The HGTD: A SOI Power Diode for Timing Detection Applications

Similar documents
Recent Technological Developments on LGAD and ilgad Detectors for Tracking and Timing Applications

Simulation of new P-type strip detectors with trench to enhance the charge multiplication effect in the n- type electrodes

Readout electronics for LGAD sensors

Simulation and test of 3D silicon radiation detectors

Design and Fabrication of an Optimum Peripheral Region for Low Gain Avalanche Detectors

Development of Ultra Fast Silicon Detectors for 4D Tracking

Active Sensors Unit assembly process for the ATLAS High Granularity Timing Device

Quality Assurance for the ATLAS Pixel Sensor

Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGC)

Understanding the Properties of Gallium Implanted LGAD Timing Detectors

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips

Development of n-in-p Active Edge Pixel Detectors for ATLAS ITK Upgrade

A new Vertical JFET Technology for Harsh Radiation Applications

Development of Pixel Detectors for the Inner Tracker Upgrade of the ATLAS Experiment

irst: process development, characterization and first irradiation studies

Status of ITC-irst activities in RD50

Why p-type is better than n-type? or Electric field in heavily irradiated silicon detectors

MAPS-based ECAL Option for ILC

PoS(EPS-HEP 2009)150. Silicon Detectors for the slhc - an Overview of Recent RD50 Results. Giulio Pellegrini 1. On behalf of CERN RD50 collaboration

Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4. Final design and pre-production.

Thin Silicon R&D for LC applications

A High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS Calorimeter system Detector concept description and first beam test results

Silicon Sensors for High-Luminosity Trackers - RD50 Collaboration status report

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL

arxiv: v2 [physics.ins-det] 15 Jan 2019

Silicon Sensor Developments for the CMS Tracker Upgrade

Measurements With Irradiated 3D Silicon Strip Detectors

Development of Double-sided Silcon microstrip Detector. D.H. Kah*, H. Park, H.J. Kim (BAERI JikLee (SNU) E. Won (Korea U)

Silicon Detectors in High Energy Physics

New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic

Simulation of High Resistivity (CMOS) Pixels

Ultra-Fast Silicon Detector

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

CMS Tracker Upgrade for HL-LHC Sensors R&D. Hadi Behnamian, IPM On behalf of CMS Tracker Collaboration

A High Granularity Timing Detector for the Phase II Upgrade of the ATLAS experiment

Role of guard rings in improving the performance of silicon detectors

Review of Silicon Inner Tracker

Nuclear Instruments and Methods in Physics Research A

Silicon sensors for the LumiCal for the Very Forward Region

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector)

Tests of monolithic CMOS SOI pixel detector prototype INTPIX3 MOHAMMED IMRAN AHMED. Supervisors Dr. Henryk Palka (IFJ-PAN) Dr. Marek Idzik(AGH-UST)

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors

First Results of 0.15µm CMOS SOI Pixel Detector

A High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS Detector system

Muon detection in security applications and monolithic active pixel sensors

Development of Solid-State Detector for X-ray Computed Tomography

UFSD: Ultra-Fast Silicon Detector

Ultra-Fast Silicon Detector

Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias

ATLAS ITk and new pixel sensors technologies

Study of irradiated 3D detectors. University of Glasgow, Scotland. University of Glasgow, Scotland

Monolithic Pixel Detector in a 0.15µm SOI Technology

The CMS Pixel Detector Upgrade and R&D Developments for the High Luminosity LHC

Session 3: Solid State Devices. Silicon on Insulator

PoS(Vertex 2016)028. Small pitch 3D devices. Gian-Franco Dalla Betta 1, Roberto Mendicino, DMS Sultan

A timing layer for charge particles in CMS

Design and Simulation of a Silicon Photomultiplier Array for Space Experiments

Pixel sensors with different pitch layouts for ATLAS Phase-II upgrade

Development of Integration-Type Silicon-On-Insulator Monolithic Pixel. Detectors by Using a Float Zone Silicon

The upgrade of the ATLAS silicon strip tracker

A new strips tracker for the upgraded ATLAS ITk detector

Fast Timing for Collider Detectors

SIM-Detecteurs 2014 LPNHE-Paris

Sensor production readiness

Fundamentals of CMOS Image Sensors

CMS Phase II Tracker Upgrade GRK-Workshop in Bad Liebenzell

Ultra-Fast Silicon Detector

EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS

Performance and Characteristics of Silicon Avalanche Photodetectors in

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Development of a large area silicon pad detector for the identification of cosmic ions

AVALANCHE PHOTODIODES FOR THE CMS ELECTROMAGNETIC CALORIMETER

3084 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 4, AUGUST 2013

2.8 - CMOS TECHNOLOGY

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH A 1024 PAD SILICON DETECTOR TO SOLVE TRACKING AMBIGUITIES IN HIGH MULTIPLICITY EVENTS

High-Ohmic Resistors using Nanometer-Thin Pure-Boron Chemical-Vapour-Deposited Layers

Silicon sensors for radiant signals. D.Sc. Mikko A. Juntunen

Module Integration Sensor Requirements

ATLAS strip detector upgrade for the HL-LHC

UFSD: Ultra-Fast Silicon Detector

IOLTS th IEEE International On-Line Testing Symposium

Signal-to. to-noise with SiGe. 7 th RD50 Workshop CERN. Hartmut F.-W. Sadrozinski. SCIPP UC Santa Cruz. Signal-to-Noise, SiGe 1

Silicon on Insulator (SOI) Spring 2018 EE 532 Tao Chen

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

Prototype Performance and Design of the ATLAS Pixel Sensor

The 4D pixel challenge

Single Sided and Double Sided Silicon MicroStrip Detector R&D

King Mongkut s Institute of Technology Ladkrabang, Bangkok 10520, Thailand b Thai Microelectronics Center (TMEC), Chachoengsao 24000, Thailand

Radiation-hard active CMOS pixel sensors for HL- LHC detector upgrades

420 Intro to VLSI Design

Julia Thom-Levy, Cornell University, for the CMS Collaboration. ECFA High Luminosity LHC Experiments Workshop-2016 October 3-6, 2016

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI


Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1

High Luminosity ATLAS vs. CMOS Sensors

CMOS Detectors Ingeniously Simple!

High Voltage and MEMS Process Integration

Layout and prototyping of the new ATLAS Inner Tracker for the High Luminosity LHC

Transcription:

The HGTD: A SOI Power Diode for Timing Detection Applications Work done in the framework of RD50 Collaboration (CERN) M. Carulla, D. Flores, S. Hidalgo, D. Quirion, G. Pellegrini IMB-CNM (CSIC), Spain

Outline 1. Introduction and LGAD Conept 2. Basic HGTD Structure and Operation 3. HGTD and CT-PPS Simulation and optimization 4. Layout and Process Technology 5. First Electrical and Radiation Hardness Performance 6. Conclusions

ATLAS Experiment ATLAS Experiment (CERN) proposes UFSD for future calorimeters as a technical option for the High Granularity Timing Detectors (HGTD) implemented with semiconductors. 2

TOTEM Experiment CMS-TOTEM are considering UFSD to be the timing detectors for the high momentum - high rapidity Precision Proton Spectrometer (CT-PPS) 3

LGAD (Low Gain Avalanche Detectors) are based on Power PiN diodes with an additional P-type diffusion to provide multiplication (gain). Suitable for fabrication of microstrip or pixel detectors which do not suffer from the limitations normally found in avalanche detectors. Core Region Uniform electric field, high enough to activate impact ionization (multiplication) Termination High electric field confined in the core region LGAD Basic Operation Proportional Response (linear mode operation) Good efficiency and spectral range Gain/V BD trade-off Thin detector integration Better S/N ratio (true for small cell volumes and fast shaping times)

Why 50 µm Thick LGAD? 300 µm LGAD with small gain (5-10) is a sensor that maintains similar noise levels than APD, avoiding readout front-end saturation & pile-up effects. Thin substrates (50 µm) reduces the Bulk Radiation Effects and decreases the charge collection time. Thin LGAD = Ultra Fast Silicon Detectors (UFSD) P N N + P - Multiplier Junction Overlap Collector Ring P + N N + 5

High Granularity Timing Detector (HGTD) Pixels of 3x3 mm 2 and 2x2 mm 2 High Resistivity P-type 50 µm SOI Wafers Also trying with 50 & 75 µm Epitaxial Wafers Core Termination 6

CMS-TOTEM Precision Proton Spectrometer (CT-PPS) CT-PPS Sensor Geometry Core Termination Asymmetric design. Segmented according to the hit density distribution Area = 12 mm X 6 mm Thickness = 50 µm Slim edge of 200 um on the side facing the beam Gain ~ 15 Radiation Hard 7

Electrical Performance Simulation (Dose = 1.8 10 13 cm -2 ) Core @ 140V V FD < 40V @ 140V Termination 8

MIP and Gain Simulation T = 295ºK Dose = 1.9 10 13 cm -2 T = 295ºK T = 253ºK Dose = 1.9 10 13 cm -2 T = 253ºK 9

C A2 HGTD CT-PPS Detectors (Mask Design) A1 A2 D B2 B1 B2 C A1 = 8x8 matrix, 3mm pad, LGAD B1 = 8x8 matrix, 2mm pad, LGAD A2 = 4x4 matrix, 3mm pad, LGAD B2 = 4x4 matrix, 2mm pad, LGAD A3 = 2x2 matrix, 3mm pad, LGAD B3 = 2x2 matrix, 2mm pad, LGAD A4 = 2x2 matrix, 3mm pad, PIN B4 = 2x2 matrix, 2mm pad, PIN C = CT-PPS D = TOTEM detector Different diodes and test structures. C A3 A3 A4 B3 B3 B4 C D D Core HGTD 10

Wafers # 10 SOI HPR 50 µm 3 FZ HRP 285 µm 1 Dummy (gluing test) 14 W3-W12 W1; W2 & W14 W13 Multiplication Summary of Processed Wafers Ion Energy (kev) Dose (atm/cm 2 ) Wafer B 100 1.9 10 13 W1-W2; W5-W10 B 100 1.8 10 13 W3 & W4 B 100 2.0 10 13 W11 & W12 - No Multiplication No Multiplication W14 W6 and W10 broken during fabrication 8 SOI wafers + 3 FZ 285 µm wafers + 1 dummy wafer ready for testing Epitaxial wafers (50 and 70 µm) still in process 11

First 50 µm SOI Detectors (HGTD) LGAD HGTD Run Basic Information: Cnm827 Mask Set 8 Mask Levels 100 Technological Steps Double Side Process Electron Collection P-Stop Surface Isolation JTE Termination Peripheral Collector Ring Pixel Detectors (2x2, 4x4, 8x8) Pad Detectors Detectors for Timing Applications Test Structures (Process Quality Control) 12

First 50 µm SOI Detectors (HGTD) Back Surface Front Surface Guard ring pad Back-side wet etch opening HGTD Aluminium reaches the back side contact Passivation opening CT-PPS Slim Edge 13

Connection to Front-End Electronics Pixel = 3 x 3 mm 2 High Resistivity P-type 50 µm SOI Wafers Guard Ring Pad Passivation Opening FE Glue PCB Glue N+ P+ Al Al 3000 µm 30 µm P-stop P++ Al P- SiO2 50 µm 300 µm Silicon Wet Etching Back-Side Contact Calice Si-W Calorimeter Concept

First Measurements: I(V) Characteristics T=21ºC Simulation LGAD Pads PiN Diodes

First Measurements: I(V) Characteristics T=21ºC simulation 16

First Measurements: C(V) Characteristics on Pad HGTD Dose 1.8 10 13 cm -2 Dose 1.9 10 13 cm -2 1/C² (F -2 ) V FD ~40V 1/C² (F -2 ) V FD ~40V Dose 2.0 10 13 cm -2 1/C² (F -2 ) V FD >40V 1/C² (F -2 ) 40 V ~30 V Geometry Factor

First Measurements: I(t) Stability Experimental data show a good current Stability in reverse mode (Between 1.5 and 2.0 na)

Measurements Conditions: Devices: - W5_LGA32P (PIN) - W5_LGA45 (Dose 1.9 10 13 cm -2 ) - W5_LGA81 (Dose 1.9 10 13 cm -2 ) Min Voltage = 50 V Max Voltage = 250 V Step = 10 V Laser: Infrared Illumination: Front side Attenuation: 69% Frequency: 1kHz Gain Values: 2 @ 50 V 12 @ 200 V 25-35 @ 225 V First Measurements: TCT Gain

Conclusions Thin LGAD detectors optimised for fabrication on 50 µm SOI wafers Detectors working as expected from simulation: Voltage capability in the range of 250 V Full depletion voltage in the range of 40 V Time resolution less than 2 ns Linear gain in the operating reverse voltage range (50 200 V) Time stability of the reverse current (2 na) Measurements of radiation hardness and timing capability in progress Technological solutions to minimise the gain degradation due to high fluence radiation under study 20

Thank you! 21

Summary of LGAD Activities at IMB-CNM Clean Room No. Run Tipo # Wafers PiN Waf Mask Set P-Well Drivein Implant Mask Year 5176 1 st APD 8 - CNM 458 3 Doses Long Photoresist 2010 5646 2 nd APD 9 2 CNM 458 6 Doses Short Photoresist 2010 5730 3 rh APD 4 2 CNM 458 2 Doses Short Oxide 2011 5870/5883 4 th APD 4 - CNM 458 2 Doses Short Oxide 2011 5944/5982 5 th APD 5 1 CNM 458 3 Doses Short Oxide 2011 6474 1 st LGAD 11 1 CNM 652 8 Doses Short Oxide 2012 6884/6951 2 nd LGAD 13 1 CNM 652 3 Doses Short Oxide 2013 6984/7062 3 th LGAD 7 1 CNM 652 3 Doses Short Oxide 2013 7509 4 rh LGAD 7 1 CNM 761 3 Doses Short Oxide 2014 7735 1 st Gallium 3 - CNM 761 3 Doses Short Oxide 2014 7782/8642 1 st 200 µm 10 - CNM 761 5 Doses Short Oxide 2014 22

Summary of LGAD Activities at IMB-CNM Clean Room No. Run Tipo # Wafers PiN Waf Mask Set P-Well Drivein Implant Mask Year 7859 5 th LGAD 6-8373 1 st SOI 6 4 2 8533 1 st ilgad 6+3 (Ga) - 8622 6 th LGAD 6+3(Ga) - CNM 761 CNM 784 CNM 809 CNM 761 3 Doses Short Oxide 2015 1 Dose Short Oxide 2015 2 Doses Short Oxide 2015 2 Doses Short Oxide 2016 9088 1 st SOI 50 µm 14 1 CNM 827 3 Doses Short Oxide 2016 Good R&D mainly financed by Spanish research project and partially by CERN RD50 collaboration Under electrical testing Still in process Calibration run 23

1 CURRENT MAP AT: 100 V 2 3 4 5 6 7 8 9 10 LGAD, 300 µm Substrate Yield improved in new fabrications, good repeatability Low leakage current and high breakdown voltage. 1 CURRENT MAP AT: 100 V 2 3 4 5 6 7 8 9 10 A 0,92 ##### ##### 0,24 0,19 0,24 A 3,96 ##### ##### 0,25 0,27 0,34 B ##### 0,26 5,64 ##### 0,26 0,27 B ##### 0,29 1,20 2,40 0,21 0,23 ##### 0,26 C 6,11 100000,00 100000,00 ##### ##### 0,23 0,30 8,04 0,26 C 3,73 2977,08 147,33 1,30 ##### 0,23 0,27 0,72 ##### ##### 0,59 ##### ##### D 1,39 1,08 1,13 ##### 0,18 0,18 0,18 0,19 0,19 0,17 0,79 0,37 2,50 1,45 0,40 3,09 1,65 D 2,04 1,16 1,07 6,05 0,15 0,15 0,14 0,17 0,18 0,18 ##### 0,47 0,72 ##### 0,55 ##### 0,22 E 3983,86 18698,90 27860,60 ##### 0,26 0,21 ##### 0,73 0,85 2,89 0,38 0,77 0,26 E 3,50 5,00 4,37 2,33 0,18 0,16 ##### F 0,48 0,29 4,79 9876,18 5061,10 ##### 80,91 0,31 0,26 F 2,57 347,50 960,66 #### 1,31 ##### 0,29 G 6,37 32691,70 29937,10 127,98 0,90 0,81 0,28 ##### G 2,59 3,31 8,39 0,88 0,81 2,30 H ##### ##### 0,20 0,28 ##### 0,25 H ##### 0,65 0,20 0,30 3,75 0,30 ##### ##### 0,23 0,26 I 5,56 1000,00 1000,00 ##### ##### 0,45 ##### 0,19 0,27 I 2,75 9842,66 10627,00 ##### ##### J ##### ##### ##### ##### ##### ##### J ##### ##### ##### 0,35 0,30 0,43 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Unidades 1,00E-08 A Units 1,00E-08 A 0 1 2 5 10 20 50 100 200 500 1000 na scale o 2016 0 1 2 5 10 20 50 100 200 500 1000 24