speed (up to 15%) and Lower power (up to 20%) over Bulk CMOS. 1μm Transistor OKI Electric Industry Co., Ltd. 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 3

Feature of SOI-CMOS Devices Full Dielectric Isolation : Latchup Free, Small Area Low Junction Capacitance : High Speed, Low Power Low Leakage, Low Vth Shift : High Temp. (~300 ºC) Application High Soft Error Immunity : Rad-Hard application Bulk CMOS SOI CMOS (Ref. 'SOI Technology' by Jean-Pierre Colinge, Springer) 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 4

PD vs. FD IBM PowerPC, AMD Athlon, Sony Cell OKI Radio Controlled Wrist Watch (CASIO) 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 5

SOI Wafer Fabrication(UNIBOND TM, SOITEC) microbubbles hydrophilic bonding ~500 o C CMOS (Low R) Sensor (High R) 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 6

2.SOI Pixel Development at KEK Last spring, New Detector R&D projects were called at KEK, and we proposed Development of SOI (Silicon-On-Insulator) Pixel Detector. Main members consist of Belle and ATLAS silicon detector group. Hybrid Pixel Detector (need many bump bondings) SOI Pixel Detector Monolithic Detector with Sensor(Hi-R) and Electronics(Low-R) 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 7

Feature of Our SOI Pixel Detector Using Commercial 0.15μm FD-SOI process (OKI Elec. Ind.). SOI Wafer (SOITEC Hi-R, 150 mmφ) Top Si : Cz, ~18 Ω-cm, p-type, 50 nm thick Buried Oxide: 200 nm thick Handle wafer: Cz Hi-R >1k Ω-cm (No type assignment by supplier), 650 μm thick (thinned after process <350μm) Multi Project Wafer (Masks are shared with other design) + additional process step. Add only 3 mask layers to create sensor (p+, n+, and contact to substrate). Back side is plated with Al (200 nm). 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 8

History 05. 6: OKI agreed on SOIPIX development with us. 05.10: 3 x 2(for p/n substrate) + 3 chips (total 9 chips) submitted. (32x32 small pixel, 4x4 large pixel, Short strip, Tr TEG...) 05.12: Test of contact fabrication. 06. 2: Test of p-n junction fabrication. 06.3 middle : Process ends. 06.3.30 Bare Chip Delivered. (-> so the results are very preliminary) TOP Si ~50nm Electronics contact p-n junction BOX (Buried Oxide) 200nm Sensor (High Resistivity) p+ n+ 350um Al (2000A) pixel pixel 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 9

Small Pixel TEG CMOS Active Pixel Sensor Type 20 μm x 20 μm 32 x 32 pixels 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 10

IHXCP (Imaging Hard X-Ray Compton Polarimeter) TEG U of Hawaii & SLAC set baseline VDD VDD + threshold DAC 8 12 Vbase Row enable Thresh Collection electrode + Row hit VIsrc Hold sample Analog buffer Target Specification Pixel Size 200 x 200 μm Pixel Array (Detector) Size 2.1 x 2.1 cm Noise <=10 e- Global Trigger Rate 500 Hz Single Pixel Rate 10? mili-hz Trigger Threshold 0.5 kev Trigger Latency 1-2 μs Power 200 μw/pixel ADC precision 12 bits Analog sample (bussed) Sel Column Column Hit 4 x 4 pixels 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 11

3. Specific Issues on SOI Pixel n+, p+ implant Formed with Tr Source/Drain not to increase number of masks. Thinning Wafer is thinned from 650um to 350um. Further thinning is possible. Back Side process No implant on back side. Just add Al (2000 A) Plating. Thermal Donor generation Type of the high-r wafer may change by TD generation during process. We prepared both p & n substrate designs. Back Gate Effect to SOI Tr Substrate works as back gate, so the voltage must be low under Tr. All Tr are placed within Guard Ring, and body is tied to VDD/VSS. 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 12

3D Process/Device Simulator ENEXSS Developed by SELETE (Japan Consortium) ( http://www.selete.co.jp/ ) Full 3D simulation SOI NMOS source BOX gate drain α particle injection Useful to get Field Map Device Characteristics Signal generated by particle, etc. 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 13

Back Bias Simulation TCAD: ENEXSS NMOS BOX handle wafer Threshold voltage (V) 0.5 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 V backbias supplied here -0.4-20 -20-14 -10-8 -2 0 4 +10 10 16 +20 Backbias (V) V B (V) With back bias > 8V, NMOS or PMOS become always ON. Voltage of substrate under Tr must be kept low. 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 14

4.Test Results MPW Wafer 150 mmφ 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 15

2.5 mm TEG Chip Layout 4 electrods/pixel Center of pixel is open for Light Test 20 μm 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 16

n+ contact Contact & Sheet Resistance p+ contact Hi-R (> 1k Ωcm) Std. wafer (p+, ~13 Ωcm) Hi-R (> 1k Ωcm) Std. wafer (p+, ~13 Ωcm) [Sheet R] n+ : 33 Ω/square p+ : 136 Ω/square [Contact] (0.16x0.16um 2 ) n+ : 87 Ω p+ : 218 Ω 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 17

p-n junction I-V characteristics p+(center) - n+(guard) p+(center) - n+ (guard) & n+(center) - p+(guard) n+(center) - p+(guard) 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 18

n+ / p+ --- back I-V characteristics p+ - back n+ - back n+(center) back is Ohmic Substrate is n-type 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 19

Substrate Resistivity [before process] No type assign, > 1 kωcm Very Preliminary! [after process] (4-points measurement) n-type, ρ ~700 Ωcm (->N B ~6x10 12 cm -3 ) 10-6 I-V Characteristic 10-7 10-8 10um x 460um strip I < 1nA @Vdet = 56 V Depletion ~ 100 μm? I[A] Vdet[V] 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 20 10-9 10-10 10-11 10-12 0 10 20 30 40 50 60

5.Summary We have started development of Monolithic SOI Pixel Detector. The detector has sensor in high-resistive Si and CMOS circuit in lowresistive Si. We are using commercial (OKI 0.15 μm SOI) process with commercial wafer (SOITEC Hi-R) with only adding 3 masks. 3-D TCAD simulations for sensor/device study are being done with ENEXSS Good substrate contact and p-n junction are confirmed with the first run wafer. We found type of handle wafer is n, and have enough resistivity. 9 kinds of TEG chips are received at the end of March, and showing promising results. Detailed tests will be done soon. We would like to apply this technique to Super-B, SLHC, ILC and X- ray detectors. 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 21

補足 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 22

'05 10 Submission Layouts 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 23

VDECTEG1 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 24

IHXCP TEG 4x4 array IHXCP pixels Digitizing Trigger/ Encoding 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 25

2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 26

Previous Activity Processed in Lab. with ~3μm technology. Ended at 2004? 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 27

1 After Gate stack formation SOI SOI Pixel Process step flow Box Handling wafer 650um 2 Box Window photo lithography and etching Handling wafer 3 Source/Drain Implantation followed by S/D annealing and Salicidation Handling wafer n+ p+ 4 1 st ILD (interlayer dielectrics) filling and CMP planarization Handling wafer 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 28

5 Contact etching Handling wafer 6 Contact plug filling and 1 st Metal formation Handling wafer 650um 7 3 ~ 5Metal formation followed by Backside polishing and Al coating Handling wafer p+ n+ 250~350um Al 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 29

Side View n+ on p-- p+ on n-- 2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC) 30