HIGH BIT RATE OPTICAL FIBRE NETWORKS - optical fibre selection and implementation

Similar documents
GIGABIT ETHERNET. e-ready Building Next Generation IT infrastructures. The Cabling Partnership. Mike Gilmore Managing Director, e-ready Building

TECHNICAL ARTICLE: DESIGN BRIEF FOR INDUSTRIAL FIBRE OPTICAL NETWORKS

Fiber Optic Principles. Oct-09 1

Pluggable Transceiver Modules

There are lots of problems or challenges with fiber, Attenuation, Reflections, Dispersion and so on. So here we will look at these problems.

Advanced Fibre Testing: Paving the Way for High-Speed Networks. Trevor Nord Application Specialist JDSU (UK) Ltd

Optical Fiber Technology. Photonic Network By Dr. M H Zaidi

af-phy July 1996

One Enterprise. One Infrastructure. One Partner. Optical Fiber Loss Testing. Optical loss testing in the field is not as simple as it seems.

Presentation Overview

GYM Bilgi Teknolojileri

- Characteristic impedance of cabling links is characterised by Return Loss

Optical Fiber and PMD. Reach and Economics for EFM

WHITE PAPER LINK LOSS BUDGET ANALYSIS TAP APPLICATION NOTE LINK LOSS BUDGET ANALYSIS

Outside Plant All Dielectric

Migration to 50/125 µm in the Local Area Network

P802.3cd Clause 138 hazard level recommendations. P802.3cd Interim meeting, May 2017 Richard Johnson and Jonathan King, Finisar

Transceiver, Chassis Connectors, and Cable and Adapter Specifications

Data sheet OpDAT connection cable 2x1 OS2 - bend insensitive

How Bend Insensitive Multimode Fiber is Affecting Installation and Testing of Enterprise and Data Center Cabling

Industrial Automation

UK - SFP MONOMODO 20 KM 1310 NM. DTS3112L - C(D)

Physical Layer Cabling: Fiber-Optic

The absorption of the light may be intrinsic or extrinsic

Mixing TrueWave RS Fiber with Other Single-Mode Fiber Designs Within a Network

400G-BD4.2 Multimode Fiber 8x50Gbps Technical Specifications

UNIT Write notes on broadening of pulse in the fiber dispersion?

Why Using Fiber for transmission

NEW YORK CITY COLLEGE of TECHNOLOGY

IEEE July 2001 Plenary Meeting Portland, OR Robert S. Carlisle Sr. Market Development Engineer

10GBd SFP+ Short Wavelength (850nm) Transceiver

GLC-LH-SMD-AO. 1.25Gbps SFP Transceiver

Product Specification OC-48 SR-1/STM S-16 Multirate 2x10 SFF Transceiver FTLF1321S1xTL

Optical networking. Emilie CAMISARD GIP RENATER Optical technologies engineer Advanced IP Services

PROLABS J9150A-C 10GBd SFP+ Short Wavelength (850nm) Transceiver

Fiberoptic and Waveguide Sensors

Variation in Multimode Fiber Response: Summary of Experimental Results

Product Specification Gb/s RoHS Compliant Short Wavelength 2x5 SFF Transceiver. FTLF8519F2xTL

-RADIANTECH- VFT Fiber Optic Small Form Factor

OPTICAL MEASURING INSTRUMENTS. MW9060A 1.31/1.55 µm (SM), 0.85/1.3 µm (GI) OPTICAL TIME DOMAIN REFLECTOMETER GPIB

Multimode fiber media types for 802.3cd

Product Specification Gb/s RoHS Compliant Short Wavelength 2x5 SFF Transceiver. FTLF8519F2xCL. FTLF8519F2xCL

PROLABS GP-10GSFP-1S-C 10GBd SFP+ Short Wavelength (850nm) Transceiver

1300nm Fast Ethernet Transceiverin1x9SC Duplex Package

OC-48 LR-2/STM L-16.2 RoHS Compliant Pluggable SFP Transceiver

Pluggable Transceivers

Introduction of 25 Gb/s VCSELs

DELL EMC NETWORKING TRANSCEIVERS AND CABLES

NEW YORK CITY COLLEGE of TECHNOLOGY

Cable and Port Specifications

Comment Supporting materials: The Reuse of 10GbE SRS Test for SR4/10, 40G-LR4. Frank Chang Vitesse

M-FP ISOLATOR PIGTAILS

Fieldworthy ROFL/OFL Multimode Fiber Differential Mode Delay Measurement System

FiberHome Fiber Products

Product Specification OC-12 SR-1/STM I-4 or OC-12 IR-1/STM S-4.1 2x5 SFF Transceiver FTLF1322F2xTR

Multi-Rate Gigabit Ethernet & Fiber Channel SFP Transceivers with Digital Diagnostics

Multimode Fiber Characterization Encircled Flux & Launch Condition Considerations

Outdoor, Fig 8 Armored, Multi Tube

3.3V / 1550 nm / 2.5 Gbps Digital Diagnostic SFP LC SINGLE-MODE TRANSCEIVER

AXGE Gbps Single-mode 1310nm, SFP Transceiver

10GBASE-S Technical Feasibility

Fiber Optic Communication Systems. Unit-05: Types of Fibers.

SFP-10G-SR Specifications, R01. SFP-10G-SR-OEM 10GBd SFP+ Short Wavelength (850nm) Transceiver

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Prolabs SFP-10G-LRM. Datasheet: Transceivers. 10GBd SFP+ LRM Transceiver. Ordering Information. Introduction. Ordering Information SFP-10G-LRM

Lecture 5 Transmission. Physical and Datalink Layers: 3 Lectures

Product Specification OC-48 IR-1/STM S-16.1 Multirate 2x10 SFF Transceiver FTLF1421S1xCL

Guided Propagation Along the Optical Fiber. Xavier Fernando Ryerson Comm. Lab

Outdoor, CCTV or CCTV, Fig 8 Armored.

100G CWDM4 MSA Technical Specifications 2km Optical Specifications

Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat.

E2-E3 CONSUMER FIXED ACCESS. CHAPTER-4 OVERVIEW OF OFC NETWORK (Date Of Creation: )

Provläsningsexemplar / Preview TECHNICAL REPORT. Fibre optic communication system design guides

Multi-rate Gigabit Ethernet & Fibre Channel SFP Transceivers with Digital Diagnostics

Datasheet. SFP Optical Transceiver Product Features SFP-11D-M550T85. Applications. Description. SFP 550m transceiver 1G SX Ethernet

DESCRIPTION. These transceivers also support 10 Base Fx 1300 nm with DC-free Single power supply (3.3 V)

40GBASE-SR4 & URM-Infrastructure. Verification with BER-T and OTDR. White Paper

The fundamental differences between OM5 and OM4+ fiber

JD061A-C. 1.25Gbps SFP Transceiver

4.25 Gb/s Fibre Channel Single Mode Transceiver

FTLD12CL3C. Product Specification 150 Gb/s (12x 12.5Gb/s) CXP Optical Transceiver Module PRODUCT FEATURES

Total care for networks. Introduction to Dispersion

GLC-LH-SM-LEG-5PK. 1.25Gbps SFP Transceiver

Instalaciones de fibra óptica en entornos de centros de datos y campus para suportar 40, 100g y más

Product Specification. RoHS-6 Compliant 10Gb/s 850nm Multimode Datacom XFP Optical Transceiver FTLX8511D3

Product Specification OC-48 LR-2/STM L-16.2 Multirate 2x10 SFF Transceiver FTLF1621S1xCL

GLC-SX-MM-LEG. 1.25Gbps SFP Transceiver

TURNKEY, ULTRA STABLE, OEM LASER DIODE SOURCE OZ-1000 & OZ-2000 SERIES

Chapter 3 Signal Degradation in Optical Fibers

V23818-C8-V10. Small Form Factor Multimode 1300 nm LED Ethernet/Fast Ethernet/FDDI/ATM 155/194 MBd Transceiver. Preliminary. Dimensions in inches (mm)

Multimode 1.25Gbps 850nm Optical Transceiver SFP with MSA

BENCHTOP POLARIZATION EXTINCTION RATIO METER

Product Specification Industrial Temperature 2 Gigabit Long-Wavelength Pluggable SFP Transceiver FTRJ1319P1xTL

Multi-fiber testing for 40G Ethernet

155 Mb/s ATM Multi-mode Transceiver

UNIT I INTRODUCTION TO OPTICAL FIBERS

AddOn Computer s SFP transceivers are RoHS compliant and lead- free.

GBS-9280-CXX0 5V / CWDM / Gb/s Single-Mode Gigabit Interface Converter (GBIC)

OptoLup TM POF cable Data Sheet. Overview. COMOSS OptoLup TM Cable is a type of APF, All. for the transmitting. compliant POF cables.

Product Specification. Short-Wavelength Pluggable SFP Transceiver FTRJ D

Transcription:

HIGH BIT RATE OPTICAL FIBRE NETWORKS - optical fibre selection and implementation prepared and delivered by ϕ 19th January 2000

PO Box MT65 LEEDS LS17 8YD UK Tel: +44 (0) 113 232 3721 Fax: +44 (0) 113 232 3724 Training Design and specification and IT cost management Project management Audits and arbitration 2000

Mike Gilmore Mike.Gilmore@BTInternet.com Senior Partner, PO Box MT65 LEEDS LS17 8YD UK Tel: +44 (0) 113 232 3721 Fax: +44 (0) 113 232 3724 Training Design and specification and IT cost management Project management Audits and arbitration Standards UK Fibreoptic Industry Association, Technical Director BSI, Chairman, TCT7/-/1: IT PD1001: EMC and structured cabling BS 7718: CoP Installation of Fibre optic Europe CENELEC, Convenor, TC215 WG1: IT EN 50098-1: ISDN Basic Access EN 50098-2: ISDN Primary Rate EN 50173: Generic - Design pren 50174: Installation pren 50xxx: Testing of Installed International ISO/IEC, Member, JTC1 SC25 WG3: Generic ISO/IEC 11801: Generic - Design ISO/IEC 14763-1: Administration ISO/IEC TR14763-2: Planning and Installation ISO/IEC TR14763-3: Testing optical cabling and via IEC SC46A WG2 IEC 61935: Testing copper cabling 2000

Agenda Session One Designing attenuation-limited networks Attenuation-limited LAN systems Break Session Two Designing bandwidth-limited networks Bandwidth-limited LAN systems Session Three Multi-Gigabit applications Practical implementation issues End 2000

Agenda Session One Designing attenuation-limited networks Attenuation-limited LAN systems optical fibre transmission multimode, singlemode optical fibre attenuation transmission wavelengths/windows optical fibre components optical fibre connecting hardware optical power budget optical loss budget Break 2000

Optical fibre construction Core Cladding Core and cladding have different optical properties Refractive index (R.I.) n x = c/v x c = speed of light in a vacuum v x = speed of light in material x Light is transmitted in the core when n core > n cladding 2000

Total internal reflection light lost from cladding R.I. = n 2 < n 1 R.I. = n 1 light travelling at critical angle θ c sin (θ c ) = n 2 / n 1 highest order mode zero order mode 2000

Acceptance angle: N.A. light lost from cladding R.I. = n 2 < n 1 R.I. = n 1 α θ c sin (θ c ) = n 2 / n 1 sin (α) = {n 1 2 - n 2 2 } 0.5 = NA (numerical aperture) Light injected into optical fibre = coupled power = f (core diameter 2 ) = f (NA 2 ) 2000

MMF: Multimode optical fibre n 2 n 1 θ c STEP(PED) INDEX (S.I.) MMF path lengths: maximum variation path times: maximum variation bandwidth: modal dispersion n 2 n 1 (r) GRADED INDEX (G.I.) MMF path lengths: significant variation path times: limited variation bandwidth: 1st order: modal dispersion 2nd order: chromatic dispersion Geometry options d/d NA 50/125 0.20 62.5/125 0.275 2000

SMF: Singlemode optical fibre 1000 Modes @ 1300nm 100 10 1 NA = 0.275 NA = 0.10 1 10 100 Core diameter (microns) NA = 0.20 n 2 n 1 STEP(PED) INDEX (S.I.) SMF path lengths: no variation path times: no variation bandwidth: 1st order: chromatic dispersion 2nd order: pulse shape dispersion Geometry d/d NA 8-10/125 0.10 2000

Attenuation in optical fibre Attenuation = signal loss INTRINSIC ATTENUATION scattering due to variations in structure wavelength dependent material absorption impurities (necessary) impurities (unavoidable) wavelength dependent path length dependent EXTRINSIC ATTENUATION microbending deformation of the CCI CCI = core-cladding interface macrobending deformation of the optical fibre 2000

Attenuation coefficient Transmitted power linear transmission = P out /P in (%) logarithmic attenuation = -10 log 10 (P out /P in ) (db) P in = x P out = x/2 P out = x/4 Transmission (%) 90 75 50 25 10 Attenuation (db) 0.45 1.25 3.01 6.02 10.0 Length = L Length = 2L Length (km) L 2L Attenuation (db) 3.01 6.02 Attenuation coefficient α = x dbkm -1 2000

Transmission wavelengths/windows Attenuation coefficient MMF: 1st Window: 790-850 - 910nm 2nd window: 1285-1300 -1330nm SMF: 2nd window: 1288-1310 -1339nm 3rd window: 1525-1550 - 1575nm 2nd Window 3rd Window 1st Window 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 Blue Red Wavelength (nm) VISIBLE LIGHT INFRA-RED - OPTICAL FIBRE 2000

MM optical fibre Optical fibre geometry (standardized) 50/125 62.5/125 Core diameter (µm) 50 ± 3 62.5 ± 3 Cladding diameter (µm) 125 ± 3 125 ± 3 NA 0.20 ± 0.015 0.275 ± 0.015 Attenuation (db) 850nm 1300nm Optical fibre performance parameters (options) Attenuation coefficient dbkm -1 max. Modal bandwidth MHz.km min. 850nm 1300nm 850nm 1300nm???? Modal Bandwidth (MHz) 0 500 1000 1500 2000 Channel length (m) 500 1000 1500 2000 Channel length (m) 2000

MMF performance options Attenuation coefficient dbkm -1 max. Modal bandwidth MHz.km min. 850nm 1300nm 850nm 1300nm 50/125 and 62.5/125 3.5 1.0 200 500 62.5/125 3.75 1.5 160 500 ISO/IEC 11801 and EN 50173 (1995) ANSI/TIA/EIA 568A (1995) 50/125 3.5 1.5 500 500 ISO/IEC 11801 and EN 50173 (2001) 62.5/125 3.5 1.5 200 500 ISO/IEC 11801 and EN 50173 (2001) 50/125 62.5/125 Attenuation coefficient dbkm -1 max. 850nm 1300nm 2.4 2.5 2.7 3.0 3.2 0.6 0.8 1.0 0.7 0.9 50/125 850nm 400 400 400 400 400 400 600 Modal bandwidth MHz.km min. 1300nm 850nm 400 600 800 1000 1200 1500 1000 200 200 160 200 250 300 1300nm 400 600 200 200 1000 800 50/125 and 62.5/125 62.5/125 2000

Connecting hardware DEMOUNTABLE CONNECTOR Adaptor MECHANICAL SPLICE I.M.M. FUSION SPLICE weld Plug Plug Capillary Sleeve P in P out P in P out P in P out P reflected P reflected P reflected Attenuation Insertion loss (db) = -10 log 10 (P out /P in ) Reflection Return loss (db) = -10 log 10 (P reflected /P in ) Modal bandwidth and delay no effect 2000

Connecting hardware options SPLICES ISO/IEC 11801 and EN 50173 (1995/2001) Insertion loss (max.) Singlemode/multimode 100% < 0.30 db Return loss Singlemode Multimode - - DEMOUNTABLE CONNECTING HARDWARE: INTEROPERABILITY STANDARDS TO in ISO/IEC 11801 and EN 50173 (1995) ST (BFOC2,5): MMF SC-D (duplex ): MMF IEC 60874-10 IEC 60874-19-1 TO in ISO/IEC 11801 and EN 50173 (2001) Insertion loss (max.) Singlemode/multimode 100% < 0.75 db Singlemode 26dB Return loss Multimode 20dB SC-D (duplex ): MMF IEC 60874-19-1 95% < 0.5 db, 100% < 0.75 db 35dB 20dB DEMOUNTABLE CONNECTING HARDWARE: ALTERNATIVE INTERFACE STANDARDS Interoperability not guaranteed by standards F-SMA, CF-03, CF-04, BAM, LSA, FC, D, OF-2, OCCA-PC, OCCA-BU, CF-08, SC, DS, F-05, MU, MPO SFF types in preparation: LC, SG (Volition), MT-RJ 2000

Optical power budget (OPB) - I P TX (dbm) = 10 log 10 P TX (mw) P RX (dbm) = 10 log 10 P RX (mw) Input power P TX milliwatts (mw) 1W = 1000mW 1mW = 1000µW dbm referenced to 1mW 1mW = 0 dbm 0.5mW = -3 dbm 0.1mW = -10 dbm 0.05mW = -13 dbm Received power P RX milliwatts (mw) 1W = 1000mW 1mW = 1000µW dbm referenced to 1mW 2000

Optical power budget (OPB) - II Best of breed Low temperature (LEDs) Early life (LEDs) P TX dbm (max) Minimum OPB (db) Too much received signal P RX dbm (max) Absolute power (dbm) P TX dbm (min) Worst of breed High temperature (LEDs) End of life (LEDs) Maximum OPB (db) Too little received signal P RX dbm (min) 2000

Optical loss budget (OLB) Cable 1 Cable 2 Cable 3 A B L 1 L 2 L 3 Channel Optical loss budget: limits of calculated channel attenuation In the example: OLB min = L 1 *α (Cable 1) + L 2 *α (Cable 2) + L 3 *α (Cable 3) + loss A + loss B (db) using min. values OLB max = L 1 *α (Cable 1) + L 2 *α (Cable 2) + L 3 *α (Cable 3) + loss A + loss B (db) using max. values In general: OLB min = Σα (Cable i) x L i + Σconnectors/splices (db) OLB max = Σα (Cable i) x L i + Σconnectors/splices (db) using minimum values using maximum values 2000

Designing attenuation-limited systems APPLICATION FUNCTION SIGNAL CLARITY in window used PROTOCOL FUNCTION Attenuation Dispersion Delay Coupling Length Length Connectivity DESIGN RULES OLB max < OPB max OLB min > OPB min observe delay limits 2000

Agenda Session One Designing attenuation-limited networks Attenuation-limited LAN systems Break attenuation-limited LAN standards MMF Light injection devices coupling losses OPB-based cabling design channel length equations 2000

Attenuation-limited LAN standards 850 nm 1300 nm ISO/IEC 8802-3: FOIRL ISO/IEC 8802-3: 10BASE-FL/FB ISO/IEC TR 11802-4: 4 & 16 Mb/s Token Ring IEEE 802.12: Demand priority ISO/IEC 9314-3: FDDI PMD ISO/IEC 8802-3: 100BASE-FX IEEE 802.12: Demand priority ATM @ 52 Mb/s 50/125 Max. length (m) OPB max. (db) 62.5/125 Max. length (m) OPB max. (db) 514 1 3.3 1000 9.0 1514 1 6.8 2000 12.5 1857 1 8.0 2000 13.0 371 1 2.8 500 7.5 2000 6.0 2000 11.0 2000 6.0 2000 11.0 533 1 2.3 2000 7.0 2000 5.3 2000 10.0 ATM @ 155 Mb/s 2000 5.3 2000 10.0 1 Calculated values using 1.5dB of connecting hardware losses 62.5/125 seems to offer advantages OPB (db) 5.7 5.7 5.0 4.7 5.0 5.0 4.7 4.7 4.7 2000

MMF light injection devices VISIBLE LIGHT Blue Red INFRA-RED - OPTICAL FIBRE 1st Window 2nd Window 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 Bit rate Wavelength (nm) Cost < 40000Mb/s < 2000Mb/s < 500Mb/s Multimode LASER standard VCSEL CD Singlemode LASER Multimode LASER Multimode LED < 100Mb/s Multimode LED 2000

Coupling losses LED or optical fibre LASER COUPLING LOSSES From LED 62.5 50 LASER SMF 0 db 0 db 0 db 0 db 0 db -4.7 db -4.7dB 0 db 0 db 0 db ~-26 db ~-26 db ~-22 db 0 db 0 db To 62.5 50 SMF 2000

OPB-based cabling design BD BD FD FD FD BD BD FD FD FD BD BD FD FD FD FD FD FD CD CD BD BD CAMPUS CABLING BUILDING CABLING Maximum channel length = (OPB - total connection loss)/cable attenuation 2000

Channel length equations 850 nm 1300 nm ISO/IEC 8802-3: FOIRL ISO/IEC 8802-3: 10BASE-FL/FB ISO/IEC TR 11802-4: 4 & 16 Mb/s Token Ring IEEE 802.12: Demand priority ISO/IEC 9314-3: FDDI PMD ISO/IEC 8802-3: 100BASE-FX IEEE 802.12: Demand priority ATM @ 52 Mb/s ATM @ 155 Mb/s 50/125 62.5/125 CAP Channel length (m) CAP - 940-142x - 85y 1000-1940 - 142x - 85y 2000 2000 2285-142x - 85y 2000 500 800-142x - 85y 500 2000 4000-333x - 200y 2000 2000 4000-333x - 200y 2000 800 1530-333x - 200y 2000 2000 3530-333x - 200y 2000 Channel length (m) 2570-142x - 85y 3570-142x - 85y 3710-142x - 85y 2140-142x - 85y 7330-333x - 200y 7330-333x - 200y 4665-333x - 200y 6665-333x - 200y 2000 3530-333x - 200y 2000 6665-333x - 200y x = no. of mated connectors @ 0.5dB y = no. of splices @ 0.3dB 2000

Agenda Session One Designing attenuation-limited networks Session Two Designing bandwidth-limited networks modal bandwidth bandwidth-limited technology Attenuation-limited LAN systems Break Bandwidth-limited LAN systems 2000

Modal bandwidth 3000 1 Gb/s 500 Mb/s 3000 1 Gb/s 500 Mb/s Modal Bandwidth (MHz) 2000 1000 0 200MHz.km MMF 0 500 1000 1500 2000 Channel length (m) Modal Bandwidth (MHz) 2000 1000 0 500MHz.km MMF 0 500 1000 1500 2000 Channel length (m) Attenuation coefficient dbkm -1 max. Modal bandwidth MHz.km min. 850nm 1300nm 850nm 1300nm 50/125 and 62.5/125 3.5 1.0 200 500 62.5/125 3.75 1.5 160 500 ISO/IEC 11801 and EN 50173 (1995) ANSI/TIA/EIA 568A (1995) 50/125 3.5 1.5 500 500 ISO/IEC 11801 and EN 50173 (2001) 62.5/125 3.5 1.5 200 500 ISO/IEC 11801 and EN 50173 (2001) 2000

Bandwidth-limited technology Historic applications have channel lengths defined by OPB OPB > calculated bandwidth for distances supported New applications use data rates for which bandwidth requirements define channel lengths longer lengths cannot be guaranteed even if low attenuation channels are used Modal bandwidths have rarely been specified by users/installers Modal bandwidth difficult/impossible to measure on-site bandwidth-limited applications are installed with higher risk Higher data rates utilise LASER technologies CD LASERS, VCSELs and standard LASERs reductions in OPBs due to restricted power input/channel lengths Optical fibre modal bandwidth measured using LED launch conditions LASER sources should provide improved bandwidth some problems found with RI profiles OPTICAL FIBRE SELECTION AND CONFIGURATION IMPACTED 2000

Designing bandwidth-limited systems APPLICATION FUNCTION SIGNAL CLARITY in window used PROTOCOL FUNCTION Attenuation Dispersion Delay Coupling Length Connectivity Modal bandwidth DESIGN RULES OLB max < OPB max OLB min > OPB min observe delay limits observe fibre specific length limits Length 2000

Agenda Session One Designing attenuation-limited networks Session Two Designing bandwidth-limited networks Attenuation-limited LAN systems Break Bandwidth-limited LAN systems bandwidth-limited LAN standards channel length equations resilient networks 2000

Bandwidth-limited LAN standards 850 nm 1300 nm 50/125 500/500MHz.km OPB max. 62.5/125 200/500MHz.km OPB max. Max. length Max. length (m) (db) (m) (db) (db) ATM @ 155 Mb/s CD 14165: FibreChannel @ 266 Mb/s 1000 2000 7.2 12.0 1000 700 7.2 12.0 0.0 0.0 CD 14165: FibreChannel @ 531 Mb/s ATM @ 622 Mb/s 1000 300 8.0 4.0 350 300 8.0 4.0 0.0 0.0 IEEE 802.3: 1000BASE-SX: Gigabit Ethernet 550 3.56 275 2.6-0.96 CD 14165: FibreChannel @ 1062 Mb/s 500 4.0 300 4.0 0.0 CD 14165: FibreChannel @ 133 Mb/s CD 14165: FibreChannel @ 266 Mb/s ATM @ 622 Mb/s 371 1 2000 330 1.3 5.5 2.0 1500 1500 500 6.0 6.0 6.0 4.7 0.5 4.0 IEEE 802.3: 1000BASE-LX: Gigabit Ethernet >550 2.35 550 2.35 1 Assuming no connecting hardware loss OPB 0.0 50/125 seems to offer advantages 2000

OF Application Grading G1 G2 G3 G4 G5 G6 MMF Token Ring 100BASE-FX FDDI ATM52 (1300) ATM155 (1300 10BASE-FL 10BASE-FB ATM155 (850) 1000BASE-LX ATM622 (1300)* 1000BASE-SX ATM622 (850) SMF FDDI ATM52 (1310) ATM155 (1310) 1000BASE-LX ATM622 (1310) G7 G4 G5 G6 G4 G5 G6 G3 G3 G2 G1 G2 G1 G7 0 275 500 1000 1500 2000 Channel length (m) 62.5/125 50/125 SMF KEY FEATURES lengths shown assume 1.5dB connecting hardware loss G2 applications limited on 50/125 G5 applications limited on 62.5/125 not all applications supported on singlemode 2000

Channel length equations 850 nm 1300 nm ATM @ 155 Mb/s CD 14165: FibreChannel @ 266 Mb/s CD 14165: FibreChannel @ 531 Mb/s ATM @ 622 Mb/s IEEE 802.3: 1000BASE-SX: Gigabit Ethernet CD 14165: FibreChannel @ 1062 Mb/s CD 14165: FibreChannel @ 133 Mb/s CD 14165: FibreChannel @ 266 Mb/s ATM @ 622 Mb/s IEEE 802.3: 1000BASE-LX: Gigabit Ethernet 50/125 500/500MHz.km CAP Channel length (m) CAP 2000 2085-142x - 85y 1000 2000 3425-142x - 85y 700 3425-142x - 85y 2000 2285-142x - 85y 350 2285-142x - 85y 300 1140-142x - 85y 300 550 1015-142x - 85y 275 500 1140-142x - 85y 300-865 - 333x - 200y 1500 2000 3665-333x - 200y 1500 300 1465-333x - 200y 500 62.5/125 200/500MHz.km Channel length (m) 2085-142x - 85y 1140-142x - 85y 740-142x - 85y 1140-142x - 85y 4000-333x - 200y 4000-333x - 200y 4000-333x - 200y 550 1565-333x - 200y 550 1565-333x - 200y x = no. of mated connectors @ 0.5dB y = no. of splices @ 0.3dB 2000

Bandwidth-based cabling design BD BD FD FD FD BD BD FD FD FD BD BD FD FD FD FD FD FD CD CD BD BD CAMPUS CABLING BUILDING CABLING Maximum channel length = (OPB - total connection loss)/cable attenuation 2000

Optical fibre selection <1Gb/s Max. OLB (db) Optical fibre choices 850 nm 1300 nm < 200 metres < 500 metres 2.3 1.3 Either 50/125 1 or 62.5/125 2 3.3 2.3 50/125 1 SMF > 1Gb/s < 1500 metres < 2000 metres 6.8 6.0 50/125 12.0 10.0 62.5/125 3 6.8 6.0 50/125 12.0 10.0 62.5/125 3 SMF > 200Mb/s 1 50/125: 3.5/1.5dBkm -1, 500/500MHz.km 2 62.5/125: 3.5/1.5dBkm -1, 200/500MHz.km preferred 3 62.5/125: 3.5/1.5dBkm -1, 200/500MHz.km adequate 2000

Agenda Sessi Attenuation-limited LAN systems Break 10 Gb/s Ethernet objectives proposals optical fibre developments Bandwidth-limited LAN systems Session Three Multi-Gigabit applications Practical implementation issues End 2000

10 Gb/s Ethernet: 802.3ae (03/02) OBJECTIVES switched operation only star topology support link aggregation support 10GB/s Ethernet and 9.584640GB/s SONET 2000 m, 10000 m and 40000 m over SMF 100 m over existing MMF 300 m over new optical fibre @ 850nm PROPOSALS legacy MMF 850nm VCSELs: ~ 65 m 850nm 4 x parallel optics: 300 m 850nm PAM-5 coding: >100 m 1300nm FP LASERs: > 100 m 1300nm 4 x WWDM: 300 m enhanced MMF 850nm VCSELs: 300 m legacy SMF 1300nm LASERs: 300 m to 10000 m 1550nm LASERs: 40000 m 2000

Optical fibre developments PROPOSALS UNDERWAY 50/125µm: 3.5/1.5dBkm -1, 2200/500MHz.km Bandwidth measurement made using LASER launch conditions 2000

Agenda Session One Session Two Session Three channel configuration SFF connections testing the link testing the channel maintenance Multi-Gigabit applications Practical implementation issues End 2000

Channel configuration Reduce loss to a minimum for a given length do not use unnecessary connections CC CC PP PP Consider splicing of pre-manufactured tails remember: 1 mated connection = 142 metres (@ 850 nm in MMF) = 333 metres (@ 1300 nm in MMF) 1 splice = 85 metres (@ 850 nm in MMF) = 200 metres (@ 1300 nm in MMF) Lower overall loss than field terminations Adopt cleaning procedures to minimise contamination losses 2000

SFF connections Differ dramatically from conventional connectors performance cost size duplex nature plug/socket configuration rather than plug/adaptor/plug good for the inexpert user bad for testing bad for cleaning ANSI/TIA/EIA 568B.3 (2000?) proposal exists to remove specific selection of connector currently SC-D this allows the use of SFF options let the market decide Considerable range of options no definition of SFF some undergoing IEC interface standardiazation LC, MT-RJ and SG (Volition) interface standards do not guarantee interoperability all items are proprietary joint set consistency is required 2000

Testing the link - conventional CONVENTIONAL METHOD Source (S) and Meter (M) correct transmission window wavelength correction (850 nm) fitted with correct adaptors stable calibrated Test leads BS 7718 (IEC 61280-4) Measurement error up to 0.75dB hides localised faults small incremental losses stress-induced cause of breaks later No evidence of test S S Loss M P 1 P 2 M CUT = CUT result - reference result = P 2 - P 1 This test configuration is suitable for patch panel - patch panel installations on both multimode and single mode. Refer to BS 7718 or IEC 61280-4-1 and -2 for alternative configurations 2000

Testing the link - SFF S/M S/M S/M S/M P 1 P 1 CUT P 2 P 2 CUT Courtesy of Innovation Loss = CUT result - reference result = P 2 - P 1 2000

Testing the installation - OTDR OTDR Joint Loss (db) link length Optical Time Domain Reflectometer operating in correct transmission window calibrated Test (launch) lead in accordance with BS7718 (IEC 1280-4) 2000

Testing the channel - SFF S/M P 1 S/M S/M P 1 Channel under test P 2 S/M P 2 Channel loss = CUT result - reference result = P 2 - P 1 2000

Maintenance CLEANLINESS IS NEXT TO GODLINESS WORKING GIGABIT NETWORKS SFF connectors are proprietary adopt cleaning regime recommended 2000

End full colour copy of this presentation including explanatory notes /gendocs/gsf.pdf the next MELTING POT seminars are on 23rd March 2000 28th March 2000 2000