USING F-SERIES IGBT MODULES

Similar documents
Hybrid Si-SiC Modules for High Frequency Industrial Applications

New 1700V IGBT Modules with CSTBT and Improved FWDi

How to Design an R g Resistor for a Vishay Trench PT IGBT

T-series and U-series IGBT Modules (600 V)

IGBTs (Insulated Gate Bipolar Transistor)

Introduction. Figure 2: The HiPak standard (left) and high-insulation (right) modules with 3300V SPT + IGBT technology.

High-power IGBT Modules

A 6.5kV IGBT Module with very high Safe Operating Area

Fundamentals of Power Semiconductor Devices

Power MOSFET Zheng Yang (ERF 3017,

High Power Rugged Type IGBT Module

D AB Z DETAIL "B" DETAIL "A"

IGBT Module Chip Improvements for Industrial Motor Drives

Development of New Generation 3.3kV IGBT module

1. Introduction Device structure and operation Structure Operation...

Chapter 2. Technical Terms and Characteristics

AND9068/D. Reading ON Semiconductor IGBT Datasheets APPLICATION NOTE

All-SiC Modules Equipped with SiC Trench Gate MOSFETs

V-Series Intelligent Power Modules

MG400V2YS60A MG400V2YS60A. High Power Switching Applications Motor Control Applications. Equivalent Circuit

V (4TYP) U (5TYP) V 0.28 Dia. 7.0 Dia.

U-series IGBT Modules (1,700 V)

GT60M323 GT60M323. Voltage Resonance Inverter Switching Application Unit: mm. Maximum Ratings (Ta = 25 C) Thermal Characteristics. Equivalent Circuit

Features TO-264 E. Symbol Description SGL50N60RUFD Units V CES Collector-Emitter Voltage 600 V V GES Gate-Emitter Voltage ± 20 V Collector T

TOSHIBA IGBT Module Silicon N Channel IGBT MG400Q2YS60A

Switching-Self-Clamping-Mode SSCM, a breakthrough in SOA performance for high voltage IGBTs and Diodes

FGH75T65SQDNL4. 75 A, 650 V V CEsat = 1.50 V E on = 1.25 mj

Sixth-Generation V-Series IGBT Module Application Note Chapter 1 Basic Concept and Features

High Power IGBT Module for Three-level Inverter

NGTB15N60EG. IGBT - Short-Circuit Rated. 15 A, 600 V V CEsat = 1.7 V

Sixth-Generation V-Series IGBT Module Application Note Chapter 1 Basic Concept and Features

MG200Q2YS60A(1200V/200A 2in1)

GT50J325 GT50J325. High Power Switching Applications Fast Switching Applications. Maximum Ratings (Ta = 25 C) Thermal Characteristics

Power Electronics. P. T. Krein

14 POWER MODULES

Grade of climate describes the permissible ambient test conditions (climate) according to DIN IEC 68-1

L M DETAIL "A" SIGNAL TERMINAL 3 E(L) 4 V D 5 G(H) 6 F O (H) 7 E(H) 8 OPEN

The two-in-one chip. The bimode insulated-gate transistor (BIGT)

L M DETAIL "A" SIGNAL TERMINAL 3 E(L) 4 V D 5 G(H) 6 F O (H) 7 E(H) 8 OPEN

PCB layout guidelines. From the IGBT team at IR September 2012

MBN3600E17F Silicon N-channel IGBT 1700V F version

CM1800HCB-34N. <High Voltage Insulated Gate Bipolar Transistor:HVIGBT >

Discrete 600V GenX3 XPT IGBTs IXAN0072

1 Basics V GG. V GS(th) V GE(th) , i C. i D I L. v DS. , v CE V DD V CC. V DS(on) VCE(sat) (IGBT) I t MOSFET MOSFET.

High Voltage SPT + HiPak Modules Rated at 4500V

Primary MTP IGBT Power Module

AN1491 APPLICATION NOTE

Item Symbol Condition Value Units V C = 25 C 1200 V V C = 25 C ±20

TOSHIBA Insulated Gate Bipolar Transistor Silicon N Channel IGBT GT60J323H

TOSHIBA Insulated Gate Bipolar Transistor Silicon N Channel IGBT GT30J324

SUSPM TM SEPT LUH75G1201_Preliminary LUH75G1201Z*_Preliminary. SUSPM1 94 X 34 X 30mm. 1200V 75A 2-Pack IGBT Module. Features.

CP15TD1-24A. DIP-CIB 3Ø Converter + 3Ø Inverter + Brake 15 Amperes/1200 Volts

QID Dual IGBT HVIGBT Module 85 Amperes/6500 Volts

IGBT Technologies and Applications Overview: How and When to Use an IGBT Vittorio Crisafulli, Apps Eng Manager. Public Information

IGBT STARPOWER GD400SGK120C2S. Absolute Maximum Ratings T C =25 unless otherwise noted SEMICONDUCTOR TM. Molding Type Module

Abstract: Following fast on the successful market introduction of the 1200V Soft-Punch-Through. 1. Introduction

Power Semiconductor Devices

7th-Generation X Series RC-IGBT Module Line-Up for Industrial Applications

Item Symbol Condition Rating Unit Collector-Emitter voltage Gate-Emitter voltage. A Collector current. Tc=80 C IC. Tc=80 C.

PrimePACK of 7th-Generation X Series 1,700-V IGBT Modules

UNIT 3: FIELD EFFECT TRANSISTORS

Application Note. 3-Level Modules with Authentic RB-IGBT. Version 1.3

EMIPAK 2B PressFit Power Module 3-Levels Half Bridge Inverter Stage, 150 A

Fast switching and its challenges on Power Module Packaging and System Design

A Study of Switching-Self-Clamping-Mode SSCM as an Over-voltage Protection Feature in High Voltage IGBTs

MPMD100B120RH NPT & Rugged Type 1200V IGBT Module. Features. conditioning. Applications. total losses. Equivalent Circuit 7DM-3. Welding Machine, UPS

Power MOSFET Basics. Table of Contents. 2. Breakdown Voltage. 1. Basic Device Structure. 3. On-State Characteristics

Power Electronics Power semiconductor devices. Dr. Firas Obeidat

V CES = 1200V I C = Tc = 80 C. T c = 25 C 1050 T c = 80 C 875

This chapter describes precautions for actual operation of the IGBT module.

UNISONIC TECHNOLOGIES CO., LTD

Dual INT-A-PAK Low Profile 3-Level Half Bridge Inverter Stage, 300 A

Molding Type Module IGBT, 1-in-1 Package, 1200 V and 300 A

Features. Description. Table 1: Device summary. Order code Marking Package Packing STGYA120M65DF2AG G120M65DF2AG Max247 long leads Tube

MBB400TX12A Silicon N-channel IGBT

S R V U T DETAIL "A" AF AE E1C2 (33) E1C2 (32) Dimensions Inches Millimeters

Some Key Researches on SiC Device Technologies and their Predicted Advantages

TENTATIVE PP225D120. POW-R-PAK TM 225A / 1200V Half Bridge IGBT Assembly. Description:

CM200DY-24A. APPLICATION AC drive inverters & Servo controls, etc CM200DY-24A. IC...200A VCES V Insulated Type 2-elements in a pack

Effects of the Internal Layout on the Performance of IGBT Power Modules

TrenchStop Series. Low Loss DuoPack : IGBT in Trench and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode

Discrete IGBT datasheet understanding. Zhou Wei( 周伟 ) System application engineer Infineon Technologies China

4MBI450VB-120R1-50. IGBT Power Module (V series) 1200V/450A/IGBT, ±900V/450A/RB-IGBT, 4-in-1 package. IGBT Modules. [Thermistor] [Inverter] 15

provide excellent noise immunity, short delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the APT80GA60LD40

3 Hints for application

6. Field-Effect Transistor

CP10TD1-24A. DIP-CIB 3Ø Converter + 3Ø Inverter + Brake 10 Amperes/1200 Volts

IGBT ECONO3 Module, 150 A

HGTG12N60A4D, HGTP12N60A4D, HGT1S12N60A4DS

Trench gate field-stop, 1200 V, 25 A, low-loss M series IGBT in a TO-247 package

Item Symbol Condition Value Units V C = 25 C 1200 V V C = 25 C ±20

3 Hints for application

FGL60N100BNTD 1000 V, 60 A NPT Trench IGBT

4MBI900VB-120R1-50. IGBT Power Module (V series) 1200V/900A/IGBT, ±900V/900A/RB-IGBT, 4-in-1 package. IGBT Modules. [Thermistor] [Inverter] 15

MBN1800F33F Silicon N-channel IGBT 3300V F version

BICMOS Technology and Fabrication

IHW15T120. Soft Switching Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode

Application Note. Replaces AN with AN November 2014 LN32141

Appendix: Power Loss Calculation

HGTP7N60C3D, HGT1S7N60C3D, HGT1S7N60C3DS

Transcription:

.0 Introduction Mitsubishi s new F-series IGBTs represent a significant advance over previous IGBT generations in terms of total power losses. The device remains fundamentally the same as a conventional IGBT, and the advice given in the application notes General Considerations for IGBT and Intelligent Power Modules and Using IGBT Modules should be observed. However the use of a trenchgate structure, and an integrated short circuit current control circuit, mean that there are sufficient differences in characteristics and behaviour to warrant further explanation..1 Trench Gate IGBT Structure Since the IGBT s introduction, successive generations of IGBT technology have featured steady improvements in onstate voltage and switching losses. However, improving the performance of existing IGBT technology has become increasingly difficult due to the constraints of the planar IGBT structure. The limitations of the planar IGBT arise partly from the resistance of the JFET region between adjacent cells in the MOSFET portion of the device, and partly from the forward voltage V F of the diode structure in the bipolar portion of the device. F-series IGBTs overcome the first constraint by utilising a trench gate structure, in which the gate oxide and conductive polysilicon gate electrode are formed in a deep narrow trench below the chip surface. The second limitation is addressed by using a new proton irradiation process. Figure.1 shows a comparison of the structures of a conventional planar IGBT cell and a trench gate IGBT cell. This figure shows the components making up the onstate voltage drop, V CE(sat). Performance improvements realised in each of these compo-nents in the new structure are described below..1.1 Reduction of Channel Resistance When voltage is applied to the gate, the MOSFET channel forms along the vertical wall of the trench perpendicular to the surface of the chip. This is in contrast to the planar structure where the channel forms parallel to the chip surface. The vertical channel requires less chip area, permitting a substantial increase in cell density. The consequent increase in channel width per Figure.1 Comparison of Trench and Planar IGBT Structures Emitter Rchannel Emitter Rnn+ p Gate RJFET Rnregion of local lifetime control Collector Conventional Planar Gate IGBT Cell n- n+ p+ Gate Rchannel Collector New Trench Gate IGBT Cell n+ p n- n+ p+ unit area results in a reduction in the R channel portion of the IGBT s on-state voltage drop..1. Elimination of JFET Region The "JFET" resistance (R JFET ) in a planar IGBT exists due to the constriction of current flow in the region between adjacent cells. The trench gate structure effectively eliminates this region (Figure.1). Furthermore, the non-uniform current density in the JFET region of planar IGBTs can lead to inconsistencies in the device SOA at high current densities. The trench structure achieves more uniform current flow which, combined with greater cell density, increases the rated current density compared with 100V third generation planar..1. V F Reduction in Bipolar Region The new IGBT is a punch through (PT) device, using a newly developed local lifetime control process. This proton irradiation technique allows carrier lifetime to be reduced in the n+ buffer layer only (Figure.1). Hence the turn-off losses can be reduced whilst maintaining a higher carrier lifetime in the n- drift region than was possible with the uniform lifetime control used in third generation planar IGBTs. This results in a greater carrier concentration in the drift region during conduction which reduces the R n- component of V CE(sat).. Module Packaging The F-series utilises Mitsubishi s innovative low inductance packaging technology, which Feb. 000

Figure. New package cross section Main Terminal Electrode Silicone Gel Cover Insert Moulded Case Figure. Simplified Diagram of RTC and IGBT Connection Al Bond Wires Cu Baseplate Chips AlN Substrate was first introduced in the U- series range of planar IGBT modules. A cross-section of a typical module is shown in Figure.. The main power terminals are realised as a laminar busbar structure moulded into the side of the case. This gives much lower inductance than soldered electrodes, which are inserted into conventional modules after the case is moulded. In the new module, the terminals are wire bonded directly to the chips. The strain relieving S- bends needed in soldered electrodes are eliminated, further reducing the module inductance. This construction results in the module having about one-third the internal inductance of conventional modules. Since no substrate area is required for soldering the electrodes, the total ceramic substrate area is reduced when compared with a conventional module. Thus aluminium nitride (AlN) ceramic, with lower thermal resistivity than aluminium oxide (Al O ), can be economically used. Additionally, the parasitic capacitance of the module is reduced, increasing the impedance to high frequency noise between chip and heatsink. In the manufacture of a conventional module a high temperature soldering process is used for chip to substrate and substrate to baseplate soldering. After case assembly, a second soldering process attaches the electrodes to the substrate. In the F-series module, this second step is not required. This in turn means that the first soldering step can be performed at lower temperature, reducing thermal stress during production.. RTC Description and Behaviour F-series IGBTs include an integrated real-time current control (RTC) circuit for protection against short circuits, which was originally developed for intelligent power modules (IPMs). The RTC is a separate chip wire-bonded directly to the IGBT die and mounted adjacent to it. During normal operation of the device, the RTC is effectively transparent to the gate driver. It s power supply is drawn from the main collectoremitter path of the IGBT, so it imposes no additional drain on the gate driver. The RTC is connected to a current mirror emitter on the trench IGBT chip. A simplified diagram of this is shown in Figure. When the IGBT operates in a short circuit, the RTC detects the excessive current in the IGBT and reduces the gate-emitter voltage to limit the short-circuit current. The gate-emitter voltage is reduced to less than 1V, compared with the normal recommended value of 1V. The effect of gateemitter voltage on short-circuit current is shown by Figure.4. It is important to note that the RTC acts only to limit shortcircuit current; it does not switch off the IGBT. Therefore the gate driver circuit should be designed to ensure that the IGBT is turned off within 10µs of a short circuit occuring. The RTC limits the short circuit collector current to -4 times rated current, depending on the junction temperature of the IGBT and the short circuit di/dt. The minimum trip threshold for the RTC is times the rated current of the device and occurs Feb. 000

Figure.4 Effect of Vge on Short Circuit Saturation Current of 10A, 100V IGBT (without RTC) Figure. Switching SOA Diagram for F-series IGBT Modules X Limit for -1F type Limit for -4F type Ic=00A/div Vge= 1V 1V 11V 9V Conditions: Vcc=800V Tj=1 C Rg=. Ω 1X 0 00 400 600 800 1000 100V Collector-Emitter Voltage Conditions: Tj= - 1 C Vge=+/-1V Vcc=400V (-1F type) 800V (-4F type) at high Tj and high di/dt. Therefore operation of the IGBT within its switching SOA is unaffected by the presence of the RTC..4 Safe Operating Area Safe operation of F-series IGBTs is governed by two safe operating areas (SOAs), defined at the main terminals of the device. These are the turnoff switching SOA governing repetitive switching operation, and the short circuit SOA governing non-repetitive operation..4.1 Turn-off Switching SOA The Switching SOA curve is the locus of points defining the maximum allowable simultaneous occurrence of collector current and collector to emitter voltage during turn-off. As seen in Figure.4, F-Series IGBTs offer square switching SOA up to x rated current for 600V and 100V devices. This limit is defined by the designed current density of the chips and internal connections in the module. Figure.6 Short Circuit SOA Diagram for 600V (-1F) F-series IGBT Modules 10X 9 8 6 4 1 Conditions: Vcc=400V Tj= - 1 C Vge=+/-1V 0 100 00 00 400 00 600V Collector-Emitter Voltage.4. Short Circuit SOA The short circuit SOA diagrams for F-series IGBTs are shown in Figures.6 and.. These are identical to the equivalent diagrams for H- and U-series planar IGBT modules. In reality, however, the RTC limits current to less than the SOA limit of 10 times rated current, as described Figure. Short Circuit SOA Diagram for 100V (-4F) F-series IGBT Modules 10X 9 8 6 4 1 Conditions: Vcc=800V Tj= - 1 C Vge=+/-1V 0 00 400 600 800 1000 100V Collector-Emitter Voltage in section.. Careful design of the power circuit and gate driver is necessary to ensure that the collector-emitter voltage limit is not exceeded. Note that the SCSOA of F-series IGBTs is applicable for pulse widths less than 10µs. The SCSOA is valid only for non-repetitive ( single shot ) operations. Feb. 000

Figure.8 Gate Drive Connections Giving Different Turn-on and Turn-off Gate Series Resistances. Gate Drive Requirements F-series IGBTs are compatible with gate driver techniques and considering a specific gate driver circuits designed for planar IGBTs. When considering a specific gate driver circuit for application with an F-series module, the key parameters which will determine compatibility are the positive and negative bias voltages, the series gate resistance, the gate driver power source capability and the short circuit sensing method used...1 Gate Drive Voltage For turn-on a positive gate voltage of 1V ±10% is recommended. In no case should a gate drive outside of the range of 1 to 0V be used for turn-on. In order to ensure that the IGBT stays in its off state when dv/dt noise is present in the collectoremitter voltage, an off bias must be used. Because the trench gate IGBT has a lower reverse transfer capacitance (C res ) than the planar type, a lower reverse bias voltage can be used. For F-series IGBTs a minimum reverse bias voltage of -V is required to ensure immunity to dv/dt noise across the collectoremitter terminals. Minimising the reverse bias voltage across the gate and emitter has the benefit of reducing the power which the gate driver must source to switch on the IGBT. However, using a larger reverse bias voltage decreases the turn-off delay time. This is particularly important in high frequency applications where a small deadtime is required. For the majority of low switching frequency (for example khz or less) applications, -V is a suitable value. In applications requiring a short deadtime -10V to -1V may be required, at the cost of an increase in gate driver power. F-Series IGBT modules are not suitable for linear operation, due to the high gain of the device in the active region. Gate voltages in the to 11V range should only appear on the IGBT s gate during rapid switching transitions... Series Gate Resistance Selection of the correct gate resistor values depends on a number of factors. The turn-on time and hence turn-on energy loss shows a strong dependence on the gate resistance. A smaller gate resistor results in faster switching and hence lower turnoff loss, but with the attendant disadvantage of higher di/dt and greater noise generation during reverse recovery of the freewheel diode. The turn-off time of the IGBT shows much less dependence on the gate resistance. However a smaller R g results is a smaller turn-off delay time, and hence reduces the required deadtime. When considering the gate drive design, it is important to remember that a smaller R g will mean that the gate driver must source a higher peak current during switching. Some compromise between these requirements is inevitable when selecting the gate resistor. An increasingly common approach is to use different values for the turn-on and turn-off gate resistor values. Some examples of how to realise such a gate driver stage are shown in Figure.8. Such a circuit allows, for example, a relatively high R g to be chosen for turn-on, in order to reduce the noise generated by the freewheel diode recovery, whilst a lower turn-off R g reduces the turn-off delay and hence the necessary deadtime. Table 1 gives the recommended values of series gate resistance for F-series IGBT modules. All the switching data for the IGBT and freewheel diode given in the data sheet is specified using the minimum recommended gate resistor. The switching SOA and short circuit SOA for the device are valid for any gate resistance within the allowed range for a specific device... Short Circuit Detection It is possible to use the well known technique of V ce(sat) sensing for detecting a short Feb. 000

Table.1 Series Gate Resistor Values for F-series IGBTs Module type Minimum gate resistor (Ω ) Maximum gate resistor (Ω ) 600V CMTU-1F 8. 8 CMDU-1F 8. 8 CM100TU-1F 6. 6 CM100DU-1F 6. 6 CM10TU-1F 4. 4 CM10DU-1F 4. 4 CM00TU-1F.1 1 CM00DU-1F.1 1 CM00DU-1F.1 1 CM400DU-1F.1 1 CM600HU-1F.1 1 100V CM0TU-4F 6. 6 CM0DU-4F 6. 6 CMTU-4F 4. 4 CMDU-4F 4. 4 CM100TU-4F.1 1 CM100DU-4F.1 1 CM10DU-4F.1 1 CM00DU-4F 1.6 16 CM00DU-4F 1.0 10 CM400DU-4F 0.8.8 CM400HU-4F 0.8.8 CM600HU-4F 1.0 10 Figure.9 Short Circuit Protection Using M160L-01 Hybrid IC and V ge sensing Vin 14 1 8 M160L-01 1 Ctrip 4 6 Rg RTC Figure.10 IGBT Gate Charge Diagram circuit of the IGBT. Another method of short circuit detection, made possible by the RTC, is used by the Mitsubishi M160L-01 hybrid gate driver IC. This driver circuit senses a decrease in the gate-emitter voltage at the device terminals when the RTC becomes active. The short circuit protection is thus implemented without a connection to the collector of the IGBT using a fast-recovery diode. Figure.9 shows a gate driver circuit based on the M160L-01 hybrid IC...4 Gate Driver Power Requirements The average power drawn from the gate driver power supply can be calculated using the gate charge characteristic (see Figure.10). The equation for calculating the gate power consumption, P AVG, required of the supply is: P AVG = V GE * Q G * f where V GE =V GE(on) + V GE(off) Q G = Total Gate Charge f = Switching Frequency Due to the higher gate-emitter capacitance of the trench gate IGBT structure, the power drain is much higher than for a planar device. For example, with a gate drive operating at +/-1V, the gate power requirement for 100V F-series IGBTs is increased by a factor of compared with their U-series equivalents. Feb. 000

.6 Parallel Operation To facilitate the matching of devices for parallel operation Mitsubishi provides IGBT modules marked with a saturation voltage rank letter. All devices to be operated in parallel should have the same saturation voltage rank. The saturation voltage rank will be either marked with white ink on the top of the module or indicated on the label. Saturation voltage ranking is normally available for modules rated 00A or higher. Modules of different saturation voltage ranks may be used in the same inverter provided that devices connected in parallel are of the same rank. Table. shows the saturation voltage letter rankings for Mitsubishi F-series 600V and 100V IGBT modules. Note that all ranks do not exist for a given voltage class. For example, 600V F-Series modules have a maximum data sheet saturation voltage of.v and therefore rank P does not exist for these devices. When modules of the same saturation voltage rank are paralleled the static current imbalance will be minimized so that the following recommended deratings can be applied: 600V F-Series derate IC by 10% 100V F-Series derate IC by 1% When more than two modules are paralleled the derating ratios in Table. should be applied. Example: In the case of four IGBT modules of 600V class connected in parallel, the table gives a derating of 1.6%. So the derated current with 4 parallel 00A modules is: 00A(1-0.16) x 4 = 10A Table. V ce(sat) Rankings for Parallel Connection of F- series IGBTs Vce(sat) at rated Ic, Tj= C, Vge=+1V 1.0-1.60 1.-1.6 1.60-1.0 1.6-1. 1.0-1.80 1.-1.8 1.80-1.9 1.90-.0.00-.0.1-.40 Parallel rank E F G H J K L M N P Table. Derating ratios for Parallel Connection of F- series IGBTs Number in parallel Derating 600V Derating 100V 1 0 0 10% 1% 1.1% 1.4% 4 1.6% 19.6% 14.% 0.9% 6 1.% 1.%. Switching Energy Characteristics Switching energy curves are provided in order to simplify estimation of switching losses. Use of these curves is described in more detail in "USING IGBT MODULE". Figure.11 and.1 shows turn-on and turn-off switching loss energy as a function of collector current. Figure.1 and.14 show switching loss energy versus series gate resistance. Figure.1 and.1 shows recovery switching loss energy of FWDi as a function of emitter current. Figure.16 and.18 show recovery switching loss energy of FWDi versus series gate resistance. Feb. 000

MITSUBISHI SEMICONDUCTORS POWER MODULES MOS Figure.11 E SW (on) (mj/pulse) 10-1 E SW vs. I C TRENCH IGBT MODULE F-SERIES (V CES =600V) V CC = 00V T j = 1 C V GE = ±1V 6 (A Ω) R G = : CM~00 U-1F I C (rated) (A).1Ω : CM400DU-1F, CM600HU-1F Half Bridge Switching CM00 U-1F CM00 U-1F CM10 U-1F CM100 U-1F CM U-1F CM400DU-1F CM600HU-1F CM400DU-1F CM600HU-1F CM00 U-1F CM00 U-1F CM10 U-1F CM100 U-1F CM U-1F 10 COLLECTOR CURRENT, I C (A) 10 E SW (off) (mj/pulse) Figure.1 E SW (on) (mj/pulse) 10 10-1 E SW vs. R G TRENCH IGBT MODULE F-SERIES (V CES =600V) V CC = 00V T j = 1 C V GE = ±1V I C = I C (rated) Half Bridge Switching CM100 U-1F CM U-1F CM600HU-1F CM400DU-1F CM00 U-1F CM00 U-1F CM00 U-1F CM10 U-1F CM600HU-1F CM400DU-1F CM00 U-1F CM10 U-1F CM100 U-1F CM U-1F 10 GATE RESISTANCE, R G (Ω) 10 4 10 10 E SW (off) (mj/pulse) Figure.1 E SW (on) (mj/pulse) E SW vs. I C TRENCH IGBT MODULE F-SERIES (V CES =100V) V CC = 600V T j = 1 C V GE = ±1V 1 (A Ω) R G = : CM0~400 U-4F I C (rated) (A) 1Ω : CM600HU-4F Half Bridge Switching CM00-4F CM00-4F CM10-4F CM100-4F CM -4F CM0-4F CM600-4F CM400-4F CM600-4F CM400-4F CM00-4F CM00-4F CM10-4F CM100-4F CM -4F CM0-4F 10 E SW (off) (mj/pulse) Figure.14 E SW (on) (mj/pulse) 10 E SW vs. R G TRENCH IGBT MODULE F-SERIES (V CES =100V) CM400HU-4F V CC = 600V Effected by RCD snubber T j = 1 C CM600HU-4F CM600HU-4F V GE = ±1V I C = I C (rated) Half Bridge Switching CM00-4F CM600HU-4F CM400HU-4F CM00-4F CM00-4F CM10-4F CM400HU-4F CM00-4F CM10-4F CM100-4F CM -4F CM0-4F 10 10 E SW (off) (mj/pulse) CM400HU-4F Effected by RCD cross snubber CM600HU-4F 10-1 10 10 COLLECTOR CURRENT, I C (A) CM100-4F CM -4F CM0-4F GATE RESISTANCE, R G (Ω) Sep. 000

MITSUBISHI SEMICONDUCTORS POWER MODULES MOS Figure.1 E rr (mj/pulse) V CC = 00V T j = 1 C V GE = ±1V R G =.1(CM600-1F).1(CM400-1F).1(CM00-1F).1(CM00-1F) 4.(CM10-1F) 6.(CM100-1F) 8.(CM -1F) E rr vs. I E IGBT MODULE F-SERIES (600V) CM600-1F CM400-1F CM00-1F CM00-1F CM10-1F CM100-1F CM -1F Figure.16 E rr (mj/pulse) 10 V CC = 00V T j = 1 C V GE = ±1V I C = Rated Current E rr vs. R G IGBT MODULE F-SERIES (600V) CM600-1F CM400-1F CM00-1F CM00-1F CM10-1F CM100-1F CM -1F 10-1 10 10 I E (A) 10 R G (Ω) Figure.1 10 V CC = 600V T j = 1 C V GE = ±1V R G = 1.0(CM600-4F) 0.8(CM400-4F) 1.0(CM00-4F) 1.6(CM00-4F).1(CM10-4F).1(CM100-4F) 4.(CM -4F) E rr vs. I E IGBT MODULE F-SERIES (100V) CM600-4F Figure.18 10 E rr vs. R G IGBT MODULE F-SERIES (100V) CM600-4F CM400-4F CM00-4F CM00-4F E rr (mj/pulse) CM400-4F CM00-4F CM00-4F E rr (mj/pulse) CM10-4F CM100-4F CM10-4F CM -4F CM100-4F CM0-4F CM -4F CM0-4F V CC = 600V T j = 1 C V GE = ±1V I C = Rated Current 10 10 I E (A) 10 R G (Ω) Sep. 000