This Week s Subject. DRAM & Flexible RRAM. p-channel MOSFET (PMOS) CMOS: Complementary Metal Oxide Semiconductor

Similar documents
Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Nano-crystalline Oxide Semiconductor Materials for Semiconductor and Display Technology Sanghun Jeon Ph.D. Associate Professor

Lecture 0: Introduction

420 Intro to VLSI Design

+1 (479)

Topic 3. CMOS Fabrication Process

Microelectronics, BSc course

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

Layout of a Inverter. Topic 3. CMOS Fabrication Process. The CMOS Process - photolithography (2) The CMOS Process - photolithography (1) v o.

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs

Lecture 6: Electronics Beyond the Logic Switches Xufeng Kou School of Information Science and Technology ShanghaiTech University

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

Chapter 3 Basics Semiconductor Devices and Processing

Design cycle for MEMS

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng

DIGITAL VLSI LAB ASSIGNMENT 1

LSI ON GLASS SUBSTRATES

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

The Design and Realization of Basic nmos Digital Devices

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore

VLSI Design. Introduction

Lecture #29. Moore s Law

CMOS Technology. 1. Why CMOS 2. Qualitative MOSFET model 3. Building a MOSFET 4. CMOS logic gates. Handouts: Lecture Slides. metal ndiff.

VLSI Design. Introduction

Introduction to VLSI ASIC Design and Technology

Three Terminal Devices

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2

Basic Fabrication Steps

Shorthand Notation for NMOS and PMOS Transistors

Chapter 2 : Semiconductor Materials & Devices (II) Feb

Lecture 12 Memory Circuits. Memory Architecture: Decoders. Semiconductor Memory Classification. Array-Structured Memory Architecture RWM NVRWM ROM

Field Effect Transistors (FET s) University of Connecticut 136

INTRODUCTION TO MOS TECHNOLOGY

FinFET-based Design for Robust Nanoscale SRAM

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2)

ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs. Lecture Outline

EMT 251 Introduction to IC Design

INTRODUCTION: Basic operating principle of a MOSFET:

write-nanocircuits Direct-write Jaebum Joo and Joseph M. Jacobson Molecular Machines, Media Lab Massachusetts Institute of Technology, Cambridge, MA

New Pixel Circuits for Driving Organic Light Emitting Diodes Using Low-Temperature Polycrystalline Silicon Thin Film Transistors

Notes. (Subject Code: 7EC5)

High Voltage and MEMS Process Integration

Pattern Transfer CD-AFM. Resist Features on Poly. Poly Features on Oxide. Quate Group, Stanford University

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I

ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs. Lecture Outline

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Organic Electronics. Information: Information: 0331a/ 0442/

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

2.8 - CMOS TECHNOLOGY

MOS TRANSISTOR THEORY

Gallium nitride (GaN)

HW#3 Solution. Dr. Parker. Spring 2014

Microelectronics Circuit Analysis and Design

EE 330 Lecture 7. Design Rules. IC Fabrication Technology Part 1

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD?

4H-SiC V-Groove Trench MOSFETs with the Buried p + Regions

CS/ECE 5710/6710. Composite Layout

Semiconductor Physics and Devices

Semiconductor Physics and Devices

MOSFET & IC Basics - GATE Problems (Part - I)

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

Printed Organic Transistors for Ultraflexible and Stretchable Electronics

55:041 Electronic Circuits

Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage:

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline:

Supplementary Information

Memory (Part 1) RAM memory

LECTURE 7. OPERATIONAL AMPLIFIERS (PART 2)

TECHNO INDIA BATANAGAR (DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018

Nanosecond Thermal Processing for Self-Aligned Silicon-on-Insulator Technology

Aptina MT9P111 5 Megapixel, 1/4 Inch Optical Format, System-on-Chip (SoC) CMOS Image Sensor

HW#3 Solution. Dr. Parker. Fall 2015

Chapter 1, Introduction

ECE380 Digital Logic. Logic values as voltage levels

Introduction to VLSI Technology

A large-area wireless power transmission sheet using printed organic. transistors and plastic MEMS switches

Session 10: Solid State Physics MOSFET

Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces

EECS130 Integrated Circuit Devices

Nanoscale III-V CMOS

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type.

InGaAs MOSFETs for CMOS:

College of Engineering Department of Electrical Engineering and Computer Sciences University of California, Berkeley

Lecture 4 - Digital Representations III + Transistors

Performance investigations of novel dual-material gate (DMG) MOSFET with dielectric pockets (DP)

Progress on Silicon-on-Insulator Monolithic Pixel Process

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

CMOS Scaling and Variability

4.1 Device Structure and Physical Operation

CMOS VLSI Design (A3425)

PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Variation. Variation. Process Corners.

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad

Improving CMOS Speed and Switching Energy with Vacuum-Gap Structures

Power FINFET, a Novel Superjunction Power MOSFET

Transcription:

DRAM & Flexible RRAM This Week s Subject p-channel MOSFET (PMOS) CMOS: Complementary Metal Oxide Semiconductor CMOS Logic Inverter NAND gate NOR gate CMOS Integration & Layout GaAs MESFET (JFET) 1 Flexible Inorganic Semiconductor Technology

DRAM (Dynamic Random Access Memory) Schematic DRAM Chip Architecture: Memory Cell Array Col. Dec. Col. Dec. Row Decoder Row Decoder Row Decoder Row Decoder PAD Col. Dec. Col. Dec. 2 RAS (row access strobe) Supplementary

DRAM cell (Or Display) Word line Transfer gate [access] 1cm Storage node Bit line + + + + ---- Capacitor (or OLED ) Periphery circuits Cell array (core) 3cm DRAM: I/O gate, CMOS TR Data sense/amplifier Data read Data refresh Random access: row decoder Select word line column decoder Select bit line Need to refresh the charge loss in the capacitor (μsec) Display (LCD or OLED): Active Matrix: with transistor in each cell. Fast speed, Large pixel 3 Passive Matrix: w/o transistor. Slow respond speed(~250msec), small pixel

p-channel MOSFET Circuit diagram Gate electrode Source electrode Drain electrode Gate -I DS Transfer curve (Id-Vg curve) Vd=-1V Source (p + ) Drain (p + ) Gate oxide n-type Si substrate p-channel MOSFET (PMOS) Id-Vd curve - - - - 0V -V Th =-0.5V -1.8V -V G - 4 -

CMOS Logic (Inverter) Complementary Metal Oxide Semiconductor: NMOS+PMOS Inverter : building block of integrated circuits Reference 1, 0 Pull-up PMOS 0, 1 Pull-down NMOS Reference (Ground) Vin Vout 5 Vgn=Vin Vdsn=Vout Vtn=-Vtp Vgp=Vin-Vdd Vdsp=Vout-Vdd 0 1 1 0

CMOS Logic (Inverter) 1.8V digital 1 0V digital 0 Reference(1.8V) Vgp=Vin-Vdd 1.8V 1.8V Vgp= 0V Vgn=1.8V Vtp=-0.5V off Vtn=0.5V on Pull down by NMOS 0V 100 Ohm 1 Ohm 0V Reference (Ground) Digital 1 is inverted to digital 0 6

CMOS Logic (Inverter) 1.8V digital 1 0V digital 0 Reference(1.8V) Vgp=Vin-Vdd 1.8V 0V Vgp= -1.8V Vgn=0V Vtp=-0.5V on Vtn=0.5V off Pull up by PMOS 1.79V 1 Ohm 1.79V 100 Ohm Reference (Ground) Digital 0 is inverted to digital 1 7

CMOS Logic (NAND Gate) V DD Pull-up PMOS Pull-down NMOS Pull-down NMOS The output is high when either of inputs A or B is high, or if neither is high. In other words, it is normally high, going low only if both A and B are high. 8

CMOS Logic (NOR Gate) V DD Pull-up PMOS Pull-up PMOS Pull-down NMOS The output is high only when neither A nor B is high. That is, it is normally high but any kind of non-zero input will take it low. 9

CMOS Inverter Layout 10 Ref: CMOS VLSI Design, N.Weste, Addison Wiley,

CMOS Inverter Mask Layout 11

a) Starting Material Dopant type : p-type (boron) Orientation : (100) Resistivity : 13±2 Wafer size : 4 inch b) Initial oxidation Temperature : 1000C 130min. Thickness : 6000±6000Å d) Well mask PR coat, soft bake Align, Exposure Develop, Hard bake Mask 1 12 e) Oxide etch 7:1 BHF 6min f) P/R strip Acetone, IPA, DI wafer g) Well implantation Ion species : P + Dose : 3.6x10 12 /cm 2 Energy : 120keV

(h) (i) (j) i) Gate oxidation Temperature : 950 C, 31min. Thickness : 250±20Å i) Poly deposition Temperature : 625 C Thickness : 3500±300Å j) Gate mask P/R coat, soft bake Align, Exposure Develop, CD check Hard bake j) Poly etch RIE (Plasma etching) Mask 2 (k) k) Oxide Growth l) N+ S/D implantation Ion species : As + Dose : 5x10 15 /cm 2 Energy : 80keV (l) 13 Mask 3

(m) (n) Repeats using p+ diffusion mask Mask 4 (o) o) N+ S/D implantation Ion species : BF 2 + Dose : 3x10 15 /cm 2 Energy : 40keV (p) p) Contact etch RIE : CHF 3 +CF 4 +Ar Mask 5 14

(r) r) Metal deposition Target : Al-1% Si Thickness : 0.7 m r) Metal etch Reactant gas : BCl 3 +Cl 2 RIE Mask 6 15

GaAs MESFET MESFET (Metal Semiconductor Field Effect Transistor): one type of JFET(junction field effect transistor) N type GaAs Normally III-V Sc, High mobility, frequency device Si Ge GaAs InAs n (cm 2 /Vs) 1400 3900 8500 30000 p (cm 2 /Vs) 470 1900 400 500 16

Normally off MESFET (enhancement mode) 17

Flexible Single Crystal Silicon from SOI Si (100 nm) BOX Very thin and flexible High performance similar to Si VLSI technology Well established technology Appl. Phys. Lett. 84, 5398 (2004) 18

Large Area, Selective Transfer of µs-si using PDMS Stamp Contact PDMS stamp µs-si on SOI wafer 1 cm Sacrificial SiO 2 layer 10 mm Mother substrate PET 100 µm 20 cm Transfer µs-si from stamp to PET Remaining SOI wafer 19 Adv. Mater. 17, 2336, 2005

High Performance Device on Plastic Substrate I DS (ua) 300 250 200 150 100 µ= 520 cm 2 /Vs, on/off=10 6 V th = 0.7 V O n 0.01 1E-3 1E-4 1E-5 1E-6 1E-7 I ds (A) 50 0 Off -6-4 -2 0 2 4 6 V GS (V) V ds =0.1V 1E-8 1E-9 1E-10 Appl. Phys. Lett. 90, 213501, 2007 IEEE Elect. Device Letters. 27, 460, 2006 20

Flexible III-V HEMTs Si-doped AlGaAs - Undoped GaAs (Chap 5.8) Id-Vd Id-Vg Journal of Applied Physics, 100, 124507 2006

Flexible 3D Heterogeneous Integration Direct transfer of µs-sc 15 µm µs-gan on Si wafer 3D direct integration Heterogeneous 3D integration on Plastics µs-sc 500 µm Nature Materials, 5, 33, 2006 Science, 314, 1754, 2006 22

Why Flexible Memory? Storage Memory (Essential element) Processing Communication 23 Flexible Electronic Systems

Memristor, Missing Fundamental Circuit Element Resistive Random Access Memory (RRAM) First proposed in 1971 Neuromophic Systems. D. Strukov et al., Nature, 453, 80, 2008 Kim, K. IEEE Tech. Dig. IEDM, 1-4, 2010. 24 Jo, S.H et al. Nano Lett. 10, 1297, 2010

Prior Research of Flexible Resistive Memory Titinium oxide Aluminum oxide Cross-point structure (No switching elements) Graphene oxide GeO/HfO N Cell-to-cell interference Require high performance switching transistor Nanotechnol, APL, Nano Letter, Adv. Mater. 2010 25 (µ> 200 cm 2 /Vs)

Flexible one transistor-one memristor (1T-1M) memory 26 Nano Lett., 11(12), 5438, 2011

1T-1M Structure Circuit Diagram V SET = -2.1 V, V SET = 2.7 V ON/OFF ratio of 50 at -0.5 V (V READ ) 27 Nano Lett., 11(12), 5438, 2011

Random Access Operation 28 Nano Lett., 11(12), 5438, 2011

Flexible LSI for Implantable Devices 29 Using 0.18µm CMOS ACS Nano, 7, 4545, 2013

Electrical Properties of Flexible Devices RFICs (RF Switches) G S G Input Port M1 M2 Output Port G S G 200 μm 30 Stable Operations on Plastics ACS Nano, 7, 4545, 2013

Roll to Roll ACF Packaged Flexible NAND Flash Memory Adv. Mater. 28, 8371, 2016

Flexible NAND Flash Memory Unit Cell Operation Read voltage Transfer Curve Endurance Retention Adv. Mater. 28, 8371, 2016

Flexible one selector-one resistor (1S1R) memory Adv. Mater. 26, 7480, 2014

Flexible Crossbar Memory using ILLO Adv. Mater. 26, 7480, 2014

Flexible Oxide TFTs using ILLO TFT structure IZO thickness of 20 nm GI thickness of 176 nm Adv. Func. Mater. 26, 6170, 2016

Flexible Oxide TFTs using ILLO Transfer Curve Output Curve On glass On plastic μ* (cm 2 /Vs) 37.3 36.8 Negative Bias (-20 V) SS (V/dec) 0.31 0.32 V on (V) -0.6-0.7 ΔV (V) 0.015 0.017 *@ 15 V Adv. Func. Mater. 26, 6170, 2016

Self-Structured Nano-filament for Phase Change Memory ACS Nano 9, 6587, 2015

Comparison between ILED and OLED ILED(Inorganic) OLED(Organic) Merits Stability High efficiency(2x OLED) Long lifetime(50x OLED) Merits Flexibility Simple process Demerits Rigid & Thick Demerits Short lifetime in humid Low efficiency

Fabrication of Flexible GaN LED Blue White 39 Nano Energy 1, 145, 2012

Flexible Vetical micro LED Nano Energy 447, 44, 2018

Flexible VLED on Motor Cortex Behavior Control Nano Energy 447, 44, 2018

Flexible Monolithic GaN LED Fabrication Process Optical output measurements & Device image Adv. Mater. In press