Netzkurzschlussverhalten von umrichterbetriebenen regenerativen Energieerzeugern und -speichern

Similar documents
Comparison of the Behaviour of Wind Farms and Conventional Power Stations during Grid Failure Conditions

High Wind Speed Shutdown / Power Available

Analysis of the Effectiveness of Grid Codes for Offshore Wind Farms Connected to Onshore Grid via VSC-Based HVDC

How Full-Converter Wind Turbine Generators Satisfy Interconnection Requirements

Requirements for Offshore Grid Connections. in the. Grid of TenneT TSO GmbH

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation

Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine

Influence of Wind Generators in Voltage Dips

Fault Ride-through Capability Test Unit for Wind Turbines

WIND FARM Flexible AC Transmission Systems

QUESTIONNAIRE for Wind Farm Power Stations only

ADVANCED CONTROLS FOR MITIGATION OF FLICKER USING DOUBLY-FED ASYNCHRONOUS WIND TURBINE-GENERATORS

Power Converter Systems

WFPS1 WIND FARM POWER STATION GRID CODE PROVISIONS

Neutral Grounding in Wind Farm Medium Voltage Collector Grids

Masterthesis. Variable Speed Wind Turbine equipped with a Synchronous Generator. by Christian Freitag

Initial Application Form for Connection of Distributed Generation (>10kW)

Aalborg Universitet. Design and Control of A DC Grid for Offshore Wind Farms Deng, Fujin. Publication date: 2012

Impact Assessment Generator Form

Code No: R Set No. 1

Reduction of flicker effect in wind power plants with doubly fed machines

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Aggregated Generating Facilities Technical Requirements

Simulations of open phase conditions on the high voltage side of YNd05-power plant transformers

Excitation Systems THYRIPART. Compound-Excitation System for Synchronous Generators. Power Generation

Highgate Converter Overview. Prepared by Joshua Burroughs & Jeff Carrara IEEE PES

IMPROVED SYNCHRONISM IN DFIG WIND ENERGY CONVERSION SYSTEM USING SMES ENERGY STORAGE

Control of Wind Power Plant for Cooperation with Conventional Power Generation Unit and HVDC Classic Link

GPS Synchronized high voltage measuring system

IDAHO PURPA GENERATOR INTERCONNECTION REQUEST (Application Form)

System for Better Synchronism in DFIG Wind Energy Conversion System Using SMES Energy Storage

Fault Ride Through Technical Assessment Report Template

Level 6 Graduate Diploma in Engineering Electrical Energy Systems

Effects of Harmonic Distortion I

DC BUS VOLTAGE CONTROL OF PWM CONVERTERS IN PMSG IN WIND POWER SYSTEM Krishnamoorthy.M 1 Andal. S 2 M.Varatharaj 3

Exercise 3. Doubly-Fed Induction Generators EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Doubly-fed induction generator operation

Experience with Connecting Offshore Wind Farms to the Grid

5 Summary LOW VOLTAGE RIDE THROUGH WITH HIGH CURRENT INJECTION. Motivation. Future Requirements. Test results for symmetrical failures

MEASUREMENT CAMPAIGN AND ASSESSMENT OF THE QUALITY OF SUPPLY IN RES AND DG FACILITIES IN SPAIN

Simulation of Steady-State and Transient Operational Behaviour of Variable-Speed Motor-Generators of Hydro Power Plants

Numbering System for Protective Devices, Control and Indication Devices for Power Systems

SYNCHRONOUS MACHINES

Mitigation & Protection of Sub-Synchronous Controller Interactions (SSCI) in DFIG Wind Turbine Systems

Embedded Generation Connection Application Form

Distributed Energy Engineering

Control of Grid Side Inverter in a B2B Configuration for WT Applications. Master Thesis. by George Alin RADUCU

ADVANCED VECTOR SHIFT ALGORITHM FOR ISLANDING DETECTION

SGMF(T) series. Onsite Mobile AC High Voltage Test System. Applications:

Onsite Mobile AC High Voltage Test System

Texas Reliability Entity Event Analysis. Event: May 8, 2011 Loss of Multiple Elements Category 1a Event

Wind Power Facility Technical Requirements CHANGE HISTORY

Differential Protection with REF 542plus Feeder Terminal

Power hardware in-the-loop laboratory test environment for small scale wind turbine prototype

UProtection Requirements. Ufor a Large scale Wind Park. Shyam Musunuri Siemens Energy

Intermittent Renewable Resources (Wind and PV) Distribution Connection Code (DCC) At Medium Voltage (MV)

Enhancement of Reactive Power Capability of DFIG using Grid Side Converter

GENERATOR INTERCONNECTION APPLICATION Category 5 For All Projects with Aggregate Generator Output of More Than 2 MW

Sheng Yang Iowa State University

BE Semester- VI (Electrical Engineering) Question Bank (E 605 ELECTRICAL POWER SYSTEM - II) Y - Y transformer : 300 MVA, 33Y / 220Y kv, X = 15 %

Company Directive STANDARD TECHNIQUE: SD7F/2. Determination of Short Circuit Duty for Switchgear on the WPD Distribution System

In Class Examples (ICE)

DIFFERENCE BETWEEN SWITCHING OF MOTORS & GENERATORS WITH VACUUM TECHNOLOGY

Mobile Power Transformer Test Systm

Owner/Customer Name: Mailing Address: City: County: State: Zip Code: Phone Number: Representative: Address: Fax Number:

CONVERTERS IN POWER VOLTAGE-SOURCED SYSTEMS. Modeling, Control, and Applications IEEE UNIVERSITATSBIBLIOTHEK HANNOVER. Amirnaser Yazdani.

EE 340L Experiment 6: Synchronous Generator - Operation with the Grid

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage

SAMCon High Voltage Shore Connection System On-shore and Onboard

The Advantages and Application of Three Winding Transformers

, ,54 A

PART 1 OWNER/APPLICANT INFORMATION

Impact of Distributed Generation on Voltage Regulation by ULTC Transformer using Various Existing Methods

Power Quality Summary

HVDC Solutions for Integration of the Renewable Energy Resources

How to maximize reliability using an alternative distribution system for critical loads

LOW VOLTAGE RIDE - THROUGH CAPABILITY OF WIND FARMS

THREE-PHASE SHORT-CIRCUIT TESTING OF HIGH-VOLTAGE CIRCUIT-BREAKERS USING SYNTHETIC CIRCUITS

ETAP PowerStation. Electrical Transient Analyzer Program. ETAP PowerStation. Short Circuit Analysis. ANSI Standard 3-Phase Fault Currents

Trouble Shooting MagnaPLUS / Mariner / Harsh Duty

ROBUST ANALYSIS OF PID CONTROLLED INVERTER SYSTEM FOR GRID INTERCONNECTED VARIABLE SPEED WIND GENERATOR

Long Distance Subsea Power Transmission and Distribution

Cork Institute of Technology. Autumn 2008 Electrical Energy Systems (Time: 3 Hours)

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control

Improvement of Power Quality Considering Voltage Stability in Grid Connected System by FACTS Devices

SOUTH CENTRAL INDIANA REMC Application for Operation of Member-Owned Small Power Generation Systems

FUZZY LOGIC CONTROLLER BASED UPQC FOR POWER QUALITY MITIGATION IN GRID CONNECTED WIND ENERGY CONVERSION SYSTEM

B.Tech Academic Projects EEE (Simulation)

Trans Bay Cable A Breakthrough of VSC Multilevel Converters in HVDC Transmission

Wind Requirements and Testing for Steady-State Voltage and Frequency Control

Advanced Test Equipment Rentals ATEC (2832) CP RC. Resonance circuit for GIS testing

Power Systems Modelling and Fault Analysis

LV PFC Basics. Power Factor Correction - Basics FK PC PM PFC Januar 07 Page: 1

EASTERN ILLINI ELECTRIC COOPERATIVE Application for Operation of Member-Owned Generation

Improved Transient Compensation Using PI-SRF Control Scheme Based UHVDC For Offshore Wind Power Plant

Table of Contents. Introduction... 1

VSC Transmission. Presentation Overview. CIGRE B4 HVDC and Power Electronics HVDC Colloquium, Oslo, April LCC HVDC Transmission

Title: IEC TS (First Revision of IEC WT 01) The new standard for Wind Turbines and Wind Farms Onshore and Offshore

CONTROLLABILITY OF WIND POWER PLANTS CAPABILITIES REGARDING VOLTAGE CONTROL AND DATA EXCHANGE

Mitigation of Negative Sequence Currents and Effect of Magnetic Inrush Currents in Indian Railway Traction System

Control and Protection of Wind Power Plants with VSC-HVDC Connection Chaudhary, Sanjay K.

each time the Frequency is above 51Hz. Continuous operation is required

Transcription:

October 25 Netzkurzschlussverhalten von umrichterbetriebenen regenerativen Energieerzeugern und -speichern Dr. Georg Möhlenkamp 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP

Overview ALSTOM Power Conversion GmbH Key Problem: new Grid Connection Regulations Problem definition for the wind turbines Characteristics of the wind converters and adaptations for new Grid Codes Fixed speed asynchronous generator (ASG) Variable speed synchronous generator (SG) Variable speed doubly fed ASG (DASG) Conclusion 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 2

Power Conversion International Power Conversion a business in ALSTOM Industry equipment Motors & Generators Marine & Offshore Customised technology for customer excellence 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 3

International organisation UNITED KINGDOM Rugby Kidsgrove Glasgow FRANCE Massy Nancy GERMANY Berlin USA Pittsburgh CHINA Beijing & Wuhan BRASILIEN Belo Horizonte NEW India Chennai NEW China Shanghai 35 Employees in 7 countries 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 4

General Drives Wind Energy Leading supplier of generator and variable speed drive systems for wind turbines Common design studies Selection of optimised drive solutions Manufacturing of prototypes and joint evaluation of system tests Present in several committees, e. g. FGW, VDN 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 5

Key Problem The effect of wind power cannot be neglected anymore Grid operators expect wind turbines to behave like conventional synchronous generator: no switch-off during voltage dips high short circuit current voltage buffering through reactive current during voltage dips fast recovery of active power New grid codes for wind turbines 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 6

Key Problem definition for the wind turbines resulting from the grid connection requirements 1. Extended frequency range: 47.5 Hz - [49 Hz - 51 Hz -] 51.5 Hz 2. Extended voltage range: 8 % - [9 % -] 11 % (for permanent operation) 3. Power factor can be chosen from 1 % active to 1 % reactive current to match the demanded reactive power at the grid connection point [cos ϕ =,95 at low voltage side] 4. Ride through of voltage dips down to 15 % U N [Disconnection at 8 % U N ] U/U N [ % ] 1 15 3. t/ms 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 7

Fixed speed turbines: ASG Directly coupled asynchronous generator Stall control Compensation of reactive power by capacitors Robust, cost efficient High short circuit current Turbine Transformer ASG High voltage High voltage 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 8

Solution for ASG Point 1 Voltage Point 2 Frequency No problem in the required range! Point 3 Reactive Power Not possible with capacitors! Point 4 Voltage dip Ride through of voltage dips possible! 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 9

Point 3: Reactive Power Capacitors cannot meet the required reactive current characteristics ALSTOM Power Conditioning System (PCS) provides reactive current Reactice current (IB /IN) [%] 1 8 6 4 2 1 2 3 4 5 6 7 8 9 1 Voltage dip [%] Contrary to connventional capacitor can the selfcommutated converter follow the desired value Requirement Conv. capacitor 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 1

Simulation: ASG with PCS u Grid / u N 1.5 5 i Grid / i N -5 4 2 P / P N Q / P N -2-4 2 M / M N -2-4 -.5.5.1.15.2.25.3.35.4.45 t [s] Voltage dip down to 2 % U N 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 11

Fixed speed wind turbine with PCS MV-power system (e.g. 2-kV) G ~ WT-1 HV grid (ge.g. 11-kV) PCS-1 Decentral G ~ WT-2 PCS-2 Decentral G ~ WT-n PCS-n Decentral 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 12

Variable speed turbine: SG Fully fed synchronous generator Generator decoupled from grid via the converter Pitch control Reactive power provided by converter Limited short circuit current (1.5 I N ) Turbine High voltage High voltage Transformer ~ ~ SG 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 13

5 MW Drive System MULTIBRID Wind Energy Converter High power density due to optimised gearbox- and generator concept Medium voltage converter and transformer in offshorecontainer Permanent magnets synchronous generator 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 14

5 MW Drive System Overview Grid connected Switchgear in Tower Transformer-Container Converter-Container Sea cable 2 kv 16 kva,4 kv UPS 3 5 Hz 2 kv I > I >> V <> f <> M 5,3 MVA V R = 3, kv G M M 2 kv 6 MVA 3, kv 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 15

Solution for SG Point 1 Voltage Point 2 Frequency Solved by new system management and software adaptations! Point 3 Reactive Power Converter rating has to be increased for higher reactive power! Point 4 Voltage dip Minor Hardware adaptation but no influence on the grid characteristic! 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 16

Simulation: SG 1 u Grid / u N.5 2 1 i Grid / i N -1-2 1 P / P N Q / P N -1-2 -.5.5.1.15.2.25.3.35.4.45 t [s] Voltage dip down to 2 % U N 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 17

Variabe speed turbine: DASG Doubly fed asynchronous generator Most common wind turbine design Reactive power provided by generator and converter High short circuit current Transformer DASG High voltage High voltage ~ ~ 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 18

Solution for DASG (ProWind) 1 Frequency Point 2 Voltage 3 Reactive power Solved by new system management and software adaptations! Point 4 Voltage dip Hardware adaptations necessary! 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 19

Point 4: Voltage dip Problem Voltage jumps lead to over currents like short circuit currents Converter cannot handle the over current Save operation is guarantied by protective devices, e. g. circuit breaker, rotor crowbar Up to now: Safety shut-down New: Continuous operation and several voltage steps in short time 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 2

Point 4: Voltage dip Solution No principle modification of the safety devices Reinforcement of involved parts and fast sequence control Lowest possible mechanical stress Hardware option Retrofit possible Point 4 Voltage dip: 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 21

Characteristics: DASG Voltage dip without triggering of the Rotor Crowbar (RC): controlled operation, low mechanical stress Triggering of the Rotor Crowbar: Ride through with maximum grid current and fastest possible return to normal operation after the voltage recovery Option: Disconnection of the stator and resynchronisation: reduced grid current, low mechanical stress at voltage recovery RC 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 22

Simulation: DASG, without stator disconnection u grid / u N i grid / i N 1.5 4 2-2 -4 P / P N Q / P N 2-2 M / M N 2-2 -4.1.2.3.4.5 t [s] Voltage dip down to 2 % U N 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 23

Simulation: DASG, with stator disconnection u Grid / u N i Grid / i N 1.5 4 2-2 -4.5 P / P N Q / P N -.5 M / M N -1-1.5 1-1 -2-3 -4.5 1 1.5 t [s] Voltage dip down to 2 % U N 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 24

Conclusion All types of wind turbine generator / converter concepts can comply with the new grid codes All have different advantages / drawbacks regarding short circuit current / reactive power / active power The characteristics during grid faults can be influenced by the system management, e. g. stator disconnection 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 25

www.alstom.com

Wind Test Bench Transformer Voltage change over Converter Generator 1,5 MW Drive 1,5 MW 1 kv M ~ ~ 1,6 MVA 69 V +3 % Tapping in 7 V steps 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 27

Simulation model (VDN) Transformer HV - MV Transformer MV - LV ~ = Pro Wind = ~ Z G i Grid 11 % u k 6 % u k Generator u Grid ~ Z F u PCC u Gen M Turbine n Crowbar 1.25 APCG / 5MOP8_EN-(Netzkurzschlussverhalten-Energieerzeuger).PPT / Dr.MÖHLENKAMP 28