NJU High Output Current, Rail-to-Rail Input/Output Dual CMOS Operational Amplifier

Similar documents
NJM8801. High Quality Audio Dual Operational Amplifier FEATURES. EQUIVALENT CIRCUIT ( 1/2 Shown ) -1-

MUSES8920. High Quality Audio J-FET Input Dual Operational Amplifier - 1 -

NJM4585. Low Noise, Bipolar Input Dual, Audio Operational amplifier EQUIVALENT CIRCUIT PIN CONFIGURATION. FEATURES Designed for High-Quality Sound

Rail-to-Rail Input/Output Quad Operational Amplifier 8. C OUTPUT 9. C -INPUT 10. C +INPUT 11. GND(V ) 12. D +INPUT 13. D INPUT 14.

NJU7046/NJU7047/NJU7048

NJM2718. Single-Supply High-Operating voltage Dual Operational Amplifier PACKAGE OUTLINE

Wide-Band,High-Speed,Low-Offset,Low-Noise Rail-to-Rail Input/Output CMOS Operational Amplifier

NJU7076/NJU7077/NJU7078

NJM2732. Rail-to-Rail Input/Output Dual Operational Amplifier

MUSES8832. Rail-to-Rail Output, High Quality Audio, Dual Operational Amplifier. MUSES and this logo are trademarks of New Japan Radio Co., Ltd.

NJM2734SCC. Rail-to-Rail Input/Output Quad Operational Amplifier PACKAGE OUTLINE

NJM2722. Single Ultra-High speed and Wide Band Operational Amplifier

NJM2720. Single Ultra-High speed and Wide Band Operational Amplifier

NJM5532C LOW-NOISE DUAL OPERATIONAL AMPLIFIER NJM5532CG (SOP8) FEATURES PIN CONFIGURATION. EQUIVALENT CIRCUIT (Each Amplifier) - 1 -

NJM2734. Rail-to-Rail Input/Output Quad Operational Amplifier

High Output Current, Rail-to-Rail Input/Output Dual CMOS Operational Amplifier PIN FUNCTION 1. OUTPUT A 2. INPUT A 3. +INPUT A

NJU7026/NJU7027/NJU7028

Low Offset, Low Drift Dual JFET Input Operational Amplifier. NJM2749M, NJM2749AM : DMP8 NJM2749E, NJM2749AE : SOP8 JEDEC 150mil V + OUTPUT B INPUT B

NJM8512/NJM8513. Precision, JFET Input Operational Amplifier

High Quality Audio, J-FET Input, Dual Operational Amplifier

MUSES8820. High Quality Audio Dual Operational Amplifier - + PACKAGE OUTLINE

High Quality Audio, Bipolar Input, Dual Operational Amplifier

NJM2748/2748A. Low Offset, Low Drift single JFET Input Operational Amplifier -1-

NJM8202. Single Supply, Rail-to-Rail Output Dual Operational Amplifier

Precision Operational Amplifier

NJM324C. Low power quad operational amplifiers

NJU7116 SUPER LOW OPERATING CURRENT AND LOW OFFSET VOLTAGE TINY SINGLE CMOS COMPARATOR

NJM4558C DUAL OPERATIONAL AMPLIFIER V + OUTPUT -INPUT +INPUT V -

Dual Precision Operational Amplifier

HIGH SPEED SINGLE SUPPLY OPERATIONAL AMPLIFIER V + B OUTPUT B -INPUT B +INPUT SOP8 SSOP8 MSOP8(VSP8) SOP14 SSOP14

Low power dual operational amplifier

NJM320A/NJM321A. Low power single channel OP-Amp

NJM2904C / NJM2904CA SINGLE-SUPPLY DUAL OPERATIONAL AMPLIFIER

Precision Operational Amplifier

NJU77000/NJU77001 NJU77002/NJU77004

NJM4582 AUDIO DUAL OPERATIONAL AMPLIFIER

HIGH SPEED SINGLE SUPPLY OPERATIONAL AMPLIFIER

NJM2115 DUAL OPERATIONAL AMPLIFIER

Low power quad operational amplifiers

NJM2737. Low Noise, Rail-to-Rail Input/Output Dual Operational Amplifier

Low Noise, High-Speed Dual Operational Amplifier. Vni = 3nV/ Hz typ. (at f=10khz) ft = 90MHz typ. (at V + /V - = ±2.5V)

High Quality Audio, J-FET Input, Dual Operational Amplifier

ULTRA HIGH SPEED SINGLE OPERATIONAL AMPLIFIER

SINGLE SUPPLY QUAD OPERATIONAL AMPLIFIER

NJM4580 DUAL OPERATIONAL AMPLIFIER

NJM13404 SINGLE SUPPLY DUAL OPERATIONAL AMPLIFIER 1 8 A

NJM5532 LOW-NOISE DUAL OPERATIONAL AMPLIFIER

NJM12904 SINGLE SUPPLY DUAL AMPLIFIER -INPUT +INPUT OUTPUT GND(V-)

Designated client product

NJM12904L SINGLE SUPPLY DUAL AMPLIFIER

ULTRA HIGH SPEED SINGLE OPERATIONAL AMPLIFIER

HIGH-POWER & LOW-VOLTAGE AUDIO POWER AMPLIFIER

NJM78M00S 3-TERMINAL POSITIVE VOLTAGE REGULATOR

NJU7056/NJU7057/NJU7058

NJM TERMINAL POSITIVE VOLTAGE REGULATOR

TSV611, TSV611A, TSV612, TSV612A

HIGH-POWER & LOW-VOLTAGE AUDIO POWER AMPLIFIER

LDO with Reverse Current Protection / Soft Start / Discharge Function. Exposed PAD on backside connected to GND. Reverse Current Protection.

LDO with Reverse Current Protection / Soft Start / Discharge Function. Exposed PAD on backside connected to GND. Reverse Current Protection

SINGLE-SUPPLY DUAL COMPARATOR. * NJM2903CMD7 don t have a A version. (Top View)

NJU7119 LOW POWER SUPER SMALL-SIZED SINGLE C-MOS COMPARATOR

HIGH-POWER & LOW-VOLTAGE AUDIO POWER AMPLIFIER

TS mW Stereo Headphone Amplifier. Description. Applications. Order Codes

ADJUSTABLE PRECISION SHUNT REGULATOR NJM431SU NJM431SF NJM432SU NJM432SF 1.CATHODE 1.N.C. 2.ANODE 2.ANODE 3.CATHODE 2.ANODE 3.

ABLIC Inc., 2014 Rev.1.0_02

UNISONIC TECHNOLOGIES CO., LTD

NJM TERMINAL POSITIVE VOLTAGE REGULATOR

Single-phase DC Brushless Motor Driver IC *MEET JEDEC MO-187-DA / THIN TYPE. PIN No. PIN NAME 1 OUTB 2 VDD 3 IN+ 4 IN- 5 FG 6 PWM 7 OUTA 8 GND + -

ELM824xA 3.0μA Very low power CMOS dual operational amplifier

ABLIC Inc., 2018 Rev.1.0_00

S-19610A MINI ANALOG SERIES FOR AUTOMOTIVE 125 C OPERATION CMOS OPERATIONAL AMPLIFIER. Features. Applications. Package.

MUSES03. High-Quality Sound, J-FET Input, Single Operational Amplifier for Premium Audio. GENERAL DESCRIPTION

NJM TERMINAL POSITIVE VOLTAGE REGULATOR

UNISONIC TECHNOLOGIES CO., LTD LM321

TSV321-TSV358-TSV324. General Purpose, Input/Output Rail-to-Rail Low Power Operational Amplifiers. Description. Applications

ABLIC Inc., 2018 Rev.1.0_00

Low-power, 2.5 MHz, RR IO, 36 V BiCMOS operational amplifier. Description

UNISONIC TECHNOLOGIES CO., LTD

Rail-to-rail input/output, 29 µa, 420 khz CMOS operational amplifiers. Description. TSV62x TSV622 TSV623 TSV624 TSV625

OUTPUT COUPLING CAPACITOR-LESS LOW VOLTAGE VIDEO AMPLIFIER WITH LPF

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS

LDO with Reverse Current Protection / Soft Start / Discharge Function NJM12884DL3. Reverse Current Protection. Thermal. Protection.

A W CLASS AB BTL AUDIO POWER AMPLIFIER EXTERNAL GAIN CONFIGURATION CAPABILITY

S Series MINI ANALOG SERIES LOW INPUT OFFSET VOLTAGE CMOS OPERATIONAL AMPLIFIER. Features. Applications. Packages.

NJM2887 ADJUSTABLE LOW DROPOUT VOLTAGE REGULATOR

EL5129, EL5329. Multi-Channel Buffers. Features. Applications. Ordering Information FN Data Sheet May 13, 2005

LOW VOLTAGE VIDEO AMPLIFIER WITH LPF

UNISONIC TECHNOLOGIES CO., LTD LM833 Preliminary CMOS IC

NJM78M00 3-TERMINAL POSITIVE VOLTAGE REGULATOR

Dual Operational Amplifiers

High Voltage Ultra low current consumption Io=100mA LDO. I O (min.)=100ma V O 1.0% DFN6-H1(ESON6-H1), SOT-23-5, SOT-89-3

OPERATIONAL AMPLIFIER & VOLTAGE REFERENCE KL103/A TECHNICAL DATA DESCRIPTION. PIN CONNECTIONS (top view) OPERATIONAL AMPLIFIER

NJW4162A. 2channel MOSFET Drive Switching Regulator IC for Buck Converter

S-19610A MINI ANALOG SERIES FOR AUTOMOTIVE 125 C OPERATION CMOS OPERATIONAL AMPLIFIER. Features. Applications. Package.

NJM2842U2. Very Low Output Low Dropout Regulator FEATURES PIN COFIGURATION

LF153 LF253 - LF353 WIDE BANDWIDTH DUAL J-FET OPERATIONAL AMPLIFIERS

TSB611. Low-power, rail-to-rail output, 36 V operational amplifier. Applications

NJW channel High Side Switch GENERAL DESCRIPTION PACKAGE OUTLINE

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643

Transcription:

High Output Current, Rail-to-Rail Input/Output Dual CMOS Operational Amplifier NJU779 GENERAL DESCRIPTION The NJU779 is a Rail-to-Rail input and output dual CMOS operational amplifier that features high output current drive. This device is stable to capacitive load and can charge and discharge capacitance quickly by high output current up to ma. In addition, it is ideal for buffer amplifiers as the output stage can supply a respectable amount of current with minimal headroom from either rail. PACKAGE OUTLINE NJU779KW (ESON-W) FEATURES Output Peak Current ma (typ.) Rail-to-Rail Input/Output Wide Operating Voltage V to V Slew Rate 9V/μs (typ.) Package ESON-W (.mm x.mm) Enhanced RF Noise Immunity CMOS Process APPLICATION TFT-LCD panel V COM driver Instrument Control Voltage Source PIN CONFIGURATION (Top View) A B 7 7 (Bottom View) Exposed Pad PIN FUNCTION. A OUTPUT. A -INPUT. A +INPUT. V SS. B +INPUT. B INPUT 7. B OUTPUT NJU779KW. V DD About Exposed Pad Connect the Exposed Pad on the V SS. Ver.-- - -

NJU779 ABSOLUTE MAXIMUM RATINGS (Ta= C, unless otherwise noted.) PARAMETER SYMBOL RATINGS UNIT Supply Voltage V DD + V Power Dissipation P D (Note), 7(Note), 9(Note), (Note) mw Output Peak Current I OP ma Input Common Mode Voltage V ICM V S S-. to V D D+. V Differential Input Voltage V ID (Note) V Operating Temperature Range T opr - to + C Storage Temperature Range T s t g - to + C (Note) Mounted on glass epoxy board. (...mm: based on EIA/JEDEC standard, Layers FR-) (Note) Mounted on glass epoxy board. (...mm: based on EIA/JEDEC standard, Layers FR-, with Exposed Pad) (Note) Mounted on glass epoxy board. (...mm: based on EIA/JEDEC standard, Layers FR-) (Note) Mounted on glass epoxy board. (...mm: based on EIA/JEDEC standard, Layers FR-, with Exposed Pad) (For Layers: Applying 99. 99.mm inner Cu area and a thermal via hole to a board based on JEDEC standard JESD-) (Note) For supply voltage less than V, the absolute maximum rating is equal to the supply voltage. RECOMMENDED OPERATING CONDITION (Ta= C) ELECTRICAL CHARACTERISTICS (V DD =V, V SS =V, V IC =7.V,R L =kω to V DD /,Ta= C, unless otherwise noted.) DC CHARACTERISTICS PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Maximum Output Voltage V OH R L = kω..9 - V V OH Isource = ma.. - V V OL R L = kω -.. V V OL Isink = ma -.. V Input Offset Voltage V IO R S = Ω - mv Input Bias Current I B - - pa Input Offset Current I IO - - pa Large Signal Voltage Gain A V V O = V/V, R L=kΩ 9 - db Common Mode Rejection Ratio CMR V IC = V 7.V V IC = 7.V V 7 - db Supply Voltage Rejection Ratio SVR V DD = V V 7 - db Input Common Mode Voltage Range V ICM CMR db - V Operating Current I DD No Signal, R L = open - 7. 9. ma AC CHARACTERISTICS PARAMETER SYMBOL RATING UNIT Supply Voltage V D D. to. V Unity Gain Frequency ft C L = pf - - MHz Phase Margin Φ M C L = pf - - deg Equivalent Input Noise Voltage V NI f = khz, R S = Ω - - nv/ Hz Total Harmonic Distortion+Noise THD+N G V = db, C L = pf, fin = khz, P O =.W -. - % Output Power P O fin=khz, C L=pF, THD % - - mw Channel Separation CS f = khz - - db TRANSIENT CHARACTERISTICS Output Peak Current I OP (Note) - - ma Slew Rate SR G V = db, C L = pf, Vin = Vpp, (Note7) 9 - V/μs (Note) Output peak current is defined by the lower value of the output source current or output sink current. (Note7) Slew rate is defined by the lower value of the rise or fall. - - Ver.--

NJU779 Application Notes Package Power, Power Dissipation and Output Power IC is heated by own operation and possibly gets damage when the junction power exceeds the acceptable value called Power Dissipation P D. The dependence of the NJU779 P D on ambient temperature is shown in Fig. The plots are depended on following two points. The first is P D on ambient temperature ºC, which is the maximum power dissipation. And the second is W, which means that the IC cannot radiate any more. The second point derives from the relation that maximum junction temperature Tj max is the same as storage temperature T stg. Fig. is drawn by connecting those points and by the definition that the P D lower than ºC is constant. Therefore, the P D is shown following formula as a function of the ambient temperature between those points. Dissipation Power P D Tj max Ta ja [W] ( Ta = ºC to Ta = ºC ) Where, θja is heat thermal resistance which depends on parameters such as package material, frame material and so on. Therefore, P D is different in each package. While, the actual measurement of dissipation power on NJU779 is obtained using following equation. (Actual Dissipation Power) = (Supply Voltage V DD ) X (Supply Current I DD ) (Output Power Po) The NJU779 should be operated in lower than P D of the actual dissipation power. To sustain the steady state operation, take account of the Dissipation Power and thermal design. P D [mw] -layer, Exposed Pad, Thermal Via, mw -layer, 9mW -layer, Exposed Pad, 7mW -layer, mw - T opr max T stg Ta [ºC] Fig. Dependence of NJU779 Power Dissipations on ambient temperature Ver.-- - -

NJU779 TYPICAL CHARACTERISTICS Supply Current vs. Supply Voltage R L =OPEN Supply Current vs. Ambient Temperature R L =OPEN Supply Current [ma] Ta=ºC Ta=-ºC Supply Current [ma] V DD =V V DD =V Ta=ºC V DD =V Supply Voltage [V] - - 9 Input Offset Volage vs. Supply Voltage R L=OPEN Input Offset Voltage vs. Ambient Temperature R L =OPEN V DD =V - - Ta=ºC Ta=-ºC Ta=ºC - - V DD =V V DD =V - - - - - Supply Voltage [V] - - - 9 Supply Voltage Rejection Ratio vs. Ambient Temperature R L =OPEN Supply Voltage Rejection Ratio vs. Frequency VDD=V, Gv=dB, Ta=ºC 9 V DD Supply Voltage Rejection Ratio [db] Supply Voltage Rejection Ratio [db] 7 V SS - - 9 k k k - - Ver.--

NJU779 Input Offset Voltage vs. Output Voltage VDD=V, VSS=V, RL=kΩ Input Offset Voltage vs. Output Voltage VDD=V, VSS=V, RL=kΩ - - Ta=ºC Ta=ºC Ta=-ºC - - Ta=ºC Ta=ºC Ta=-ºC - - - - -.. 7. 9.. - Voltage Gain vs. Ambient Temperature RL=kΩ V DD=V Voltage Gain [db] V DD=V - - 9 Input Offset Voltage vs. Common Mode Input Voltage VDD=V, VSS=V Input Offset Voltage vs. Common Mode Input Voltage VDD=V, VSS=V - - Ta=ºC Ta=ºC Ta=-ºC - - Ta=ºC Ta=-ºC Ta=ºC - - - - -.. 7. 9.. Common Mode Input Voltage [V] - Common Mode Input Voltage [V] Ver.-- - -

NJU779 Common Mode Rejection Ratio vs. Ambient Temperature VDD=V, VSS=V Common Mode Rejection Ratio vs. Ambient Temperature VDD=V, VSS=V 9 Vcm=7. to V 9 Vcm= to V Common Mode Rejection Ratio [db] 7 Vcm= to 7.V Common Mode Rejection Ratio [db] 7 Vcm= to V - - 9 - - 9 Common Mode Rejection Ratio [db] 9 7 Common Mode Rejection Ratio vs. Frequency Vcm=Vpp, Gv=dB, Ta=ºC V DD =V V DD =V k k k.e+ Input Bias Current vs. Ambient Temperature VDD=V.E+ Input Bias Current vs. Ambient Temperature VDD=V.E+.E+ Input Bias Current [pa.e+.e+.e+ INP INM Input Bias Current [pa.e+.e+.e+ INP INM.E+.E+.E- - - 9.E- - - 9 - - Ver.--

NJU779 Maximum Output Voltage vs. Output Sink Current VDD=V, VSS=V, Vin+=V, Vin-=V Maximum Output Voltage vs. Output Sink Curre nt VDD=V, VSS=V, Vin+=V, Vin-=V Maximum........ Ta=ºC Ta=-ºC Ta=ºC Maximum... Ta=ºC Ta=ºC Ta=-ºC Output Sink Current [ma] Output Sink Current [ma] Maximum Output Voltage vs. Output Source Current VDD=V, VSS=-V, Vin+=V, Vin-=-V Maximum Output Voltage vs. Output Source Current VDD=V, VSS=-V, Vin+=V, Vin-=-V. Maximum....... Ta=-ºC Ta=ºC Ta=ºC Maximum... Ta=-ºC Ta=ºC Ta=ºC Output Source Current [ma] Output Source Current [ma]. Output Saturated Voltage vs. Ambient Temperature Isink=mA Output Saturated Volatage vs. Ambient Temperature Isource=mA Output Saturated Voltage [V]..... V DD =V V DD =V Output Saturated Voltage [VDD-V] -. -. -. -. -. -. -.7 -. -.9 V DD =V V DD =V - - 9 - - - 9 Ver.-- - 7 -

NJU779 Maximum Output Voltage vs. Load Resistance V DD =V, Gv=open, R L to 7.V Maximum Output Voltage vs. Load Resistance V DD =V, Gv=open, R L to V Maximum.. ºC ºC -ºC Maximum.. ºC ºC -ºC.. k k k Load Resistance [Ω] k k k Load Resistance [Ω] Maximum Output Voltage vs. Load Resistance V DD =V, Gv=open, R L to 7.V Maximum Output Voltage vs. Load Resistance V DD =V, Gv=open, R L to V.. Maximum.. ºC ºC -ºC Maximum.. ºC ºC -ºC k k k Load Resistance [Ω] k k k Load Resistance [Ω] Input Offset Voltage vs. Output Current VDD=V, Ta=ºC Input Offset Voltage vs. Output Current VDD=V, Ta=ºC Isink - - Isource - - Isink Isource - - - 7 Output Current [ma] - 7 Output Current [ma] - - Ver.--

NJU779 Voltage Gain / Phase vs. Frequency V+/V-=±7.V, Gv=dB, Vin=-dBm, RL=kΩ, Ta=ºC C L=pF C L=pF C L=nF C L=uF C L=pF Voltage Gain / Phase vs. Frequency V+/V-=±V, Gv=dB, Vin=-dBm, RL=kΩ, Ta=ºC C L=pF C L=nF C L=uF 9 9 Voltage Gain [db] - - Phase [deg] Voltage Gain [db] - - Phase [deg] - -9 - -9 - - - - - - k k k M M M - - k k k M M M Gain Margin vs Load Capacitance V+/V-=±7.V, RL=kΩ, Vin=-dBm, Gv=dB Gain Margin vs. Load Capacitance V+/V-=±V, RL=kΩ, Vin=-dBm, Gv=dB Gain Margin [db] Ta=ºC Ta=-ºC Ta=ºC Gain Margin [db] Ta=ºC Ta=-ºC Ta=ºC - - - p p n n n u u u Load Capacitance [F] - p p n n n u u u Load Capacitance [F] Phase Margin vs. Load Capacitance V+/V-=±7.V, RL=kΩ, Vin=-dBm, Gv=dB Phase Margin vs. Load Capacitance V+/V-=±V, RL=kΩ, Vin=-dBm, Gv=dB 7 7 Ta=ºC Ta=ºC Phase Margin [deg] Ta=-ºC Ta=ºC Phase Margin [deg] Ta=-ºC Ta=ºC - p p n n n u u u Load Capacitance [F] - p p n n n u u u Load Capacitance [F] Ver.-- - 9 -

NJU779 Gain Margin vs. Ambient Temperature V+/V-=±7.V, RL=kΩ, Vin=-dBm, Gv=dB Gain Margin vs. Ambient Temperature V+/V-=±V, RL=kΩ, Vin=-dBm, Gv=dB Gain Margin [db] C L=pF C L=nF Gain Margin [db] C L=pF C L=nF - - - 9 - - - 9 9 Phase Margin vs. Ambient Temperature V+/V-=±7.V, RL=kΩ, Vin=-dBm, Gv=dB 9 Phase Margin vs. Ambient Temperature V+/V-=±V, RL=kΩ, Vin=-dBm, Gv=dB Phase Margin [deg] 7 C L=uF C L=pF C L=nF Phase Margin [deg] 7 C L=nF C L=pF C L=uF - - - 9 - - - 9 7 Unity Gain Frequency vs. Ambient Temperature V+/V-=±7.V, RL=kΩ, Vin=-dBm, Gv=dB 7 Unity Gain Frequency vs. Ambient Temperature V+/V-=±V, RL=kΩ, Vin=-dBm, Gv=dB Unity Gain Frequency [MHz] C L=pF C L=nF C L=uF Unity Gain Frequency [MHz] C L=nF C L=pF C L=uF - - 9 - - 9 - - Ver.--

NJU779 Pulse Response (Rise) V+/V-=±7.V, Ta=ºC, RL=kΩ Pulse Responce (Rise) V+/V-=±V, Ta=ºC, RL=kΩ.... Vin Vin.. C L =nf C L =uf -. - -. Input Voltage [V].. C L =nf C L =uf -. - -. Input Voltage [V] - - -. C L =pf -. C L =pf - - - -. C L =pf -. C L =pf - - - Pulse Response (Fall) V+/V-=±7.V, Ta=ºC, RL=kΩ. Pulse Response (Fall) V+/V-=±V, Ta=ºC, RL=kΩ... Vin. Vin... C L =pf C L =pf -. - -. Input Voltage [V].. C L =pf C L =pf -. - -. Input Voltage [V] -. - -. - - -. C L =nf C L =uf -. - - - -. C L =nf C L =uf -. - - Slew Rate vs. Ambient Temperature V+/V-=±7.V, Vin=Vpp, RL=kΩ, CL=pF Slew Rate vs. Ambient Temperature V+/V-=±V, Vin=Vpp, RL=kΩ, CL=pF Fall Slew Rate [V/us] 9 Rise Slew Rate [V/us] 9 Rise Fall - - 9 - - 9 Ver.-- - -

NJU779 Voltage Follower Peak V+/V-=±7.V, Gv=dB, Vin=-dBm, RL=kΩ, Ta=ºC Voltage Follower Peak V+/V-=±V, Gv=dB, Vin=-dBm, RL=kΩ, Ta=ºC C L=nF C L=uF C L=nF C L=uF Voltage Gain [db] - C L=pF C L=pF Voltage Gain [db] - C L=pF C L=pF - - - - - k k k M M M - k k k M M M Supply Current vs. Ambient Temperature RL=OPEN Supply Current [ma] 9 7 V DD =V V DD =V 7 9 Channel Separation vs. Frequency Gv=dB, Ta=ºC Input Noise Voltage vs. Frequency Rs=Ω, Rf=kΩ, Ta=ºC Channel Separation [db] V DD =V V DD =V Input Noise Voltage [nv/(hz)^.] V DD=V V DD=V 9 k k k k k - - Ver.--

NJU779 Voltage Load Transient Sourcing VDD=V, Gv=dB, Vin=7.V(DC), Ta=ºC C L =nf C L =nf C L =nf - 9 Load Transient Sourcing VDD=V, Gv=dB, Vin=V(DC), Ta=ºC C L =nf C L =nf C L =nf Output Current [ma] Current C L =nf C L =nf C L =nf - - - - Output Current [ma] Voltage Current C L =nf C L =nf C L =nf - - -9 - - - - - - Load Transient Sinking VDD=V, Gv=dB, Vin=7.V(DC), Ta=ºC Load Transient Sinking VDD=V, Gv=dB, Vin=V(DC), Ta=ºC Output Current [ma] - - - - - - Current Voltage C L =nf C L =nf C L =nf C L =nf C L =nf C L =nf Output Current [ma] - - -9 - Current Voltage C L =nf C L =nf C L =nf C L =nf C L =nf C L =nf 9 - - - - Current Limit RL=Ω, Gv=OPEN, Ta=ºC Current Limit RL=Ω, Gv=OPEN, Ta=ºC Output Source Current [ma] V DD =V V DD =V Output Sink Current [ma] V DD =V V DD =V R L =Ω R L =Ω - Time [msec] - Time [msec] Ver.-- - -

NJU779 THD + Noise vs. Output Power VDD=V, Gv=dB, RL=kΩ, CL=pF, Ta=ºC THD + Noise vs. Output Power VDD=V, Gv=dB, RL=kΩ, CL=pF, Ta=ºC THD + Noise [%].. f=khz f=khz THD + Noise [%].. f=khz f=khz f=hz f=hz.......... Output Power [mw] Output Power [mw].. Disspation Power vs. Output Power RL=Ω, Ta=ºC, f=khz, Stereo V DD=V THD=% THD=%.9. Disspation Power vs. Output Power RL=Ω, Ta=ºC, f=khz, BTL THD=% Disspation Power [W].... V DD=9V V DD=V Disspation Power [W].7.... V DD=V THD=% V DD=V.. V DD=9V. V DD=V. V DD=V.... Output Power [W/ch]... Output Power [W] [CAUTION] The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - - Ver.--