Variable-Gain High Speed Current Amplifier

Similar documents
Variable-Gain High Speed Current Amplifier

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

Variable Gain Sub Femto Ampere Current Amplifier

Electro Optical Components, Inc. SUNSTAR 传感与控制 TEL: FAX: Skylane Boulev

Variable Gain 100 MHz Wideband Voltage Amplifier

Low Noise Variable Gain Low Frequency Voltage Amplifier

Variable Gain Low Frequency Voltage Amplifier

Ultra Low Noise Variable Gain Low Frequency Voltage Amplifier

Low Noise Variable Gain Low Frequency Voltage Amplifier

Ultra Low-Noise Variable Gain Low-Frequency Voltage Amplifier

Variable Gain Photoreceiver - Fast Optical Power Meter

Low Noise Variable Gain Low Frequency Voltage Amplifier

High-Speed Photoreceiver with Si PIN Photodiode

200 MHz Variable Gain Photoreceiver

400 MHz Photoreceiver with Si PIN Photodiode

Specifications Test Conditions Vs = ± 15 V, Ta = 25 C Gain Gain Values 40, 60, 80, 100 db indicated by four LEDs Gain Accuracy ± 0.1 % (between settin

Lock-In-Amplifier Module

Variable Gain Photoreceiver Fast Optical Power Meter

Variable Gain Photoreceiver Fast Optical Power Meter

200 MHz Photoreceiver with Si PIN Photodiode

400 MHz Photoreceiver with InGaAs PIN Photodiode

Great Britain: LASER COMPONENTS (UK) Ltd., Phone: , Fax: , France: LASER COMPONENTS

What Kind of Application Do You Have?

LOW NOISE AMPLIFIER SA SERIES

Ultralow Input Bias Current Operational Amplifier AD549

Pre-Amplifier SPA Series

Lock-In Amplifier Module Series LIA-MV(D)-200

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

HA-2600, HA Features. 12MHz, High Input Impedance Operational Amplifiers. Applications. Pinouts. Ordering Information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Improved Second Source to the EL2020 ADEL2020

CA-550 Series / CA-650 Series

Zero Drift, Unidirectional Current Shunt Monitor AD8219

HA-2520, HA MHz, High Slew Rate, Uncompensated, High Input Impedance, Operational Amplifiers. Features. Applications. Ordering Information

Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4

HA-2520, HA-2522, HA-2525

High Common-Mode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

MIC915. Features. General Description. Applications. Ordering Information. Pin Configuration. Pin Description. Dual 135MHz Low-Power Op Amp

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048

OBSOLETE. Low Cost Quad Voltage Controlled Amplifier SSM2164 REV. 0

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

QUAD 5V RAIL-TO-RAIL PRECISION OPERATIONAL AMPLIFIER

Zero Drift, Digitally Programmable Instrumentation Amplifier AD8231-EP OP FUNCTIONAL BLOCK DIAGRAM FEATURES ENHANCED PRODUCT FEATURES

High Voltage, Current Shunt Monitor AD8215

Dual, Current Feedback Low Power Op Amp AD812

Low Cost, General Purpose High Speed JFET Amplifier AD825

10-Channel Gamma Buffer with VCOM Driver ADD8710

Voltage-to-Frequency and Frequency-to-Voltage Converter ADVFC32

Dual operational amplifier

Precision Micropower Single Supply Operational Amplifier OP777

LM101A-LM201A LM301A SINGLE OPERATIONAL AMPLIFIERS

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES

Quad 12-Bit Digital-to-Analog Converter (Serial Interface)

ADA485-/ADA485- TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... Specifications... 3 Spe

High Accuracy 8-Pin Instrumentation Amplifier AMP02

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

AD8218 REVISION HISTORY

OBSOLETE. Self-Contained Audio Preamplifier SSM2017 REV. B

150 μv Maximum Offset Voltage Op Amp OP07D

Precision Instrumentation Amplifier AD524

LM158,A-LM258,A LM358,A

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

Low Power, Precision, Auto-Zero Op Amps AD8538/AD8539 FEATURES Low offset voltage: 13 μv maximum Input offset drift: 0.03 μv/ C Single-supply operatio

TL061 TL061A - TL061B

LF151 LF251 - LF351 WIDE BANDWIDTH SINGLE J-FET OPERATIONAL AMPLIFIER

First Sensor Evaluation Board Data Sheet Part Description MOD Order #


High Resolution, Zero-Drift Current Shunt Monitor AD8217

16 V, 4 MHz RR0 Amplifiers AD8665/AD8666/AD8668

Quad Audio Switch REV. B BLOCK DIAGRAM OF ONE SWITCH CHANNEL

EL2142. Features. Differential Line Receiver. Applications. Ordering Information. Pinout. Data Sheet February 11, 2005 FN7049.1

High frequency operational amplifier

Quad Picoampere Input Current Bipolar Op Amp AD704

FEATURES TYPICAL APPLICATIO. LT1194 Video Difference Amplifier DESCRIPTIO APPLICATIO S

High Voltage, Low Noise, Low Distortion, Unity-Gain Stable, High Speed Op Amp ADA4898-1/ADA4898-2

Low Power. Video Op Amp with Disable AD810 REV. A. Closed-Loop Gain and Phase vs. Frequency, G = +2, R L = 150, R F = 715 Ω

High Voltage Current Shunt Monitor AD8211

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers AD8512

Octal Sample-and-Hold with Multiplexed Input SMP18

Software Programmable Gain Amplifier AD526

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers AD8510/AD8512

EPAD OPERATIONAL AMPLIFIER

Single-Supply, High Speed, Triple Op Amp with Charge Pump ADA4858-3

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

High Speed FET-Input INSTRUMENTATION AMPLIFIER

4 MHz, 7 nv/ Hz, Low Offset and Drift, High Precision Amplifier ADA EP

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP

High Voltage, Current Shunt Monitor AD8215

OBSOLETE. High Performance, BiFET Operational Amplifiers AD542/AD544/AD547 REV. B

Single Supply, Low Power Triple Video Amplifier AD813

300MHz, Low-Power, High-Output-Current, Differential Line Driver

30 V, High Speed, Low Noise, Low Bias Current, JFET Operational Amplifier ADA4627-1/ADA4637-1

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER

Rail-to-Rail, High Output Current Amplifier AD8397

HA MHz, PRAM Four Channel Programmable Amplifiers. Features. Applications. Pinout. Ordering Information

Transcription:

Features Transimpedance (Gain) Switchable from 1 x 10 2 to 1 x 10 8 V/A Bandwidth from DC up to 200 MHz Upper Cut-Off Frequency Switchable to 1 MHz, 10 MHz or Full Bandwidth Switchable AC/DC Coupling Adjustable Bias Voltage for Use with External Photodetectors Local and Remote Control of All Main Functions Applications Photodiode and Photomultiplier Amplifier Scanning Tunneling Microscopy (STM) Spectroscopy Preamplifier for Lock-Ins, A/D-Converters, etc. Block Diagram CURRENT INPUT Current to Voltage Converter Rf = 100 Ω... 10 MΩ Programmable AC / DC Coupling Programmable Gain Amplifier Buffer-Amplifier and Bandwidth Limiting Offset Nulling I/U X 1 X 10 VOLTAGE OUTPUT Low Noise High Speed 10 MHz FBW 1 MHz Overload Detector Stabilized Bias Voltage or GND +10 V Parameter Control Unit DC-MONITOR OUTPUT Supply Voltage Regulator Bias Buffer -10 V Manual Switches Optocoupler Isolate Unit POWER SUPPLY INPUT DIG. CONTROL INPUTS BsDHPCA_3 /SP/R8/22 Sept. 04/Page 1 of 8

Specifications Test Conditions Vs = ± 15 V, Ta = 25 C Gain Transimpedance 1 x 10 2... 1 x 10 8 V/A Gain Accuracy ± 1 % Frequency Response Lower Cut-Off Frequency DC / 100 Hz, switchable Upper Cut-Off Frequency Dependent on gain setting up to 200 MHz (see table), switchable to 10 MHz or 1 MHz Input Equ. Input Noise Current See table Equ. Input Noise Voltage typ. 2.8 nv/ Hz Input Bias Current typ. 20 pa Output Offset Compensation Adjustable by offset-trimpot and external control voltage, min. ± 100 mv Performance depending on Gain Setting Gain Setting (Low Noise) (V/A) 10 2 10 3 10 4 10 5 10 6 10 7 Upper Cut-Off Frequency (-3 db) 200 MHz 80 MHz 14 MHz 3.5 MHz 1.8 MHz 220 khz Rise / Fall Time (10% - 90%) 1.8 ns 4.4 ns 25 ns 0.1 µs 0.2 µs 1.6 µs Equ. Input Noise Current (/ Hz) 200 pa 16 pa 2.1 pa 500 fa 170 fa 60 fa measured at 1 MHz 1 MHz 1 MHz 10 khz 10 khz 10 khz Max. Input Current (±) 10 ma 1 ma 0.1 ma 10 µa 1 µa 0.1 µa Gain setting (High Speed) (V/A) 10 3 10 4 10 5 10 6 10 7 10 8 Upper Cut-Off Frequency (- 3 db) 175 MHz 80 MHz 14 MHz 3.5 MHz 1.8 MHz 220 khz Rise / Fall Time (10% - 90%) 2.0 ns 4.4 ns 25 ns 0.1 µs 0.2 µs 1.6 µs Equ. Input Noise Current (/ Hz) 140 pa 6.0 pa 1.5 pa 450 fa 150 fa 55 fa measured at 1 MHz 1 MHz 1 MHz 10 khz 10 khz 10 khz Max. Input Current (±) 1 ma 0.1 ma 10 µa 1 µa 0.1 µa 10 na Upper cut-off frequencies and equivalent input noise currents given in this table are typical values only which will depend on the source capacitance. Keep the source capacitance as low as possible by using short cables at the input to achieve best possible bandwidth and noise performance. For the dependence of the upper cut-off frequencies on the source capacitance please see the diagrams on the next page. Page 2

Specifications (continued) Dependence of Upper Cut-Off Frequency on Source Capacitance 1000 Bandwidth [MHz] 100 10 10^2 V/A Low Noise 10^3 V/A High Speed 10^3 V/A Low Noise 10^4 V/A High Speed 1 1 10 100 1000 Source Capacitance [pf] 100 Bandwidth [MHz] 10 10^4 V/A Low Noise 10^5 V/A High Speed 10^5 V/A Low Noise 10^6 V/A High Speed 1 1 10 100 1000 Source Capacitance [pf] 10 10^6 V/A Low Noise 10^7 V/A High Speed Bandwidth [MHz] 1 0.1 0,1 10^7 V/A Low Noise 10^8 V/A High Speed 0,01 0.01 1 10 100 1000 Source Capacitance [pf] Page 3

Specifications (continued) Output Output Voltage ± 1 V (@ 50 Ω Load), for linear amplification Output Impedance 50 Ω Slew Rate 1,000 V/µs DC Monitor Output Monitor Output Gain Mode Monitor Gain Low Noise Gain Setting Divided by -1 High Speed Gain Setting Divided by -10 Monitor Output Polarity Monitor Output Voltage Range Monitor Output Bandwidth Monitor Output Impedance Inverting ± 1 V (@ >10 kω Load) DC... 1 khz 1 kω Detector Bias Bias Voltage Range ± 10 V, max. 22 ma, connected to shield of BNC input connector, switchable to GND Warning A bias current of 20 ma may destroy sensitive detectors. Please pay attention to the correct polarity and careful adjustment of the bias voltage to protect your detector. Put the bias switch to GND (ground) if you don t want to use the internal bias voltage. The positive and the negative supply voltage of the amplifier must be switched "on" and "off" simultaneously in order to avoid overvoltage at the bias output. Indicator LED Function Overload Digital Control Control Input Voltage Range Low: - 0.8...+ 1.2 V, High: 2.3... + 12 V Control Input Current 0 ma @ 0V, 1.5 ma @ + 5 V, 4.5 ma @ + 12 V Overload Output Non Active: 0 V, max. -1 ma, Active: 5.1 V, max. 7 ma Ext. Offset Control Control Voltage Range ± 10 V Offset Control Input Impedance 15 kω Power Supply Supply Voltage ± 15 V Supply Current typ. + 110 / - 90 ma Stabilized Power Supply Output ± 12 V, max. 150 ma, + 5V, max. 50 ma Case Weight 320 gr. (0.74 lbs) Material AlMg4.5Mn, nickel-plated Temperature Range Storage Temperature -40... +100 C Operating Temperature 0... +60 C Absolute Maximum Ratings Signal Input Voltage ± 5 V Control Input Voltage - 5 V / + 16 V Power Supply Voltage ± 20 V Transient Input Voltage ± 1.5 kv (out of a 1 nf Source) Page 4

Connectors Input BNC, Isolated Output Power Supply BNC LEMO Series 1S, 3-pin fixed Socket Pin 1: + 15V Pin 2: - 15V Pin 3: GND PIN 2 -Vs PIN 1 +Vs PIN 3 GND Control Port Sub-D 25-pin, female, Qual. Class 2 Pin 1: +12V (Stabilized Power Supply Output) Pin 2: -12V (Stabilized Power Supply Output) Pin 3: AGND (Analog Ground) Pin 4: +5V (Stabilized Power Supply Output) Pin 5: Digital Output: Overload Pin 6: DC Monitor Pin 7: BIAS Monitor Pin 8: Offset Control Voltage Pin 9: DGND (Ground for Digital Control Pins) Pin 10: Digital Control Input: Gain, LSB Pin 11: Digital Control Input: Gain Pin 12: Digital Control Input: Gain, MSB Pin 13: Digital Control Input: AC/DC Pin 14: Digital Control Input: High Speed / Low Noise Pin 15: Upper BW Limit 10 MHz PIN 16: Upper BW Limit 1 MHz PIN 17-25 NC Page 5

Remote Control Operation General Remote Control Input Pins are optically isolated. Corresponding control bits are connected by logical OR function to local switch setting allowing for mixed mode operation. For pure remote control set the corresponding local switch to Remote, "AC", "L (Low Noise), "FBW" and select the desired setting via a bit-code at the corresponding digital inputs. Mixed operation, i.e. local gain setting and remote controlled AC/DC setting, is also possible. Switch setting Bias / GND is not remote controllable. Gain Setting Low Noise High Speed Gain (V/A) Gain (V/A) Pin 10 Pin 11 Pin 12 Pin 14= Low Pin 14= High LSB MSB 10 2 10 3 Low Low Low 10 3 10 4 High Low Low 10 4 10 5 Low High Low 10 5 10 6 High High Low 10 6 10 7 Low Low High 10 7 10 8 High Low High AC/DC Setting Coupling Pin 13 AC High DC Low Low Pass Filter Setting Upper Bandwidth Limit Pin 15 Pin 16 Full Bandwidth Low Low 10 MHz High Low 1 MHz Low High High Speed / Low Noise Setting Mode Pin 14 Low Noise Low High Speed High Page 6

Application Diagram DHPCA PD CURRENT INPUT I/U Current to Voltage Converter +10 V Active Current Limiting Diode should be shielded but not galvanically connected to shield, Bias Buffer -10 V Internal Biasing (set switch to BIAS) 15 V + - DHPCA-Biasing_internal 100 n PD R DHPCA CURRENT INPUT Current to Voltage Converter I/U +10 V Active Current Limiting Diode should be shielded but not galvanically connected to shield. Bias Buffer -10 V External Biasing (set switch to GND) DHPCA-Biasing_extern Page 7

Dimensions IN OUT 12 mm 29 mm 14 mm POWER 44 mm 51 mm 22 mm 28 mm 3.3 mm 42 mm 79 mm 101 mm 111 mm 125 mm DZDHPCA_1 FEMTO Messtechnik GmbH Paul-Lincke-Ufer 34 D-10999 Berlin Germany Tel.: +49 (0)30 4 46 93 86 Fax: +49 (0)30 4 46 93 88 e-mail: info@femto.de http://www.femto.de Specifications are subject to change without notice. Information furnished herin is believed to be accurate and reliable. However, no responsibility is assumed by FEMTO Messtechnik GmbH for its use, nor for any infringement of patents or other rights granted by implication or otherwise under any patent rights of FEMTO Messtechnik GmbH. Product names mentioned may also be trademarks used here for identification purposes only. by FEMTO Messtechnik GmbH Printed in Germany Page 8