Lecture (04) BJT Amplifiers 1

Similar documents
By: Dr. Ahmed ElShafee

Lecture (06) BJT Amplifiers 3

Lecture (06) BJT Amplifiers 3

Lecture (05) BJT Amplifiers 2

Lab 4. Transistor as an amplifier, part 2

Chapter 5 Transistor Bias Circuits

By: Dr. Ahmed ElShafee

Chapter 6. BJT Amplifiers

Lecture (09) Bipolar Junction Transistor 3

Lecture (07) BJT Amplifiers 4 JFET (1)

EXPERIMENT 1: LOW AND HIGH FREQUENCY REGION ANALYSIS OF BJT AMPLIFIERS

Electrical, Electronic and Digital Principles (EEDP) Lecture 5. CE Amplifier, Coupling, and Multistage Amplifiers باسم ممدوح الحلوانى

Lecture (01) Transistor operating point & DC Load line

Chapter Two "Bipolar Transistor Circuits"

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB

E84 Lab 3: Transistor

EXPERIMENT 10: Power Amplifiers

REVIEW TRANSISTOR BIAS CIRCUIT

Electrical, Electronic and Digital Principles (EEDP) Lecture 3. Other BJT Biasing Techniques باسم ممدوح الحلوانى

Electrical, Electronic and Digital Principles (EEDP) Lecture 3. Other BJT Biasing Techniques باسم ممدوح الحلوانى

ECE 255, MOSFET Amplifiers

Bipolar Junction Transistors

Exam Write down one phrase/sentence that describes the purpose of the diodes and constant current source in the amplifier below.

Electronic Circuits - Tutorial 07 BJT transistor 1

Lecture (08) Bipolar Junction Transistor (2)

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward

2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS

Gechstudentszone.wordpress.com

Module-1 BJT AC Analysis: The re Transistor Model. Common-Base Configuration

After the initial bend, the curves approximate a straight line. The slope or gradient of each line represents the output impedance, for a particular

Electronic Circuits II Laboratory 01 Voltage Divider Bias

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III SEMESTER EC 6304 ELECTRONIC CIRCUITS I. (Regulations 2013)

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS

I C I E =I B = I C 1 V BE 0.7 V

Electronic Circuits EE359A

High Current Amplifier

DC Bias. Graphical Analysis. Script

The Common Emitter Amplifier Circuit

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay

Experiments #6. Differential Amplifier

ET215 Devices I Unit 4A

Electron Devices and Circuits

Document Name: Electronic Circuits Lab. Facebook: Twitter:

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS

ECE 255, Discrete-Circuit Amplifiers

Transistor Biasing and Operational amplifier fundamentals. OP-amp Fundamentals and its DC characteristics. BJT biasing schemes

Fundamentals of Microelectronics. Bipolar Amplifier

Linear electronic. Lecture No. 1

Phy 335, Unit 4 Transistors and transistor circuits (part one)

Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi

UNIVERSITY OF PENNSYLVANIA EE 206

SMALL SINGLE LOW FREQUENCY TRANSISTOR AMPLIFIERS

Figure1: Basic BJT construction.

Lecture (10) Power Amplifiers (2)

7. Bipolar Junction Transistor

Lecture #3 ( 2 weeks) Transistors

5.25Chapter V Problem Set

Integrated Circuit: Classification:

Lecture (03) The JFET

Chapter.8: Oscillators

Frequency Response of Common Emitter Amplifier

Lecture 19: Available Power. Distortion. Emitter Degeneration. Miller Effect.

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS

Analog Electronic Circuits Lab-manual

THE JFET. Script. Discuss the JFET and how it differs from the BJT. Describe the basic structure of n-channel and p -channel JFETs

Exercise 2: Collector Current Versus Base Current

Chapter Three " BJT Small-Signal Analysis "

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Lecture #4 BJT AC Analysis

Project (02) Dc 2 AC Inverter

EEE118: Electronic Devices and Circuits

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier

Part ILectures Bipolar Junction Transistors(BJTs) and Circuits

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

Basic electronics Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture- 17. Frequency Analysis

BJT h-parameter (H.16)

Electronics Prof D. C. Dube Department of Physics Indian Institute of Technology, Delhi

BJT Fundamentals and Applications JOR

Lab 2: Discrete BJT Op-Amps (Part I)

Last time: BJT CE and CB amplifiers biased by current source

When you have completed this exercise, you will be able to determine the ac operating characteristics of

BJT AC Analysis CHAPTER OBJECTIVES 5.1 INTRODUCTION 5.2 AMPLIFICATION IN THE AC DOMAIN

Electronic Devices. Floyd. Chapter 6. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

UNIT II MIDBAND ANALYSIS OF SMALL SIGNAL AMPLIFIERS

ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source

Chap. 4 BJT transistors

ECE 255, MOSFET Basic Configurations

BJT Circuits (MCQs of Moderate Complexity)

Transistors and Applications

e-tutorial Semester I UNIT III and IV

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018

EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 10/27/17

PartIIILectures. Multistage Amplifiers

Electronic Troubleshooting. Chapter 5 Multistage Amplifiers

Lecture (06) Bipolar Junction Transistor

Electronics Lab. (EE21338)

... Second Semester

Chapter 8: Field Effect Transistors

Electronic Circuits II - Revision

Transcription:

Lecture (04) BJT Amplifiers 1 By: Dr. Ahmed ElShafee ١ The Linear Amplifier A linear amplifier provides amplification of a signal without any distortion so that the output signal A voltage divider biased transistor with a sinusoidal ac source capacitively coupled to the base through C1 and a load capacitively coupled to the collector through C2 is shown in Figure ٢

The collector current varies above and below its Q point value, ICQ, in phase with the base current. The sinusoidal collector to emitter voltage varies above and below its Q point value, VCEQ, 180 out of phase with the base voltage ٣ The operation just described can be illustrated graphically on the ac load line, as shown sinusoidal voltage at the base produces a base current that varies above and below the Q point on the ac load line The ac load line differs from the dc load line because the effective ac collector resistance is RL in parallel with RC and is less than the dc collector resistance RC alone. ٤

Example 01 ٥ collector current varying from 6 ma to 4 ma for a peak topeak value of 2 ma and the collector to emitter voltage varying from 1 V to 2 V for a peak to peak value of 1 V. ٦

TRANSISTOR AC MODELS The five r parameters commonly used for BJTs are (r b); small enough to neglect (r c); several hundred kilohms and can be replaced by an open. The collector effectively acts as a dependent current source of or, equivalently, ٧ ٨

٩ assuming an abrupt junction between the n and p regions. It is also temperature dependent and is based on an ambient temperature of 20 C. ١٠

Example 02 ١١ ١٢

Comparison of the AC Beta ( βac) to the DC Beta (βdc) For a typical transistor, a graph of IC versus IB is nonlinear, as shown in Figure. If you pick a Q point on the curve and cause the base current to vary an amount Δ IB then the collector current will vary an Δ IC amount as shown in part (b). ١٣ At different points on the nonlinear curve, the ratio Δ IC / ΔIB will be different, and it may also differ from the IC /IBratio at the Q point. ١٤

h Parameters A manufacturer s datasheet typically specifies h (hybrid) parameters (hi, hr, hf, and ho) Basic ac h parameters. ١٥ Subscripts of h parameters for each of the three amplifier configurations ١٦

Relationships of h Parameters and r Parameters datasheets often provide only common emitter h parameters, the following formulas show how to convert them to r parameters. ١٧ THE COMMON EMITTER AMPLIFIER common emitter amplifier with voltage divider bias and coupling capacitors C1 and C3 on the input and output and a bypass capacitor, C2, from emitter to ground. ١٨

There is no signal at the emitter because the bypass capacitor effectively shorts the emitter to ground at the signal frequency. All amplifiers have a combination of both ac and dc operation, which must be considered, but keep in mind that the common emitter designation refers to the ac operation. ١٩ Phase Inversion The output signal is 180 out of phase with the input signal. As the input signal voltage changes, it causes the ac base current to change, resulting in a change in the collector current from its Q point value. If the base current increases, the collector current increases above its Q point value, causing an increase in the voltage drop across RC. This increase in the voltage across RC means that the voltage at the collector decreases from its Q point. So, any change in input signal voltage results in an opposite change in collector signal voltage, which is a phase inversion. ٢٠

DC Analysis a dc equivalent circuit is developed by removing the coupling and bypass capacitors ٢١ circuit can be redrawn Calculate V TH, R TH ٢٢

٢٣ AC Analysis The capacitors C1, C2, and C3 are replaced by effective shorts because their values are selected so that XC is negligible at the signal frequency and can be considered to be 0 ohm The dc source is replaced by ground ٢٤

is called a common emitter amplifier because the bypass capacitor C2 keeps the emitter at ac ground ٢٥ If the internal resistance of the ac source is then all of the source voltage appears at the base terminal. If, however, the ac source has a nonzero internal resistance, then three factors must be taken into account in determining the actual signal voltage at the base. ٢٦

R1, R2, and Rin(base) in parallel to get the total input resistance, Rin(tot), A high value of input resistance is desirable so that the amplifier will not excessively load the signal source. This is opposite to the requirement for a stable Q point, which requires smaller resistors. many trade offs that must be considered when choosing components for a circuit. ٢٧ ٢٨

Vs, is divided down by Rs (source resistance) and Rin(tot) so ٢٩ use the simplified r parameter model of the transistor. Figureshows the transistor model connected to the external collector resistor, RC ٣٠

٣١ The output resistance of the commonemitter amplifier is the resistance looking in at the collector since the internal ac collector resistance of the transistor, is typically much larger than RC, the approximation is usually valid ٣٢

Example 03 ٣٣ ٣٤

Voltage Gain The gain is the ratio of ac output voltage at the collector (Vc) to ac input voltage at the base (Vb). ٣٥ Attenuation is the reduction in signal voltage as it passes through a circuit and corresponds to a gain of less than 1. if the signal amplitude is reduced by half, the attenuation is 2, which can be expressed as a gain of 0.5. Suppose a source produces a 10 mv input signal and the source resistance combined with the load resistance results in a 2 mv output signal. In this case, the attenuation is 10 mv/2 mv = 5 gain as 1 /5 =0.2. ٣٦

The overall voltage gain of the amplifier ٣٧ Thanks,.. See you next week (ISA), ٣٨