Transient Load Tester for Time Domain PDN Analysis. Ethan Koether (Oracle) Istvan Novak (Oracle)

Similar documents
Transient Load Tester for Time Domain PDN Validation

DesignCon Panel discussion: What is New in DC-DC Converters? V. Joseph Thottuvelil GE Energy Chris Young Intersil Zilker Labs

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength

TPH3207WS TPH3207WS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) Absolute Maximum Ratings (T C =25 C unless otherwise stated)

TPH3202PS TPH3202PS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) TO-220 Package. Absolute Maximum Ratings (T C =25 C unless otherwise stated)

MOSFET = 0V, I D = 10V, 29A) = 500V, V GS = 0V) = 0V, T C = 400V, V GS = ±30V, V DS = 0V) = 2.5mA)

How the Braid Impedance of Instrumentation Cables Impact PI and SI Measurements

MOSFET UNIT V DSS. Volts I D W/ C T J. Amps E AR = 0V, I D = 10V, I D = 88A) = 200V, V GS = 0V) = 160V, V GS = 0V, T C = ±30V, V DS = 0V) = 5mA)

APT1003RBLL APT1003RSLL

FREDFET FAST RECOVERY BODY DIODE UNIT V DSS. Volts I D W/ C T J. Amps E AR = 0V, I D = 10V, I D = 88A) = 200V, V GS = 0V) = 160V, V GS = 0V, T C

MOSFET = 0V, I D = 16.5A) = 10V, I D = 200V, V GS = 0V) = 0V, T C = 160V, V GS = 0V) = ±30V, V DS. = 2.5mA)

How to Design a PDN for Worst Case?

APT30M30B2FLL APT30M30LFLL

APT8052BLL APT8052SLL

Gallium Nitride MMIC Power Amplifier

Symbol Parameter Typical

IRLR8103VPbF. Absolute Maximum Ratings. Thermal Resistance PD A DEVICE CHARACTERISTICS. IRLR8103V 7.9 mω Q G Q SW Q OSS.

Symbol Parameter Typical

EPC2015 Enhancement Mode Power Transistor

APT5010B2FLL APT5010LFLL 500V 46A 0.100

MHz. The package options are ceramic/metal flange and pill package. Package Type: , PN: CGHV14250F, CGHV14250P

CHAPTER 7 HARDWARE IMPLEMENTATION

Absolute Maximum Ratings Parameter Symbol IRF7809A V Units Drain-Source Voltage V DS. 30 V Gate-Source Voltage V GS = 25 C I D

Super Junction MOSFET

MOSFET = 0V, I D. Volts R DS(on) (V GS = 10V, 17.5A) = 500V, V GS = 0V) = 0V, T C = 400V, V GS = 0V) = ±30V, V DS. = 1mA)

SMPS MOSFET. V DSS R DS(on) max I D

EPC2014 Enhancement Mode Power Transistor

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 60. Qrr (nc) typ 136. Qg (nc) typ 28. * Dynamic RDS(on)

Electrical and Thermal Consequences of Non-Flat Impedance Profiles

HCI70R500E 700V N-Channel Super Junction MOSFET

TPH3205WSB. 650V Cascode GaN FET in TO-247 (source tab)

UF3C120080K4S. 1200V-80mW SiC Cascode DATASHEET. Description. Features. Typical applications CASE D (1) CASE G (4) KS (3) S (2) Rev.

IRF130, IRF131, IRF132, IRF133

EPC2007C Enhancement Mode Power Transistor

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

IRF7700GPbF. HEXFET Power MOSFET V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

V DSS R DS(on) max I D 80V GS = 10V 3.6A

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 85. QRR (nc) typ 90. QG (nc) typ 10

maintaining high gain and efficiency. Package Type: 3x4 DFN PN: CGHV1F025S Parameter 8.9 GHz 9.2 GHz 9.4 GHz 9.6 GHz Units = 37 dbm W

MHz. The package options are ceramic/metal flange and pill package. Package Type: , PN: CGHV14250F, CGHV14250P

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 180. Qrr (nc) typ 54. * Dynamic R(on)

Super Junction MOSFET

HGI290N10SL. Value T C =25 31 Continuous Drain Current (Silicon Limited) I D T C = Drain to Source Voltage. Symbol V DS

Linear Derating Factor 17 mw/ C V GS Gate-to-Source Voltage ± 12 V T J, T STG Junction and Storage Temperature Range -55 to C

N & P-Channel 100-V (D-S) MOSFET

SSF6602. Main Product Characteristics. Features and Benefits. Description. Absolute Maximum Ratings (T A =25 C unless otherwise specified)

SMPS MOSFET. V DSS R DS(on) max (mω) I D

V DSS R DS(on) max I D

Features. Symbol JEDEC TO-204AA GATE (PIN 1)

EPC8004 Enhancement Mode Power Transistor

FREDFET FAST RECOVERY BODY DIODE UNIT V DSS. Volts I D I DM. Watts P D Linear Derating Factor W/ C T J. Amps E AR E AS UNIT BV DSS = 0V, I D

T C =25 unless otherwise specified. Symbol Parameter Value Units V DSS Drain-Source Voltage 40 V

T C =25 unless otherwise specified

HRLD150N10K / HRLU150N10K 100V N-Channel Trench MOSFET

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

New Designs. Not Recommended for. 4V Drive Nch MOSFET RSD050N06. Data Sheet. 1/ Rev.B. Dimensions (Unit : mm)

HCA80R250T 800V N-Channel Super Junction MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

Second Generation egan FETs are Lead Free and Offer Improved Performance Alex Lidow, CEO, Efficient Power Conversion Corporation

IRF9910PbF HEXFET Power MOSFET R DS(on) max

SMPS MOSFET. V DSS R DS(on) typ. I D

IRFR24N15DPbF IRFU24N15DPbF

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

transistor is available in a flange and pill package. Package Types: & PN s: CGH40045F & CGH40045P

New Designs. Not Recommended for. 4V Drive Pch MOSFET. Data Sheet RSD140P06. 1/ Rev.A. Dimensions (Unit : mm)

SMPS MOSFET. V DSS Rds(on) max I D

V DSS R DS(on) max I D

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 130. Qrr (nc) typ 54. * Dynamic R(on)

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

TPH3212PS. 650V Cascode GaN FET in TO-220 (source tab)

High Voltage Pulser Circuits By Ching Chu, Sr. Applications Engineer

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 63. Qrr (nc) typ 136. * Dynamic R(on)

HCD80R1K4E 800V N-Channel Super Junction MOSFET

CGH40120P. 120 W, RF Power GaN HEMT FEATURES APPLICATIONS

V DSS R DS(on) max (mw)

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

AOP608 Complementary Enhancement Mode Field Effect Transistor

Bias Stress Testing of SiC MOSFETs

V DSS R DS(on) max I D. 20V GS = 10V 8.9A. 71 P A = 25 C Power Dissipation 2.0 P A = 70 C Power Dissipation Linear Derating Factor

SMPS MOSFET. V DSS R DS(on) max I D. Absolute Maximum Ratings Symbol Parameter Max 20 V V GS A I DM. 90 W P A = 70 C Maximum Power Dissipation e

HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRF7338. HEXFET Power MOSFET. Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape & Reel.

HP4410DY. Features. 10A, 30V, Ohm, Single N-Channel, Logic Level Power MOSFET. Symbol. Ordering Information. Packaging

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 60. QRR (nc) typ 136. QG (nc) typ 28 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

V DSS R DS(on) max (mω)

APT80SM120B 1200V, 80A, 40mΩ

SYNCHRONOUS RECTIFIER SURFACE MOUNT (SMD-2) 60V, N-CHANNEL. Absolute Maximum Ratings PD-94401B

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

Top View DFN5X6D PIN1 V DS V GS I D I DM I DSM I AS. 100ns V SPIKE 31 P D 12 P DSM. Junction and Storage Temperature Range T J, T STG

HCS80R1K4E 800V N-Channel Super Junction MOSFET

LoadSlammer User Guide LS50 and LS1000

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

5.0V 5.0V. 20µs PULSE WIDTH Tj = 25 C. Tj = 150 C. V DS, Drain-to-Source Voltage (V) T J = 150 C 1.5. V GS, Gate-to-Source Voltage (V)

Transcription:

Transient Load Tester for Time Domain PDN Analysis Ethan Koether (Oracle) Istvan Novak (Oracle)

Speakers Ethan Koether Hardware Engineer, Oracle ethan.koether@oracle.com He is currently focusing on system power-distribution network design, measurement, and analysis. He received his master's degree in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology. Istvan Novak Senior Principal Engineer, Oracle istvan.novak@oracle.com Besides signal integrity design of high-speed serial and parallel buses, he is engaged in the design and characterization of powerdistribution networks and packages for mid-range servers. He creates simulation models, and develops measurement techniques for power distribution. Istvan has twenty plus years of experience with high-speed digital, RF, and analog circuit and system design. He is a Fellow of IEEE for his contributions to signal-integrity and RF measurement and simulation methodologies. Image Image 2

Outline Motivation for Time Domain PDN Validation Transient Load Tester Circuit Design The GaN FET Transient Load Tester Implementation and Performance Conclusion 3

Outline Motivation for Time Domain PDN Validation Transient Load Tester Circuit Design The GaN FET Transient Load Tester Implementation and Performance Conclusion 4

Target Impedance Methodology Estimates upper bound for rail s impedance Voltage fluctuation on rail: V Maximum current step: I Target Impedance: Z Target = V/ I Valid for linear and time-invariant PDN Approximation unless impedance strictly resistive 1.E+00 Impedance magnitude [ohm] 1.E-01 1.E-02 Frequency [Hz] 1.E-03 1.E+02 1.E+04 1.E+06 1.E+08 5

Time Domain PDN Validation Load device under test (DUT) with current who s waveform follows input voltage waveform. Input Voltage Waveform Load Current t 0 t 0 For PDN design, can load DUT with worst case current in worst case time to analyze simulated behavior in live system. 6

Outline Motivation for Time Domain PDN Validation Transient Load Tester Circuit Design The GaN FET Transient Load Tester Implementation and Performance Conclusion 7

Transient Load Tester (TLT) Circuit Design GaN FET I Load Only works in one I-V quadrant 8

Outline Motivation for Time Domain PDN Validation Transient Load Tester Circuit Design The GaN FET Transient Load Tester Implementation and Performance Conclusion 9

The Gallium Nitride FET (GaN FET) Maximum Ratings V DS Drain-to-Source Voltage (up to 10,000 5ms pulses at 150 C) 48 Drain-to-Source Voltage (Continuous) 40 I D Continuous (T A = 25 C, R θja = 6 C/W) 53 A Pulsed (25 C, T PULSE = 300 µs) 235 Gate-to-Source Voltage 6 V GS Gate-to-Source Voltage -4 V T J Operating Temperature -40 to 150 T STG Storage Temperature -40 to 150 V C 10

The Gallium Nitride FET (GaN FET) The enhancement mode GaN FET used compared to silicon MOSFETs with similar electrical characteristics: Faster switching speeds and shorter delay time C GD is exceptionally small in value C GS is relatively small in value Lower threshold voltage Lower package inductance Lower R DS ON 11

Outline Motivation for Time Domain PDN Validation Transient Load Tester Circuit Design The GaN FET Transient Load Tester Implementation and Performance Conclusion 12

TLT Circuit Breadboard Implementation High Speed Op Amp DUT Sense Resistors 13

TLT Circuit Breadboard Implementation GaN FET Buffer Circuit 14

TLT Implementation and Test Results TLT voltages measured at inverting and non-inverting inputs of op amp For figure below: DUT voltage of 1V, rise/fall times of 100ns 15

TLT Implementation and Test Results TLT voltages measured at inverting and non-inverting inputs of op amp For figure below: DUT voltage of 1V, rise/fall times of 100ns 16

Current Step (A) Current Step (A) TLT Implementation and Test Results Limitation of max operating current of individual circuit can be overcome by operating circuits in parallel The measurements below were captured from boards operating alone with 100ns rise/fall time on a DUT supplying 1V TLT board #1 TLT board #2 50 45 40 35 30 25 20 15 10 5 0-0.5 0 0.5 1 1.5 2 2.5 Time (μs) 50 45 40 35 30 25 20 15 10 5 0-0.5 0 0.5 1 1.5 2 2.5 Time (μs) 17

Current Step (A) TLT Implementation and Test Results The measurements below were captured from TLT boards #1 and #2 operating in parallel with 100ns rise/fall time on a DUT supplying 1V 50 45 40 35 30 25 20 15 10 5 0-0.5 0 0.5 1 1.5 2 2.5 Time (µs) Parallel operation does not affect operational behavior of TLT circuit 18

TLT Full PCB Implementation Side and top views of 16 TLT circuits implemented in CPU BGA plug-in PCB for parallel operation Control Circuitry Loading GaN FETs 19

TLT Usage for DC-DC Converter and its PDN s Time Domain Performance Testing Verify PDN can supply necessary current to devices DUT can be tested with complex waveforms using arbitrary waveform generator TLT validation uses current pulse train with magnitude equal to max current step PDN must support Can vary frequency and duty cycle to explore exacerbations from resonances 20

MAX VOLTAGE FLUCTUATION (V) DUTY CYCLE (%) TLT Usage for DC-DC Converter and its PDN s Time Domain Performance Testing Verify PDN can supply necessary current to devices DUT can be tested with complex waveforms using arbitrary waveform generator TLT validation uses current pulse train with magnitude equal to max current step PDN must support Can vary frequency and duty cycle to explore exacerbations from resonances 0.011 0.01 0.009 0.008 0.007 1E+3 2E+3 3E+3 4E+3 5E+3 6E+3 7E+3 8E+3 9E+3 1E+4 18 26 10 FREQUENCY (HZ) 21

Outline Motivation for Time Domain PDN Validation Transient Load Tester Circuit Design The GaN FET Transient Load Tester Implementation and Performance Conclusion 22

Conclusion Time domain validation of PDNs important for thorough PDN design and analysis The GaN FET offers faster turn on speeds and relatively low threshold voltage compared to silicon MOSFETs with similar electrical characteristics Implementation of GaN FET with TLT circuit topology along with parallel operation of TLT circuits delivers fast slew of current at 100ns rise/fall time with virtually unlimited current magnitude TLT allows for simulation of worst case loading conditions on a PDN in system within a lab setting for thorough PDN validation. 23

Acknowledgements The authors wish to thank for their help Kavitha Narayandass, Alex Miranda, Guy Phillips, Dan Sullivan, Dave Michaud, Bill Tata, Khan Nguyen, Dan Rich, Randy Luckenbihl, Jerome Gentillet, Sandra Brescia, Raja Burney, Gustavo Blando, Laura Kocubinski, all of Oracle Corporation. 24

More Information ethan.koether@oracle.com istvan.novak@oracle.com 25

Thank You! --- QUESTSIONS? 26

Current (A) Voltage (V) TLT Implementation and Test Results Inherent fight between V GS and V DS, convergence of which determines operational behavior of TLT Figures below captured with DUT supplying 1V, show V DS, V GS, and resulting load current at steps of 20A and 40A with 100ns rise and fall times 45 40 35 30 4 3.5 3 2.5 25 2 20 1.5 15 1 10 0.5 5 0-1 0 1 2 3 Time (µs) 0-1 0 1 2 3 Time (µs) VGS(ID=20A) VDS(ID=20A) VGS(ID=20A) VGS(ID=40A) VGS(ID=40A) VDS(ID=40A) 27

Current Load Step (A) TLT Implementation and Test Results PCB implementation of TLT circuits operating in parallel demands loading FETs be in close proximity to one another Little thermal dependence of TLT operational behavior Data below captured with TLT operating at 100ns rise/fall time connected to DUT supplying 1V 25 20 15 10 5 0 0 0.1 0.2 0.3 0.4 0.5 Time (µs) 5 Degree C 10 Degree C 15 Degree C 20 Degree C 25 Degree C 30 Degree C 35 Degree C 40 Degree C 45 Degree C 28