Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator

Similar documents
A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a Scalable Tight-Pitch Process

InGaAs MOSFETs for CMOS:

Vertical Nanowire InGaAs MOSFETs Fabricated by a Top-down Approach

III-V CMOS: the key to sub-10 nm electronics?

Nanometer-Scale InGaAs Field-Effect Transistors for THz and CMOS Technologies

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

III-V CMOS: Quo Vadis?

InGaAs Nanoelectronics: from THz to CMOS

InGaAs MOSFET Electronics

Nanoscale III-V CMOS

InAs Quantum-Well MOSFET for logic and microwave applications

Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs

III-V Channel Transistors

Towards Sub-10 nm Diameter InGaAs Vertical nanowire MOSFETs and TFETs

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth

III-V Vertical Nanowire FETs with Steep Subthreshold Towards Sub-10 nm Diameter Devices

Zota, Cezar B.; Lindelow, Fredrik; Wernersson, Lars Erik; Lind, Erik

InGaAs is a promising channel material candidate for

FinFET Devices and Technologies

Vertical InAs/GaAsSb/GaSb tunneling field-effect transistor on Si with S = 48 mv/decade and Ion = 10 A/m for Ioff = 1 na/m at VDS = 0.

EECS130 Integrated Circuit Devices

Nanometer-scale InGaAs Field-Effect Transistors for THz and CMOS technologies

In principle, the high mobilities of InGaAs and

Scaling of InGaAs MOSFETs into deep-submicron regime (invited)

Single suspended InGaAs nanowire MOSFETs

Acknowledgments: This work was supported by Air Force HiREV program and the DTRA Basic Research Program.

General look back at MESFET processing. General principles of heterostructure use in FETs

SUPPLEMENTARY INFORMATION

EECS130 Integrated Circuit Devices

Supporting Information

1020 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 3, MARCH 2016

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801

Fundamentals of III-V Semiconductor MOSFETs

Self-aligned, gate-last process for vertical InAs nanowire MOSFETs on Si

SEVERAL III-V materials, due to their high electron

Electrical Characterization and Modeling of Gate-Last Vertical InAs Nanowire MOSFETs on Si

Ultra High-Speed InGaAs Nano-HEMTs

MOS Capacitance and Introduction to MOSFETs

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

GaN power electronics

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007

Integration of III-V heterostructure tunnel FETs on Si using Template Assisted Selective Epitaxy (TASE)

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene

CMOS beyond Si: Nanometer-Scale III-V MOSFETs

Enabling Breakthroughs In Technology

32nm Technology and Beyond

Power, speed and other highlights at IEDM

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

High Voltage Normally-off GaN MOSC- HEMTs on Silicon Substrates for Power Switching Applications

Beyond Transistor Scaling: New Devices for Ultra Low Energy Information Processing

Nanometer-Scale III-V MOSFETs

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

MOSFET & IC Basics - GATE Problems (Part - I)

Session 10: Solid State Physics MOSFET

Drain. Drain. [Intel: bulk-si MOSFETs]

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method

Alternative Channel Materials for MOSFET Scaling Below 10nm

FinFET-based Design for Robust Nanoscale SRAM

Transparent p-type SnO Nanowires with Unprecedented Hole Mobility among Oxide Semiconductors

Scaling of Vertical InAs GaSb Nanowire Tunneling Field-Effect Transistors on Si

Characterization of SOI MOSFETs by means of charge-pumping

Acknowledgements. Curriculum Vitæ. List of Figures. List of Tables. 1 Introduction Si MOSFET Scaling... 2

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

Recent ETHZ-YEBES Developments in Low-Noise phemts for Cryogenic Amplifiers

Transistor Scaling in the Innovation Era. Mark Bohr Intel Senior Fellow Logic Technology Development August 15, 2011

Nanoelectronics and the Future of Microelectronics

ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs. Lecture Outline

COMON De-Briefing. Prof. Benjamin Iñiguez

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Alternatives to standard MOSFETs. What problems are we really trying to solve?

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches

Welcome to. A facility within the Nanometer Structure Consortium (nmc) at Lund University. nanolab. lund

III-V on Si for VLSI. 200 mm III-V on Si. Accelerating the next technology revolution. III-V nfet on 200 mm Si

FOUNDRY SERVICE. SEI's FEATURE. Wireless Devices FOUNDRY SERVICE. SRD-800DD, SRD-500DD D-FET Process Lg=0.8, 0.5µm. Ion Implanted MESFETs SRD-301ED

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

Topic 3. CMOS Fabrication Process

Transistors for VLSI, for Wireless: A View Forwards Through Fog

Planarization and Regrowth of Self-Aligned Ohmic Contacts on InGaAs

Lecture #29. Moore s Law

Performance Analysis of 20 nm Pentagonal and Trapezoidal NanoWire Transistor with Si and Ge Channel

Effective Channel Mobility of AlGaN/GaN-on-Si Recessed-MOS-HFETs

Optical Fiber Communication Lecture 11 Detectors

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers

A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications

Performance investigations of novel dual-material gate (DMG) MOSFET with dielectric pockets (DP)

Layout of a Inverter. Topic 3. CMOS Fabrication Process. The CMOS Process - photolithography (2) The CMOS Process - photolithography (1) v o.

NW-NEMFET: Steep Subthreshold Nanowire Nanoelectromechanical Field-Effect Transistor

Silicon Single-Electron Devices for Logic Applications

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random

InGaAs channel MOSFET with self-aligned source/drain MBE regrowth technology

Advanced Digital Integrated Circuits. Lecture 2: Scaling Trends. Announcements. No office hour next Monday. Extra office hour Tuesday 2-3pm

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs

Fully Depleted Devices

Channel Engineering for Submicron N-Channel MOSFET Based on TCAD Simulation

Parylene-Based Double-Layer Gate Dielectrics for

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

problem grade total

Modeling the Influence of Dielectric Interface Traps on I-V Characteristics of TFETs

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2

Transcription:

Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator Jianqiang Lin, Dimitri A. Antoniadis, and Jesús A. del Alamo Microsystems Technology Laboratories, MIT December 12, 2012 Sponsors: FCRP-MSD Center, Intel Corp.

tivation Superior electron transport properties in InAs and InGaAs material systems ~10X mobility vs. Silicon Extraordinary electron velocity [J. del Alamo, Nature 2011] I d-sat = Q i_xo x v inj InAs HEMTs V inj Strained Si V DS =0.5 V Si V DS =1.1-1.3 V 2

Goal: Self-aligned III-V QW-MOSFETs L side n + n + Footprint Deeply scaled channel and barrier Architecture: Self-aligned contact Process integration: towards Si-MOS-compatible processes and materials 3

Device fabrication n + cap InP substrate Sputtered contact CVD hard mask Mesa isolation 4

Device fabrication n + cap InP substrate Resist n + cap InP substrate Sputtered contact CVD hard mask Mesa isolation Gate lithography Gate recess by RIE / 5

Device fabrication n + cap InP substrate Resist n + cap InP substrate n+ n + cap cap Sputtered contact CVD hard mask Mesa isolation Gate lithography Gate recess by RIE / Damage annealing * Cap wet etch; pulled-in Digital etching of InP * [Lin, APEX 2012] 6

Device fabrication n + cap InP substrate Resist n + cap InP substrate Sputtered contact CVD hard mask Mesa isolation Gate lithography Gate recess by RIE / Damage annealing n+ n + cap cap G ALD n+ n + cap cap Cap wet etch; pulled-in Digital thinning of InP ALD gate dielectric deposition gate evaporation Gate head photo and pattern Pad formation 7

n + cap InP substrate n+ n + cap cap ALD Device fabrication Resist n + cap InP substrate n+ n + cap cap Sputtered contact CVD hard mask Mesa isolation Gate lithography Gate recess by RIE / Damage annealing Cap wet etch; pulled-in Digital thinning of InP ALD gate dielectric deposition gate evaporation Gate head photo and pattern Self-aligned Au-free (Front-end) Pad formation InP exposed last Lift-off free (Front-end) Low thermal budget 8

QW-MOSFET: L g =30 nm (S/D) Cap 30 nm (G) HfO 2 /InP (total t ch =10 nm): 2 nm InAs clad by 3 and 5 nm In 0.7 Ga 0.3 As InP barrier thinned by digital etch Barrier InP =1 nm, HfO 2 =2 nm [including barrier: EOT~ 0.8 nm] Low- : t,s/d =30 nm, R sh =5 / 9 Contact to gate spacing = 20~30 nm

QW-MOSFET: L g =30 nm I D ( A/ m) 600 400 200 L g = 30 nm V GS = 0.5 V 0.4 V I D ( A/ m) 400 300 200 100 L g =30 nm V DS =0.5 V 50 mv 1600 1200 800 400 g m ( S/ m) 0 0.0 0.1 0.2 0.3 0.4 0.5 V DS (V) -0.2 V 0 0-0.4-0.2 0.0 0.2 V GS (V) g m,max = 1.4 ms/ m at V DS =0.5 V L g =30 nm (S/D) Little hysteresis (< 10 mv) Cap (G) R on =470. m, R sd =450. m L side HfO (mainly attributed to L side ) 2 /InP 10

QW-MOSFET: L g =30 nm subthreshold characteristic I D (A/ m) 10-3 10-4 10-5 10-6 10-7 L g =30 nm V DS =0.5 V 320 280 240 200 160 120 S (mv/dec) 10-8 50 mv 80-0.4-0.2 0.0 0.2 V GS (V) S min =114 mv/dec at V DS =0.5 V, DIBL=230 mv/v Nearly constant S throughout subthreshold region I g <1 na/µm over entire voltage range 11

Scaling and benchmarking: ON current I on ( A/ m) 500 400 300 200 100 I off =100 na/ m V DD =0.5 V MIT HEMT Planar Trigate This work 0 40 80 120 160 Definition of I on L g (nm) III-V FETs Superior behavior to any planar III-V MOSFET to date Matches performance of III-V Trigate MOSFETs [Radosavljevic, IEDM 2011] 12

Scaling and benchmarking: Subthreshold swing and V t roll-off S min (mv/dec) 160 III-V FETs S min at V DS = 0.5 V 140 120 100 80 60 MIT HEMT Planar Trigate This work 40 80 120 160 L g (nm) V t (V) -0.10 V =V at t GS I D =1 A/ m, V DS =0.5 V -0.15-0.20-0.25-0.30 MIT HEMT This work 40 80 120 160 L g (nm) S min superior to all planar III-V MOSFETs to date Matches III-V Trigate MOSFET [Radosavljevic, IEDM 2011] V t roll-off starts at L g ~50 nm 13

DIBL DIBL (mv/v) 250 200 150 100 MIT HEMT This work 50 40 80 120 160 L g (nm) DIBL= 230 mv/v for L g =30 nm Related to residual RIE damage and the heterostructure 14

QW-MOSFET: L g =22 nm 22 nm I D ( A/ m) 600 400 200 L g = 22 nm V GS = 0.5 V 0.4 V Functional device with L g =22 nm g m, max = 1.1 ms/µm at V DS =0.5 V I D ( A/ m) -0.5 V 0 0.0 0.1 0.2 0.3 0.4 0.5 V DS (V) 400 1600 L g =22 nm 300 V DS =0.5V 200 100 50 mv 0-0.4-0.2 0.0 0 0.2 V GS (V) 1200 800 400 15 g m ( S/ m)

Dielectric/barrier scaling Long-channel In 0.53 Ga 0.47 As QW-MOSFET Gate HfO 2 (2 nm) Al 2 O 3 (0.4 nm) (1 nm) In 0.53 Ga 0.47 As (15 nm) Cross section: Intrinsic portion of the device I D (A/ m) 10-6 10-7 10-8 10-9 10-10 10-11 V DS =0.5 and 0.05 V L g = 300 m S min =69 mv/dec -0.2 0.0 0.2 0.4 0.6 0.8 V GS (V) Fresh InP surface exposed right before high-k deposition Al 2 O 3 (0.4 nm) + HfO 2 (2 nm) [EOT of deposited insulator layer ~0.6 nm] InP thinned to ~ 1 nm [Gate- EOT~0.9 nm] 16

Benchmarking: Long-channel subthreshold swing on planar MOSFETs S min (mv/dec) 140 120 100 80 60 D it =10 13 /cm 2 ev 1 III-V FETs 0 1 2 3 4 5 6 MIT HEMT MOSFET This work 10 12 10 11 EOT of dielectric (nm) qdi Smin 60(1 t ) mv/dec C ox EOT of dielectric refers to the deposited insulating layer Close to lowest S min reported in any III-V MOSFET: 66 mv/dec [EOT=1.2 nm] [Radosavljevic, IEDM 2011] 17

HfO 2 vs. Al 2 O 3 Recent study at U. Texas at Dallas: HfO 2 on InP yields lower D it than Al 2 O 3 D it (x10 12 cm -2 ev -1 ) 500 C PDA 100 HfO 2 10 Al 2 O 3 E V InGaAs E C 1-0.4-0.2 0.0 0.2 0.4 0.6 E-E i (ev) D it (x10 12 cm -2 ev -1 ) 100 10 500 C PDA Al 2 O 3 HfO 2 E V InP E C 1-0.8-0.4 0.0 0.4 0.8 E-Ei (ev) [R. Galatage, R.M.Wallace, E.M.Vogel - UT Dallas] 18

HfO 2 vs. Al 2 O 3 C ( F/cm 2 ) 1.8 1.2 0.6 0.0 Gate HfO 2 (2 nm) (1 nm) (10 nm) 50 k to 1.4 MHz HfO 2 (2 nm) -0.4-0.2 0.0 0.2 0.4 V g (V) C ( F/cm 2 ) 1.8 1.2 0.6 0.0 Gate Al 2 O 3 (2 nm) (1 nm) (10 nm) 50 k to 1.4 MHz Al 2 O 3 (2 nm) -0.4-0.2 0.0 0.2 0.4 V g (V) Split C-V measurement on L g = 20 m Lower dispersion for HfO 2 below threshold 19

HfO 2 vs. Al 2 O 3 I D (A/ m) 10-3 10-4 10-5 10-6 10-7 10-8 L g =150 nm V DS =0.5 V S min =95 mv/dec HfO 2 (2 nm) Al 2 O 3 /HfO 2 (0.4/2 nm) 10-9 -0.4-0.2 0.0 0.2 0.4 V GS (V) S (mv/dec) 200 180 160 140 120 100 80 60 HfO 2 (2 nm) Al 2 O 3 /HfO 2 (0.4/2 nm) V DS =0.5 V, L g =150 nm 10-8 10-7 10-6 10-5 10-4 I D (A/ m) First demonstration of HfO 2 directly on InP for InAs QW-MOSFET Steeper subthreshold swing at L g =150 nm at low V GS Lower EOT 20

bility in Long QW-MOSFETs e (cm 2 V -1 S -1 ) 7000 6000 5000 4000 3000 2000 1000 HfO 2 (2 nm) Al 2 O 3 (2 nm) 0 1 2 3 4 5 6 N s (x10 12 cm -2 ) 4650 cm 2 V -1 s -1 at N s =4x10 12 cm -2 L g =20 m bility extracted by split C-V method Gate High-k (1 nm) (10 nm) : InGaAs/InAs/InGaAs (3/2/5 nm) N s not corrected by D it design beneficial to maintain high mobility: Undoped channel InAs-rich channel Buried-channel design 21

Conclusions Novel self-aligned gate-last MOSFET architecture: Self-aligned gate to contact metals (L side ~20-30 nm) Improved Si-MOS process compatibility Fresh InP surface exposed right before high-k deposition Deeply scaled dielectric Outstanding performance and short-channel effects in devices with L g =30 nm Demonstrated subthreshold swing of 69 mv/dec and mobility of 4650 cm 2 V -1 s -1 at N s =4x10 12 cm -2 in long channel QW-MOSFETs HfO 2 / InP dielectric for superior performance 22

Acknowledgement Fabrication facility at MIT labs: MTL, NSL, SEBL. Heterostructure grown by IntelliEPI Inc. MIT collaborators: L. Xia, D. Jin, A. Guo, X. Zhao, S. Warnock, L. Guo, J. Hoyt, J, Teherani, W. Chern. MSD collaborators: R. Galatage, R. M. Wallace, E. M. Vogel. Industrial collaborators: T.-W. Kim (Sematech), D.-H. Kim (Global Foundries), J.-M. Kuo (IntelliEPI). 23

Thank you. 24