Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs

Similar documents
Electronic Circuits EE359A

COMPARISON OF THE MOSFET AND THE BJT:

Chapter 8 Differential and Multistage Amplifiers

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B

Lecture 21 - Multistage Amplifiers (I) Multistage Amplifiers. November 22, 2005

ECE 546 Lecture 12 Integrated Circuits

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers

Multistage Amplifiers

V o. ECE2280 Homework #1 Fall Use: ignore r o, V BE =0.7, β=100 V I = sin(20t) For DC analysis, assume that the capacitors are open

QUESTION BANK for Analog Electronics 4EC111 *

6.012 Microelectronic Devices and Circuits

Microelectronics Exercises of Topic 5 ICT Systems Engineering EPSEM - UPC

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section

Electronic Circuits EE359A

Building Blocks of Integrated-Circuit Amplifiers

Electronic Circuits EE359A

BJT Amplifier. Superposition principle (linear amplifier)

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

EE 140 / EE 240A ANALOG INTEGRATED CIRCUITS FALL 2015 C. Nguyen PROBLEM SET #7

Department of Electrical Engineering IIT Madras

CHAPTER 8 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Analog Integrated Circuit Design Exercise 1

Metal-Oxide-Silicon (MOS) devices PMOS. n-type

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

Chapter 7 Building Blocks of Integrated Circuit Amplifiers: Part D: Advanced Current Mirrors

Building Blocks of Integrated-Circuit Amplifiers

F9 Differential and Multistage Amplifiers

EE 230 Lab Lab 9. Prior to Lab

Applied Electronics II

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN

MICROELECTRONIC CIRCUIT DESIGN Third Edition

Week 12: Output Stages, Frequency Response

ECE 3110: Engineering Electronics II Fall Final Exam. Dec. 16, 8:00-10:00am. Name: (78 points total)

ELEC 350L Electronics I Laboratory Fall 2012

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Field Effect Transistors

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

EE105 Fall 2015 Microelectronic Devices and Circuits

SAMPLE FINAL EXAMINATION FALL TERM

DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

problem grade total

Voltage Biasing Considerations (From the CS atom toward the differential pair atom) Claudio Talarico, Gonzaga University

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Laboratory #5 BJT Basics and MOSFET Basics

Chapter 13: Introduction to Switched- Capacitor Circuits

University of Pittsburgh

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

Solid State Devices & Circuits. 18. Advanced Techniques

55:041 Electronic Circuits

EECE2412 Final Exam. with Solutions

Operational Amplifiers Part I of VI What Does Rail-to-Rail Input Really Mean? by Bonnie C. Baker Microchip Technology, Inc.

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor

Lecture 3 Switched-Capacitor Circuits Trevor Caldwell

Chapter 6. Single-stage integrated-circuit amplifier

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor

Introduction to VLSI ASIC Design and Technology

MOSFET Amplifier Configuration. MOSFET Amplifier Configuration

Lecture 26 - Design Problems & Wrap-Up. May 15, 2003

Linear electronic. Lecture No. 1

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

55:041 Electronic Circuits

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S.

Unit 3: Integrated-circuit amplifiers (contd.)

CMOS Cascode Transconductance Amplifier

MOS Field-Effect Transistors (MOSFETs)

MOSFET & IC Basics - GATE Problems (Part - I)

Operational Amplifiers

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004

Physics 364, Fall 2012, reading due your answers to by 11pm on Thursday

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam

MICROELECTRONIC CIRCUIT DESIGN Fifth Edition

Lecture 190 CMOS Technology, Compatible Devices (10/28/01) Page 190-1

Current Mirrors. Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 4-1

LECTURE 09 LARGE SIGNAL MOSFET MODEL

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Code: 9A Answer any FIVE questions All questions carry equal marks *****

Advanced Operational Amplifiers

Reading. Lecture 33: Context. Lecture Outline. Chapter 9, multi-stage amplifiers. Prof. J. S. Smith

Field Effect Transistors (FET s) University of Connecticut 136

The Differential Amplifier. BJT Differential Pair

Analysis and Design of Analog Integrated Circuits Lecture 8. Cascode Techniques

Microelectronic Circuits II. Ch 10 : Operational-Amplifier Circuits

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals.

Lecture 33: Context. Prof. J. S. Smith

INTRODUCTION TO ELECTRONICS EHB 222E

Chapter 12 Opertational Amplifier Circuits

EE 330 Lecture 20. Operating Points for Amplifier Applications Amplification with Transistor Circuits Small Signal Modelling

Design cycle for MEMS

Solid State Devices- Part- II. Module- IV

Analog and Telecommunication Electronics

Electronic Circuits EE359A

Transcription:

Integrated Circuit Amplifiers Comparison of MOSFETs and BJTs 17

Typical CMOS Device Parameters 0.8 µm 0.25 µm 0.13 µm Parameter NMOS PMOS NMOS PMOS NMOS PMOS t ox (nm) 15 15 6 6 2.7 2.7 C ox (ff/µm 2 ) 2.3 2.3 5.8 5.8 12.8 12.8 µ (cm 2 /V s) 550 250 460 160 400 100 µc ox (µa/v 2 ) 127 58 267 93 511 128 V t0 (V) 0.7-0.7 0.5-0.6 0.4-0.4 V DD (V) 5 5 2.5 2.5 1.3 1.3 V A (V/µm) 25 20 5 6 5 6 C ov (ff/µm) 0.2 0.2 0.3 0.3 0.36 0.33 Oxide thickness is decreasing Capacitance increases Increases electric field (V/d) 18

Typical CMOS Device Parameters 0.8 µm 0.25 µm 0.13 µm Parameter NMOS PMOS NMOS PMOS NMOS PMOS t ox (nm) 15 15 6 6 2.7 2.7 C ox (ff/µm 2 ) 2.3 2.3 5.8 5.8 12.8 12.8 µ (cm 2 /V s) 550 250 460 160 400 100 µc ox (µa/v 2 ) 127 58 267 93 511 128 V t0 (V) 0.7-0.7 0.5-0.6 0.4-0.4 V DD (V) 5 5 2.5 2.5 1.3 1.3 V A (V/µm) 25 20 5 6 5 6 C ov (ff/µm) 0.2 0.2 0.3 0.3 0.36 0.33 Reduced device geometry increases transistors/unit area (L 2 ) increases total power dissipation channel length modulation more pronounced increases device speed (i = C dv/dt) 19

Typical CMOS Device Parameters 0.8 µm 0.25 µm 0.13 µm Parameter NMOS PMOS NMOS PMOS NMOS PMOS t ox (nm) 15 15 6 6 2.7 2.7 C ox (ff/µm 2 ) 2.3 2.3 5.8 5.8 12.8 12.8 µ (cm 2 /V s) 550 250 460 160 400 100 µc ox (µa/v 2 ) 127 58 267 93 511 128 V t0 (V) 0.7-0.7 0.5-0.6 0.4-0.4 V DD (V) 5 5 2.5 2.5 1.3 1.3 V A (V/µm) 25 20 5 6 5 6 C ov (ff/µm) 0.2 0.2 0.3 0.3 0.36 0.33 Reduced operating voltage reduces power consumption (CV 2 ) V t is a larger portion of V DD 20

Typical BJT Device Parameters Standard high voltage process Advanced low voltage process Parameter npn Lateral pnp npn Lateral pnp A E (µm 2 ) 500 900 2 2 I S (A) 5 x 10-15 2 x 10-15 6 x 10-18 6 x 10-18 β 0 200 50 100 50 V A (V) 130 50 35 30 V CE0 (V) 50 60 8 18 t F 350 ps 30 ns 10 ps 650 ps C je0 1 pf 300 ff 5 ff 14 ff C m0 300 ff 1 pf 5 ff 15 ff r x (Ω) 200 300 400 200 Good performance pnp transistors are harder to fabricate on IC than npn (b and forward transit time) 21

Typical BJT Device Parameters Standard high voltage process Advanced low voltage process Parameter npn Lateral pnp npn Lateral pnp A E (µm 2 ) 500 900 2 2 I S (A) 5 x 10-15 2 x 10-15 6 x 10-18 6 x 10-18 β 0 200 50 100 50 V A (V) 130 50 35 30 V CE0 (V) 50 60 8 18 t F 350 ps 30 ns 10 ps 650 ps C je0 1 pf 300 ff 5 ff 14 ff C m0 300 ff 1 pf 5 ff 15 ff r x (Ω) 200 300 400 200 f T = 400 600 MHz f T = 10 25 GHz 22

Typical BJT Device Parameters Standard high voltage process Advanced low voltage process Parameter npn Lateral pnp npn Lateral pnp A E (µm 2 ) 500 900 2 2 I S (A) 5 x 10-15 2 x 10-15 6 x 10-18 6 x 10-18 β 0 200 50 100 50 V A (V) 130 50 35 30 V CE0 (V) 50 60 8 18 t F 350 ps 30 ns 10 ps 650 ps C je0 1 pf 300 ff 5 ff 14 ff C m0 300 ff 1 pf 5 ff 15 ff r x (Ω) 200 300 400 200 Higher speed technology coupled with lower C-E breakdown voltage 23

Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12 1

MOSFET vs. BJT current-voltage characteristic 1.5 10 3 i C ( v) i D ( v) 1 10 3 500 0 2 4 6 8 10 v The drain current of a MOSFET follows a square law relationship The collector current of a BJT follows an exponential relationship This means that the BJT can control a current that varies over ~5 orders of magnitude, compared to MOSFET current that varies as v OV 2 (0.1 0.3 V), or about 1 order of magnitude. 2

MOSFET vs. BJT design parameters Significant parameter MOSFET W/L BJT A E (E-B junction area) Range 1.0 500 10:1 3

MOSFET vs. BJT design tradeoffs Available parameters MOSFET I D, V OV, W, L BJT I C, V BE, I S Useful parameters Pick any 3 I C (V BE is related and not very adjustable) 4

Differential and Multistage Amplifiers Ch 8 5

Noise issues with single ended systems Noise, interference Ground loops, offset reference 6

Noise issues with single ended systems Noise, interference Large effective antenna 7

DC offset issues with single ended systems offset reference 8

Differential benefits + - Differential signal Independent of ground reference + - 9

Differential benefits Differential amplification lends itself to twisted pair wiring + - Alternate loops cancel Small antenna loops + - 10

MOS differential pair MOSFETs are biased for saturation mode operation (not triode region) Resistive loads (for now) Ideal current source 11

Common-mode input voltage Assume identical MOSFETs, identical drain resistors 12

Common-mode input voltage Range of common mode voltage is limited: I V + V + V + V V V + V R 2 V CS ss CS t OV CM DD t D 13

Differential input voltage For all current to flow through Q 1 : 1 W I = k v V 2 L ( ) 2 ' n GS1 t 14

Differential input voltage For all current to flow through Q 1 : This determines limits of v id : 1 W I = k v V 2 L ( ) 2 ' n GS1 t 2V v 2V OV id OV 15

Differential input voltage For all current to flow through Q 1 : This determines limits of v id : 1 W I = k v V 2 L ( ) 2 ' n GS1 t 2V v 2V OV id OV Both transistors are in saturation, even though one is not conducting 16

Large signal operation 1 W i = k v V 2 L ( ) 2 ' D1 n GS1 t 1 W i = k v V 2 L ( ) 2 ' D2 n GS2 t v = v v = v v id GS1 GS 2 G1 G2 17

Large signal operation 1 W i = k v V 2 L ( ) 2 ' D1 n GS1 t 1 W i = k v V 2 L ( ) 2 ' D2 n GS2 t v = v v = v v id GS1 GS 2 G1 G2 1 W i i = k v 2 L I = i + i ' D1 D2 n id D1 D2 18

Large signal operation 1 W i = k v V 2 L ( ) 2 ' D1 n GS1 t 1 W i = k v V 2 L ( ) 2 ' D2 n GS2 t i D1 v = v v = v v id GS1 GS 2 G1 G2 I I vid vid /2 = + 1 2 VOV 2 VOV 2 1 W i i = k v 2 L I = i + i ' D1 D2 n id D1 D2 i D1 I I vid vid /2 = 1 2 VOV 2 VOV 2 19

Large signal operation 20

Large signal operation Nonlinear operating characteristics 21

Large signal operation Limited linear operating range v id /2 << V OV 22