PART 2 Cellular Coverage Concepts

Similar documents
RiverSurveyor S5/M9 & HydroSurveyor Second Generation Power & Communications Module (PCM) Jan 23, 2014

Switched and Sectored Beamforming 1 c Raviraj Adve,

On Erlang Capacity of CDMA Systems

SARAD GmbH Tel.: 0351 / Wiesbadener Straße 10 FAX: 0351 / Dresden Internet:

DTTB Frequency Planning

PreLab5 Temperature-Controlled Fan (Due Oct 16)

Impact of the Various Tiers of Interfering Cells on CDMA Systems

Preparing microwave transport network for the 5G world

Connection tariffs

SVT Tab and Service Visibility Tool Job Aid

LINE POWER SUPPLIES Low-Loss Supplies for Line Powered EnOcean Modules

WiFi Lab C. Equipment Needs:

Puget Sound Company Overview. Purpose of the Project. Solution Overview

NATF CIP Requirement R1 Guideline

Communication Theory II

EE 311: Electrical Engineering Junior Lab Phase Locked Loop

Transmitting voice and data using electromagnetic waves in open space

The demand for a successful flaw analysis is that the test equipment produces no distortion on the echos no noise. I _... I i.j J...

Tee (Not a Coupler) Open Circuit Line. Z Z Z jz d

Experion MX Formation Measurement

Interference Possibilities in TV Band-I due to Propagation of vhf Signals via Sporadic E

USER MANUAL HIGH INTERCEPT LOW NOISE AMPLIFIER (HILNA TM ) V1

DXF2DAT 3.0 Professional Designed Computing Systems 848 W. Borton Road Essexville, Michigan 48732

Application for Drive Technology

Chapter 5 The Cellular Concept

INTRODUCTION TO PLL DESIGN

Xerox 8160/8142 Wide Format Color

SENSOR AND MEASUREMENT TECHNOLOGY

Accurate Time & Frequency System

Electrical devices may only be mounted and connected by electrically skilled persons.

U.S. Small Cells Total Addressable Market, : Sizing a Growing Opportunity

BV4115. RF Packet Transmitter. Product specification. February ByVac 2007 ByVac Page 1 of 5

Specification for a communicating Panelboard system to monitor, control and maintain LV electrical installations

Study of Dipole Antenna Height for Radio Telescope According to Baghdad Location

Lite-On offers a broad range of discrete infrared components for application such as remote control, IR wireless data

Security Exercise 12

The Mathematics of the Rubik s Cube

Exam solutions FYS3240/

No, Cell C has partnered up with various Fibre Network Operators (FNO) in the market providing fibre on an open access network.

PROBABILITY OF DETECTION OF FLAWS IN A GAS TURBINE ENGINE. Gary L. Burkhardt and R.E. Beissner

A new approach to protection of railway feeders and contact lines

DIMACS Working Group on Measuring Anonymity Notes from Session 3: Information Theoretic and Language-based Approaches

LED wdali MC Switch Input Modul Set - User Manual

Accurate Time & Frequency System

The fan-in of a logic gate is defined as the number of inputs that the gate is designed to handle.

100G SERDES Power Study

Configuring the MSNSwitch For the LAN-Cell 3

ADS ECHO Qstart Quick Reference Guide. 340 The Bridge Street, Suite 204 Huntsville, Alabama (256)

An Embedded RF Lumped Element Hybrid Coupler Using LTCC Technology

ECE 3829: Advanced Digital System Design with FPGAs A Term 2017

CESSDA-Questionnaire on PIDs

INSTALLATION INSTRUCTIONS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

FIRMWARE RELEASE NOTES. Versions V2.0.0 to V Model HDL-32E. High Definition LiDAR Sensor

PhotoVu Digital Picture Frame Service & Repair Guide

idcv Isolated Digital Voltmeter User Manual

Spectracom GSG ecall Test Suite

Focus Session on Simulation at Aeronautics Test Facilities

IR Emitter and Detector Product Data Sheet LTE-R38386AS-ZF Spec No.: DS Effective Date: 09/14/2016 LITE-ON DCC RELEASE

LCN Remote Control. Perfection. High-End Building Management. Remote Control

Application of Percents

Hospital Task Scheduling using Constraint Programming

TUTORIAL I ECE 555 CADENCE SCHEMATIC SIMULATION USING SPECTRE

INSTALLATION INSTRUCTIONS

ELG3311: Tutorial 2 R C = 75 Ω X M = 20 Ω R T = Ω X T = Ω. Solution: The following equivalent circuit is referred to the primary.

M M Eissa (SIEEE), Egypt Mahmoud M. El-Mesalawy, Egypt Yilu Liu (FIEEE), USA Hossam Gabbar, Canada

Insertion Loss (db)

JPS Interoperability Solutions SNV-12 Voter Executive Outline

CS5530 Mobile/Wireless Systems Key Wireless Physical Layer Concepts

3400 to 3600MHz. Crown Recognised Spectrum Access in 3400 to 3600 MHz. The response of Alcatel-Lucent to Ofcom Spectrum Policy Group

IR Emitter and Detector Product Data Sheet LTR-C5510-DC Spec No.: DS Effective Date: 09/24/2016 LITE-ON DCC RELEASE

Lab 1 Load Cell Measurement System

Rectifiers convert DC to AC. Inverters convert AC to DC.

Network Hierarchy Flexibility in an HTS Environment. Dr Harald Stange, Managing Director/CEO, Romantis

Small Satellite Integrated Communication Environment (ICE)

PS 430 FOUR CHANNEL REMOTE SPEAKER STATION

Dispatcher Control for MotoTRBO Capacity Plus Systems

Airfield Lighting Product Description SAGA. System of Azimuthal Guidance for Approach (SAGA)

DragonWave Gigabit Solutions. DragonWave Proprietary Information 1

State Bank Virtual Card FAQs

ELECTRICAL CIRCUITS LABORATORY II EEE 209 EXPERIMENT-6. Operational Amplifiers II

WS-400 BASE STATION FOR WIRELESS INTERCOM WITH FOUR TX/RX MODULES USER MANUAL

Transmission Substation Field Instructions

.,Plc..d,~t l~ucjio PA300 DIGITAL BASS PROCESSOR USER'S MANUAL. 2 Why use the DIGITAL BASS PROCESSOR? 2 About the PWM Subsonic Filter

Unequal, Equi-phase, 1:N Power Divider Based on a Sectoral Waveguide

UNIVERSAL HARDWARE PLATFORM CARRIER-GRADE VSAT TECHNOLOGY

SISTEMA ELEVATÓRIO ETV 460A

Lab 1 Load Cell Measurement System (Jan 09/10)

Models 7008, 7034, 7035, 7035R & 7041 Planar Blind-Mate Connectors, dc to 40.0 GHz

Using GNSS for Robot Positioning

Introduction. Version 8.2.2

Meteorological Satellites (MetSat) Overview of the global network of Meteorological Satellites. Speaker: Markus Dreis (EUMETSAT)

David R. Beering Christopher Erickson

HIGH POWER UPS SELECTION METHODOLOGY AND INSTALLATION GUIDELINE FOR HIGH RELIABILITY POWER SUPPLY

D a i s y M o d e m s

Vds 1. Gnd. Gnd. Key Specifications Symbol Parameter Units Min. Typ. Max.

A c r o s s t h e S k y l i n e

Figure 1: View, connection compartment closed

Performance Evaluation of Table Driven and Buffer Adaptive WLANs

Carl Landon June 2012

Transcription:

PRT ellular verage ncepts Lecture. why cells verage fr a terrestrial zne Signal OK if P rx > -X dm P rx c P tx d -4 greater P tx greater d S d ase Statin N channels (e.g. channel frequency) N simultaneus calls

ellular cverage target: cver the same area with a larger number f Ss 9 ase Statin frequencies 4 frequencies/cell Wrst case: 4 calls (all users in same cell) est case: 76 calls (4 users per cell) verage case >> Lw transmit pwer Key advantages: Increased capacity (freq. reuse) ecreased tx pwer ellular cverage (micrcells) many S Very lw pwer!! Unlimited capacity!! Usage f same spectrum ( frequencies) (4 freq/cell) isadvantage: mbility management

ellular system architecture S per cell ell: Prtin f territry cvered by ne radi statin One r mre carriers (frequencies; channels) per cell bile users fullduplex cnnected with S S cntrls many Ss f4 f4 f5 f5 f3 f3 f f f6 Wired netwrk S S f6 f f f7 f7 f4 f4 f5 f5 f3 f3 f f f6 f6 f f f7 f7 S cnnected t PSTN S S PSTN ase Statin bile Switching entre Public Switching Telephne Netwrk ellular capacity Increased via frequency reuse Frequency reuse depends n interference need t sufficiently separate cells reuse pattern cluster size (7 4 3): discussed later ellular system capacity: depends n verall number f frequencies Larger spectrum ccupatin frequency reuse pattern ell size Smaller cell (cell micrcell piccell) greater capacity Smaller cell lwer transmissin pwer Smaller cell increased handver management burden 3

hexagnal cells Hexagn: Gd apprximatin fr circle Ideal cverage pattern n hles n cell superpsitin Example case: Reuse pattern 4 ells in real wrld Shaped by terrain, shadwing, etc ell brder: lcal threshld, beynd which neighbring S signal is received strnger than current ne 4

PRT ellular verage ncepts Lecture. lusters and I Reuse patterns Reuse distance: Key cncept In the real wrld depends n Territrial patterns (hills, etc) Transmitted pwer» and ther prpagatin issues such as antenna directivity, height f transmissin antenna, etc Simplified hexagnal cells mdel: reuse distance depends n reuse pattern (cluster size) Pssible clusters: 3,4,7,9,,3,6,9, 4 6 5 3 7 4 K 4 3 6 5 7 4 luster: K 7 4 4 3 3 4 3 3 R 5

Reuse distance R 3K General frmula Valid fr hexagnal gemetry reuse distance R cell radius q /R frequency reuse factr K q/r 3 3,00 4 3,46 7 4,58 9 5,0 6,00 3 6,4 v Prf istance between tw cell centers: (u,v ) (u,v ) (,) (3,) u 30 [( u u ) cs 30 ] + [( v v ) + ( u u )sin ] 30 Simplifies t: ( u u) + ( v v ) + ( u u)( v v ) istance f cell (i,j) frm (0,0): i + j + ij 3R R i + j + ij luster: easy t see that K R i + j + ij hence: R 3K 6

lusters: Number f Ss cmprised in a circle f diameter Number f Ss whse interdistance is lwer than lusters K(i3,j) K7(i,j) K4 (i,j0) Pssible clusters all integer i,j values i j Kii+jj+ij q/r 0,73 3 3,00 0 4 3,46 7 4,58 6,00 3 0 9 5,0 3 3 6,4 3 9 7,55 3 3 7 9,00 4 0 6 6,93 4 7,94 4 8 9,7 4 3 37 0,54 4 4 48,00 5 0 5 8,66 5 3 9,64 7

-hannel hannel Interference F G E E F G G E F E F G E F S N S I S N Frequency reuse implies that remte cells interfere with tagged ne -hannel Interference (I) sum f interference frm remte cells nise pwer (N signal pwer (S) interfering signal pwer (I) S I as N S small signal pwer (S) S ) + interfering signal pwer (I) I mputatin - assumptins ssumptins N I 6 interfering cells N I 6: first ring interferers nly we neglect secnd-ring interferers Key simplificatin Signal fr S at distance R Signal frm S interferers at distance Negligible Nise N S S/N ~ S/I d η prpagatin law η4 (in general) Same parameters fr all Ss Same P tx, antenna gains, etc Pwer P R int int ~ R Pwer P 8

S N N I S I R I cmputatin η cst R N I k η cst N I η η R N y using the assumptins f same cst and same : I q Results depend n rati q/r (qfrequency reuse factr) lternative expressin: recalling that R 3K η S S R η 3K ( 3K ) N I N I R 3K N I 6 S ( 3K ) 3 N I 6,µ4 K I 6 USGE: Given an S/I target, cluster size K is btained η ( ) η Examples target cnditins: S/I9 d η4 Slutin: target cnditins: S 8d η4. Slutin: S I S I 0 0.9 ( 3K ) K.3 6 7.94 8 η η 4 K K 3 S 3 I S I lg [ d] 5η lg( 3K ) ( 3K ) 0 K 3 8 + 7.78.3.3 5.63 0lg6 K 7 9

S/I cmputatin assuming 6 interferers nly (first ring) K q/r S/I S/I d 3 3,00 3,5,3 4 3,46 4,0 3,8 7 4,58 73,5 8,7 9 5,0,5 0,8 6,00 6,0 3,3 3 6,4 53,5 4,0 6 6,93 384,0 5,8 9 7,55 54,5 7,3 7,94 66,5 8, 5 8,66 937,5 9,7 dditinal interferers case K4 nte that fr each cluster there are always N I 6 first-ring interferers In I cmputatin, cntribute f additinal interferers is marginal 0

sectrizatin irectinal antennas ell divided int sectrs Each sectr uses different frequencies T avid interference at sectr brders PROS: I reductin ONS: Increased handver rate Less effective trunking leads t perfrmnce impairments Sectr 3 f fa, L + L a, 3L Sectr f fa, L + L a, L ELL a Sectr f a, L f a, L I reductin via sectrizatin three sectrs case Inferference frm cells, nly Instead f 6 cells With usual apprxs (specifically, int ~) S I S I 0 0 R η η S d I S 3 I mni mni d + 4.77 F G G E F F G E E F G E F G E F nclusin: 3 sectrs 4.77 d imprvement

6 sectrs 60 irectinal antennas I reductin: interfereer nly 6 x S/I in the mni case Imprvement: 7.78 d PRT ellular verage ncepts Lecture.3 teletraffic cnsideratins, teletraffic planning

USY ILE 0 Traffic generated by ne user (statistical ntin f traffic) user making phne calls TRFFI is a stchastic prcess Hw t characterize this prcess? statistical distributin f the USY perid statistical distributin f the ILE perid statistical characterizatin f the prcess memry time Traffic characterizatin suitable fr traffic engineering amunt f busy time in t traffic intensity i lim t t ( average number λ f calls per hur) ( average call duratin τ ) prbability that, at a randm time t, user is in USY state mean prcess value E.g. at a given time, des the prbability that a user starts a call result different depending n what happened in the past? ll equivalent (if statinary prcess) Traffic generated by mre than ne users U U U3 Traffic intensity (adimensinal, measured in Erlangs): 4 i 4i i U4 TOT P E 4 k k [ k active calls] ( ) [ active calls] 4 i i 4 k i 3

example 5 users Each user makes an average f 3 calls per hur Each call, in average, lasts fr 4 minutes calls i 3 hur 5 5 4 60 [ erl] [ erl] eaning: in average, there is active call; but the actual number f active calls varies frm 0 (n active user) t 5 (all users active), with given prbability 5 [ hurs] [ erl] number f active users prbability 0 0,37680 0,409600 0,04800 3 0,0500 4 0,006400 5 0,00030 Secnd example 30 users Each user makes an average f calls per hur Each call, in average, lasts fr 4 minutes 4 30 Erlangs 60 SOE NOTES: -In average, active calls (intensity ); -Frequently, we find up t 4 r 5 calls; -Prb(n.calls>8) 0.0% -re than calls nly nce ver TRFFI ENGINEERING: hw many channels t reserve fr these users! n. active users binm prbab cumulat 0,3E-0 0,63 30,7E-0 0,396669 435,8E-0 0,676784 3 4060,9E-0 0,86357 4 7405 9,0E-0 0,953564 5 4506 3,3E-0 0,987006 6 593775,0E-0 0,996960 7 035800,4E-03 0,999397 8 58595 5,0E-04 0,999898 9 430750 8,7E-05 0,999985 0 3004505,3E-05 0,999998 5467300,7E-06,000000 864935,9E-07,000000 3 9759850,9E-08,000000 4 454675,7E-09,000000 5 55750,3E-0,000000 6 454675 8,4E-,000000 7 9759850 5,0E-3,000000 8 864935,6E-4,000000 9 5467300,E-5,000000 0 3004505 4,5E-7,000000 430750,5E-8,000000 58595 4,5E-0,000000 3 035800,E-,000000 4 593775,3E-3,000000 5 4506 4,0E-5,000000 6 7405 5,5E-7,000000 7 4060 5,8E-9,000000 8 435 4,4E-3,000000 9 30,E-33,000000 30 5,E-36,000000 4

nte n binmial cefficient cmputatin 60 60!.39936e +!48! but 60! 8.3099e + 8 ( verflw prblems!! ) 60 60 exp lg exp exp 60 i lg ( lg( 60! ) lg(! ) lg( 48! )) () i lg() i lg() i (n verflw!! befre exp...) i 60 48 i ( i ) 60 exp lg i i (n verflw!! never! ) 48 i 48 () i lg() i lg() i + lg( i ) + 48lg( i ) i P Infinite Users ssume users, generating an verall traffic intensity (i.e. each user generates traffic at intensity i /). We have just fund that P k k [ k active calls, users] ( ) i k i! k ( k)! k! Let infinity, while maintaining the same verall traffic intensity [ k active calls, users] k lim k! lim! ( k) ( ) L( k + ) k! k! k k k k e k k k! 5

Pissn istributin 30% 5% erl pissn binmial (30) 0% 5% 0 erl 0% 5% 0% 0 4 6 8 0 4 6 8 0 P k ( ) e k k! Very gd matching with inmial (when large with respect t ) uch simpler t use than inmial (n annying queueing thery cmplicatins) Limited number f channels THE mst imprtant prblem in circuit switching The number f channels is less than the number f users (eventually infinite) Sme ffered calls will be blcked What is the blcking prbability? We have an expressin fr P[k ffered calls] We must find an expressin fr P[k accepted calls] s: [ ] P [ blck] P accepted calls U U U3 U4 TOT X X N. carried calls versus t N. ffered calls versus t 6

hannel utilizatin prbability channels available ssumptins: Pissn distributin (infin. users) lcked calls cleared It can be prven (frm Queueing thery) that: P[k calls in the system, k (0,)] P[ k ffered calls] P[ i ffered calls] i 0 Hence: (very simple result!) 35% 30% 5% 0% 5% 0% 5% 0% P[system full] P[ accepted calls] ffered traffic: erl - 3 ffered calls accepted calls 0 3 4 5 6 7 8 P[ ffered calls] P[ i ffered calls] i 0 lcking prbability: Erlang- Fundamental frmula fr telephne netwrks planning ffered traffic in Erlangs Π blck! E j j 0 j!, ( ) blcking prbability 00,00% 0,00%,00% 0,0% 0,0% Efficient recursive cmputatin available E, ( ) E + E, ( ) ( ),,,3,4,5,6,7 0 3 4 5 ffered lad (erlangs) 7

NOTE: finite users Erlang- btained fr the infinite users case It is easy (frm queueing thery) t btain an explicit blcking frmula fr the finite users case: ENGSET FORUL: Π blck i k i k 0 i i Erlang- can be re-btained as limit case infinity i 0 i Erlang- is a very gd apprximatin as lng as: / small (e.g. <0.) In any case, Erlang- is a cnservative frmula yields higher blcking prbability Gd feature fr planning apacity planning Target: supprt users with a given Grade Of Service (GOS) GOS expressed in terms f upper-bund fr the blcking prbability GOS example: subscribers shuld find a line available in the 99% f the cases, i.e. they shuld be blcked in n mre than % f the attempts Given: channels Offered lad Target GOS target target, E btained frm numerical inversin f ( ) 8

hannel usage efficiency Offered lad (erl) arried lad (erl) channels ( ) c lcked traffic efficiency: η c ( E ( )), if small blcking Fundamental prperty: fr same GOS, efficiency increases as grws!! example blcking prbability 00,0% 0,0%,0% 40 erl 60 erl 80 erl 00 erl 0,% 0 0 40 60 80 00 0 capacity GOS % maximum blcking. Resulting system dimensining and efficiency: 40 erl > 53 60 erl > 75 80 erl > 96 00 erl > 7 η 74.9% η 79.3% η 8.6% η 84.6% 9

Erlang calculatin - tables Erlang calculatin - sftware Erlang- frmula very easy t implement Even if sme tricks needed fr numerical accuracy Erlang- inversin nt s easy Sftware tls Online calculatr: http://mmc.et.tudelft.nl/~frits/erlang.htm Given tw parameter, calculates the third N number f circuits blcking prbability ffered lad 0

pplicatin t cellular netwrks ell size (radius R) may be determined n the basis f traffic cnsideratins First step: Given num channels and GOS 50 available channels in a cell lcking prbability<% Evaluate maximum cell (ffered) lad Frm Erlang- inversin(tables) 40.5 erl Secnd step Given traffic generated by each user Each user: 4 calls/busy-hur Each call: min in average i 4x/600.333 erl/user Evaluate max num f users in cell 30.87 ~ 30 Third step: Given density f users δ500 users/km Evaluate cell radius δ R πr πδ R~438m Other example Three service prviders are planning t prvide cellular service fr an urban area. The target GOS is % blcking. Users make 3 calls/busy-hur, each lasting 3 minutes in average ( i 3/00.5) Questin: hw many users can supprt each prvider? Prvider cnfiguratin: 0 cells, each with 40 channels Prvider cnfiguratin: 30 cells, each with 30 channels Prvider cnfiguratin: 40 cells, each with 0 channels Prvider : 40 channels/cell Prvider : 30 channels/cell Prvider : 0 channels/cell at %: 30.99 erl/cell 69.8 erl-ttal 43 verall users at %:.93 erl/cell 654.9 erl-ttal 4386 verall users at %: 3.8 erl/cell 57. erl-ttal 355 verall users mpare case with! The reasn is the lwer efficiency f 0 channels versus 40

Sectrizatin and traffic ssume cluster K7 Omnidirectinal antennas: 0 sectrs: 60 sectrs: I8.7 d I3.4 d I6.4 d Sectrizatin yields t better I UT: the price t pay is a much lwer trunking efficiency! With 60 channels/cell, GOS%, Omni: 60 channels x46.95 46.95 erl η77.5% 0 : 60/30 channels 3x.03 36.09erl η59.5% 60 : 60/60 channels 6x4.46 6.76erl η44.% cnclusin This mdule has given sme hints regarding: ell sizing via prpagatin cnsideratins Frequency reuse via prpagatin cnsideratins ell planning via teletraffic cnsideratin Very elementary mdels ut sufficient t understand what s inside planning N mbility! Teletraffic mdels need t be extended t manage handver rates! lcking requirement fr an handver call UST be much lwer than blcking fr a new incming call severe math cmplicatins Guard channels fr handver Out f the scpes f this class!