Microelectronic Circuits II. Ch 6 : Building Blocks of Integrated-Circuit Amplifier

Similar documents
COMPARISON OF THE MOSFET AND THE BJT:

A Basis for LDO and It s Thermal Design

Lecture 11. Active Devices -- BJT & MOSFET. Agenda: MOSFET Small-signal Model. Active Devices -- BJT & MOSFET. Cross-section

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs

Output Stages. Microelectronic Circuits. Ching-Yuan Yang. National Chung-Hsing University Department of Electrical Engineering.

The fan-in of a logic gate is defined as the number of inputs that the gate is designed to handle.

DEI 1028 Voltage Clamping Circuit

CM5530 GENERAL DESCRIPTION APPLICATIONS TYPICAL APPLICATION CIRCU. Rev.1.0 0

Microelectronic Circuits II. Ch 10 : Operational-Amplifier Circuits

Building Blocks of Integrated-Circuit Amplifiers

EEEE 381 Electronics I

Operational Amplifiers High Speed Operational Amplifiers

Multistage Amplifiers

Soldering Temperature, for 10 seconds 300 (0.063 in. (1.6mm) from case )

IRG4BC20FPbF Fast Speed IGBT

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

Unit 3: Integrated-circuit amplifiers (contd.)

BJT Amplifier. Superposition principle (linear amplifier)

Review of Electronic I. Lesson #2 Solid State Circuitry Diodes & Transistors Chapter 3. BME Electronics II J.Schesser

Building Blocks of Integrated-Circuit Amplifiers

6.012 Microelectronic Devices and Circuits

Laboratory #5 BJT Basics and MOSFET Basics

Current Mirrors. Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 4-1

Chapter 6. Single-stage integrated-circuit amplifier

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S.

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

PreLab5 Temperature-Controlled Fan (Due Oct 16)

Vds 1. Gnd. Gnd. Key Specifications Symbol Parameter Units Min. Typ. Max.

F7 Transistor Amplifiers

Rectifiers convert DC to AC. Inverters convert AC to DC.

Single-Stage BJT Amplifiers and BJT High-Frequency Model. Single-Stage BJT Amplifier Configurations

INTRODUCTION TO PLL DESIGN

C H A P T E R 5. Amplifier Design

ACPL-8x7. Data Sheet. Multi-Channel Full-Pitch Phototransistor Optocoupler. Description. Features. Applications

ECE 255, MOSFET Basic Configurations

Solid State Devices & Circuits. 18. Advanced Techniques

EE380: Exp. 2. Measurement of Op-Amp Parameters and Design/ Verification of an Integrator

55:041 Electronic Circuits

MOS Field-Effect Transistors (MOSFETs)

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

MICROELECTRONIC CIRCUIT DESIGN Third Edition

Voltage Biasing Considerations (From the CS atom toward the differential pair atom) Claudio Talarico, Gonzaga University

Introduction to Optical Detectors (Nofziger)

Advanced Operational Amplifiers

Code: 9A Answer any FIVE questions All questions carry equal marks *****

ECE 255, MOSFET Amplifiers

Improving Amplifier Voltage Gain

Property of Lite-On Only

EE105 Fall 2015 Microelectronic Devices and Circuits

(c) Compute the maximum instantaneous power dissipation of the transistor under worst-case conditions. Hint: Around 470 mw.

Common Gate Stage Cascode Stage. Claudio Talarico, Gonzaga University

55:041 Electronic Circuits

A 2V CMOS Capacitorless Current-Tunable All-Pass Filter using Current Mirrors

Chapter 12 Opertational Amplifier Circuits

Homework Assignment 12

Lecture 21 - Multistage Amplifiers (I) Multistage Amplifiers. November 22, 2005

List... Package outline... Features Mechanical data... Maximum ratings... Electrical characteristics Rating and characteristic curves...

QUESTION BANK for Analog Electronics 4EC111 *

Summary of Lecture Notes on Metal-Oxide-Semiconductor, Field-Effect Transistors (MOSFETs)

Reading. Lecture 33: Context. Lecture Outline. Chapter 9, multi-stage amplifiers. Prof. J. S. Smith

CPC1025NTR. 4 Pin SOP OptoMOS Relay

karma UK Sales: RETAIL Price List - Valid From January 2017

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor

Laboratory: Introduction to Mechatronics. Instructor TA: Edgar Martinez Soberanes Lab 1.

Department of Electrical Engineering IIT Madras

5. Experimental Results

Lecture 33: Context. Prof. J. S. Smith

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Compound Semiconductors; GaN and SiC, Separating Fact from Fiction in both Research and Business

LINE POWER SUPPLIES Low-Loss Supplies for Line Powered EnOcean Modules

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Input-Series Two-Stage DC-DC Converter with Inductor Coupling

Chapter 8 Differential and Multistage Amplifiers

MOSFET Amplifier Configuration. MOSFET Amplifier Configuration

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

CS and CE amplifiers with loads:

High Efficiency Frequency Tunable Inverse Class-E Amplifier in VHF Band

Microelectronic Devices and Circuits- EECS105 Final Exam

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers

TUTORIAL I ECE 555 CADENCE SCHEMATIC SIMULATION USING SPECTRE

EE 140 / EE 240A ANALOG INTEGRATED CIRCUITS FALL 2015 C. Nguyen PROBLEM SET #7

Insertion Loss (db)

SFDMDA4108F. Specifications and Applications Information. orce LED Driver. Mass: 9 grams typ. 03/30/11. Package Configuration

List... Package outline... Features Mechanical data... Maximum ratings... Rating and characteristic curves... Pinning information...

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III

Lecture 21: Voltage/Current Buffer Freq Response

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 7 Building Blocks of Integrated Circuit Amplifiers: Part D: Advanced Current Mirrors

CMOS Analog Circuits

BJT Circuits (MCQs of Moderate Complexity)

F9 Differential and Multistage Amplifiers

0.5 µw Sub-Threshold Operational Transconductance Amplifiers Using 0.15 µm Fully Depleted Silicon-on-Insulator (FDSOI) Process

Photocoupler Product Data Sheet LTV-725V (M, S, S-TA, S-TA1) series Spec No.: DS Effective Date: 07/22/2016 LITE-ON DCC RELEASE

Microelectronic Circuits II. Ch 8 : Frequency Response

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved.

ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source

VLBA Electronics Memo No. 737

Transcription:

Micrelectrnic Circuits II Ch 6 : Building Blcks f Integrated-Circuit Amplifier 6.1 IC Design Philsphy 6.A Cmparisn f the MOSFET and the BJT 6.2 The Basic Gain Cell CNU EE 6.1-1

Intrductin Basic building blcks f IC (Integrated Circuit) Amplifiers - design philsphy f integrated circuits : difference frm discrete circuits - cmparisn between MOSFET & BJT circuits à Appendix 6.A - basic gain cell f IC amplifiers à current-surce-laded cmmn-surce (cmmn -emitter) amplifier - cascde amplifier & cascde current surce - current mirrrs circuits à biasing and lad elements IC Design Philsphy - limited chip area à avid large-valued resistrs & capacitrs (cupling & bypass) - use MOS transistrs nly & small MOS capacitrs in the picfarad - Present CMOS IC prcessing technlgy (2009) * 45-nm minimum channel length * dc vltage supply : 1 à reduced pwer dissipatin * verdrive vltage : 0.1 ~ 0.2 à currently the mst widely used IC technlgy fr analg, digital & mixed circuit - Biplar circuit * higher utput currents * higher reliability : suitable fr autmtive industry CNU EE 6.1-2

Typical values f MOSFET parameters Table 6.A.1 Typical alues f CMOS Device Parameters 0.8µm 0.5 µm 0.25 µm 0.18 µm 0.13 µm Parameter NMOS PMOS NMOS PMOS NMOS PMOS NMOS PMOS NMOS PMOS t x (nm) 15 15 9 9 6 6 4 4 2.7 2.7 C x (ff/µm 2 ) 2.3 2.3 3.8 3.8 5.8 5.8 8.6 8.6 12.8 12.8 µ(cm 2 / s) 550 250 500 180 460 160 450 100 400 100 µc x (µa/ 2 ) 127 58 190 68 267 93 387 86 511 128 t0 () 0.7-0.7 0.7-0.8 0.43-0.62 0.48-0.45 0.4-0.4 DD () 5 5 3.3 3.3 2.5 2.5 1.8 1.8 1.3 1.3 A (/µm) 25 20 20 10 5 6 5 6 5 6 C υ (ff/µm) 0.2 0.2 0.4 0.4 0.3 0.3 0.37 0.33 0.36 0.33 CNU EE 6.1-3

Typical alues f MOSFET Parameters Typical values f MOSFET parameters (submicrn MOS) - Classificatin by the minimum allwed channel length L min : L 0.8 mm à 0.13-mm cmmercially available à 90-, 65, 45-nm prcess (22-nm) - Reduced L min à higher speed r wider bandwidth, 2.3 billin transistrs nt ne chip - Oxide thickness, t x à 2.7 nm @ 0.13 mm (1.2 nm @ 65-mm) - C x ~ 1/t x à increased C x - Increased transcnductance parameters k n/ m n C x, k p/ m p C x à achieves required level f bias current at lwer verdrive vltage à higher transcnductance - Threshld vltage tn & tp : 0.7 0.8 à 0.3 ~ 0.4 - Pwer supply DD : 5 à 1.3 fr 0.13-mm prcess à reduced pwer dissipatin à much larger number f transistrs in the IC chip - Overdrive vltage O : 0.1 ~ 0.2 ( GS t + O ) à saturatin mde : DS > O - prnunced channel length mdulatin effect à A/ decrease, A A/ L decrease à lw utput resistance - higher perating speeds & wider amplifier bandwidth : f T ~ 10GHz CNU EE 6.1-4

Typical values f IC BJT parameters Table 6.A.2 Typical alues fr BJTs¹ Standard High-ltage Prcess Advanced Lw-ltage Prcess Parameter npn Lateral pnp npn Lateral pnp A E (µm 2 ) 500 900 2 2 I S (A) 5 10-15 2 10-15 6 10-18 6 10-18 β 0 (A/A) 200 50 100 50 A () 130 50 35 30 CE0 () 50 60 8 18 τ F 0.35ns 30ns 10ps 650ps C je0 1pF 0.3pF 5fF 14fF C µ0 0.3pF 1pF 5fF 15fF r x (Ω) 200 300 400 200 CNU EE 6.1-5

Typical alues f IC BJT Parameters Typical values f IC BJT parameters (lw vltage prcess) - standard, ld prcess : high-vltage (H) prcess advanced, mdern prcess : lw-vltage (L) prcess - lateral pnp is much inferir t the vertical npn : lw b & large frward transit time t F à higher C de à unity-gain frequency f T is 2 rders f magnitude lwer than npn - dramatic reductin in device size in the advanced lw-vltage prcess à scale current I S reduces by 3 rders f magnitude à base width W B : rder f 0.1 mm à dramatic increase in speed : t F 10 ps (H prcess t F 0.35 ns) à f T : 10 ~ 20 GHz (H prcess 400~600 MHz) - Early vltage A : 35 - Cllectr-emitter vltage : 8 (H prcess : 50 r s) à pwer supply : 15 à 5 r 3.3 CNU EE 6.1-6

NMOS npn Circuit Symbl T perate in the Active Mde, tw cnditins have t be satisfied (1) Induce a channel : υ GS t, t 0.3-0.5 Let υ GS t + υ O (2) Pinch-ff channel at drain : υ GD < t r equivalently, υ DS O, O 0.1-0.3 (1) Frward-bias EBJ : υ BE BEn, BEn 0.5 (2) Reverse-bias CBJ : υ BC < BCn, BCn 0.4 r equivalently, υ CE 0.3 CNU EE 6.1-7

NMOS FET PMOS FET CNU EE 6.1-8

BE > 0 : frward biases EBJ CB > 0 : reverse biases CBJ : switch ff : amplifier : switch n CNU EE 6.1-9

Operating cnditins - active mde r active regin : active mde in BJT : saturatin mde in MOSFET - threshld t in MOSFET ~ BE(n) in BJT (almst same) - pinching ff the channel in MOSFET drain ~ reverse biased CBJ in BJT à i D is nearly independent f v D à i C is nearly independent f v C - Asymmetry f BJT à BC(n) is nt equal t BE(n) Symmetrical MOSFET à same t at surce & drain - active mde peratin in BJT & MOSFET à v DS, v CE must be at least 0.1 ~ 0.3 CNU EE 6.1-10

NMOS npn Current-ltage Characteristics in the Active Regin 1 W ( ) 2 æ u ö DS id mncx ugs - t ç 1+ 2 L è A ø i G 1 W 2 æ u ö DS mncx uo ç 1 + 2 L è A ø 0 i i C B ube / T I Se 1+ i c / b æ u ö CE ç è A ø Lw-Frequency Hybridπ Mdel CNU EE 6.1-11

Current ltage Characteristics - i D v GS in MOSFET : square-law characteristic i C v BE in BJT : expnential characteristic (mre sensitive) - Effects f the devices dimensins n its current 1) BJT : area f emitter-base junctin (EBJ), A E à I S variatin in a relatively narrw range : 10 t 1 2) MOSFET : aspect rati W/L variatin in a wide range : 1.0 t 500 à significant design parameter - Dependence f i D (i C ) n v DS (v CE ) in the active regin : channel length mdulatin in MOSFET & base-width mdulatin in BJT à finite input resistance r in the active mde à A in BJT : prcess-technlgy parameter & N relatin w/ dimensin A in MOSFET A/ L : L is design parameter - Gate current in MOSFET 0 & R in lking int the gate infinite finite base current in BJT : i B i C /b & finite R in lking int the base CNU EE 6.1-12

Ex. 6.A.1 (a) NMOS w/ W/L10 in 0.18 mm prcess. Find O & GS fr I D 100mA, N channel-length mdulatin 1 æ W ö 2 ( ) I m C 2 ç L è ø D n x O 1 2 100 387 10 2 O O 0.23 GS tn + O 0.5 + 0.23 0. 73 by I D, W/L & m n C x 387 ma/ 2 frm Table 6.A.1 (b) Find BE fr npn transistr fabricated by L prcess & w/ I C 100mA, N base-width mdulatin I C I e S BE / T by I C, I S 6x10-18 A frm Table 6.A.2 BE -6 100 10 0.025 ln 0.76-18 6 10 CNU EE 6.1-13

NMOS npn Lw-Frequency T Mdel Transcnductance g m ( ) g I / / 2 m D O æ W ö g ( m C ) ç L è ø m n x O æ W ö g 2( m C ) ç I L è ø m n x D g I / m C T CNU EE 6.1-14

Lw-Frequency Small-Signal Mdels - BJT mdel finite base current (finite b) à r p in the hybrid-p mdel à unequal i E & i C in the T mdel, a < 1 - LF mdel f MOSFET BJT w/ b inf. (a1) - pen-circuit vltage gain frm G(B) t D(C) w/ grunded S(E) : -g m r g m r : maximum gain available frm a single transistr f either type à intrinsic gain A 0 - Bdy effect in the MOSFET bdy (substrate) : 2 nd gate bdy-surce vltage v bs à drain current g mb v bs (g mb : bdy transcnductance) g mb cg m (c 0.1 ~ 0.2) Transcnductance - g m in BJT I C / T ( T ~ 25 m at R.T à depend nly n I C ) - g m in MOSFET depends n I D, O & W/L 1 st : similar t BJT g m but small ( O /2 ~ 0.05 ~ 0.15) 2 nd : prprtinal t O fr a given W/L. higher g m by higher O but O is limited by DD 3 rd : prprtinal t I D fr a given W/L. g m in BJT is directly prprtinal t I C CNU EE 6.1-15

NMOS npn Output Resistance r L r I r / I ' A A / D I D A C Intrinsic Gain A 0 g m r 0 0 0 ( ) A / / 2 A A A ' 2 AL O O ' 2 A 2mn x I C WL D A 0 A / T Input Resistance with Surce (Emitter) Grunded r p b /g m CNU EE 6.1-16

Output resistance - rati f A t the bias current (I D r I C ) - r is inversely prprtinal t the bias current Intrinsic gain A 0 - A 0 f BJT : rati f prcess parameter A (35 t 130) & physical parameter T à independent f the device junctin area & f the perating current (1000~5000/) - A 0 f MOSFET 1 st : denminatr O /2 is a design parameter. (>> T ) numeratr A is prcess- & device-dependent, steadily decreasing à 20 ~40/ fr a mdern shrt-channel technlgy 3 rd : A 0 fr a given A/, m n C x & W/L is inversely prprtinal t I D A 0 vs. I D plt - gain A 0 increase as I D is lwered - higher gain A 0 at the lwer bias currents à lwer g m, lwer capacitive lad drive capability, decrease in bandwidth CNU EE 6.1-17

Ex. 6.A.2 Cmpare g m, R in at G (B), r & A 0 fr 0.25-mm NMOS and L-tech. npn Tr. Assume I D (I C ) 100mA. Fr L0.4mm, W4mm NMOS, specify O. Fr NMOS 1 æ W ö 2 ( ) I m C 2 ç L è ø D n x O 1 4 100 267 2 0.4 2 O Thus, O 0.27 æ W ö g 2( m C ) ç I L è ø m n x D 2 267 10 100 0.73mA / R in A0 gmr 0.73 20 14.6 / Fr npn transistr r ' AL 5 0.4 20kW I 0.1 D g m IC 0.1mA 4mA/ 0.025 T 100 Rin rp b0 / gm 25kW 4mA/ r A 35 350kW I 0.1mA C A0 gmr 4 350 1400 / CNU EE 6.1-18

NMOS npn high- Frequency Mdel CNU EE 6.1-19

CNU EE 6.1-20

High-Frequency Operatin - unity-gain frequency (transitin frequency) f T * a measure f the intrinsic bandwidth f the transistr itself w/ capacitive lad effect * inversely prprtinal t the square f L fr MOSFET & W B fr BJT * f T f BJT is entirely prcess determined but f T f MOSFET is prprtinal t O : higher-lw frequency gain by lw O but wider bandwidth by high O è trade-ff between gain and bandwidth * f T f npn Tr. in L prcess : 10 ~ 20 GHz, NMOS in 0.18-mm prcess : 5~15GHz Effect f a capacitive lad n the bandwidth f CS (CE) amplifier - Assume frequencies f interest << f T à neglects the transistr internal capacitances - CS amplifier w/ capacitive lad C L * vltage gain frm gate t drain 1 r sc gmr L -g A u 1 - m O -g mgs ( ro // CL ) gs gs 1+ sclr r + - gain A v at lw frequency : g m r A 0 - freq. respnse f single-time-cnstant (STC) lw-pass type w/ a break (ple) freq. at 1 w P C r L CNU EE 6.1-21 sc L

- unity-gain frequency r, gain-bandwidth prduct w t : rati f g m and C L * the gain crsses the 0-dB line at w t 1 gm wt A0w P ( gmr ) w t C r C - Fr a given C L, higher g m à larger gain-bandwidth prduct à bandwidth increases as bias current is increased L CNU EE 6.1-22 L

Design Parameters - design parameters fr BJT : I C, BE, & I S (r area f emitter-base junctin A E ) * I C is expnentially related t BE (D BE 60m à 10 changes in I C ) * A E can vary ver the narrw range à I C is nly effective design parameter - design parameter fr MOSFET : I D, O, L & W * trade ff in L value - higher speed (wider bandwidth) à lwer L - higher intrinsic gain à larger L - L : 25% t 50% greater than L min * O : range f 0.2 ~ 0.4 * fr a given L & O, I D is prprtinal t W/L - I D (r W/L) : N bearing n A 0 & f T - I D affects g m à gain-bandwidth prduct - dc gain remains unchanged, increasing W/L (r I D ) increases bandwidth prprtinally (g m ~ I D & r ~ 1/I D ) CNU EE 6.1-23

Ex. 6.A.3 (a) npn transistr in L prcess w/ C m~c m0. Find g m, r, A 0, C de, C je,c p, C m, f T & f t in 1-pF lad capacitance fr I C 10mA, 100mA & 1mA. g m IC IC A 35 40I A/ r 0.025 I I W C A0 T C C A 35 1400 / 0.025 T C t g 10 10 40I 0.4 10 I F C je @ 2C je0 10 ff -12-9 de F m C C + p de je Cm @ Cm 0 5fF C C C f T 2p g m m m ft -12 + 2p CL 2p 1 10 ( Cp Cm ) g g I C g m (ma/) r (kω) A 0 (/) C de (ff) CNU EE 6.1-24 C je (ff) C π (ff) C µ (ff) f T (GHz) f t (MHz) 10µA 0.4 3500 1400 4 10 14 5 3.4 64 100µA 4 350 1400 40 10 50 5 11.6 640 1mA 40 35 1400 400 10 410 5 15.3 6400

(b) NMOS in 0.25-mm prcess w/ L0.4mm, O 0.25. Find W/L, g m, r, A 0, C gs, C gd,c p, f T & f t in 1-pF lad capacitance fr I D 10mA, 100mA & 1mA. 1 W I m C 2 L 2 D n x O 1 W 1 W 267 0.12I 2 L 16 L D g m I D I D 8I D A/ / 2 0.25 / 2 O r ' AL 5 0.4 2 W A0 gmr 16 / I I I D D D 2 2 C gs WLCx + C u W 0.4 5.8 + 0.6W 3 3 C C 0.6W gd u f T 2p g m ( C gs + C gd ) f t g m 2pC L I D W/L g m (ma/) r (kω) A 0 (/) C gs (ff) C gd (ff) f T (GHz) f t (MHz) 10µA 1.2 0.08 200 16 1.03 0.29 9.7 12.7 100µA 12 0.8 20 16 10.3 2.9 9.7 127 1mA 120 8 2 16 103 29 9.7 1270 CNU EE 6.1-25

Basic Gain Cell CS and CE amplifier with Current-surce lads - basic gain cell in an IC amplifier CS r CE transistr laded with a cnstant-current surce à replace R D & R C with cnstant-current surce - difficulty fr R with precise values in IC à current surces using transistrs - current surce CS & CE amplifiers w/ a very high (ideally infinite) lad R à much higher gain current-surce laded r active laded CNU EE 6.1-26

CS & CE Amplifier w/ Current-Surce Lads Small-signal analysis f the active-laded CS & CE amplifiers - Q 1 is biased at I D I & I C I - DC bias vltage DS & GS ( CE & BE ) are determined by negative feedback à MOSFET is biased in saturatin regin & BJT is in active regin à refer t active regin fr MOSFET & BJT - Small-signal equivalent circuit : ideal current-surce à infinite resistance à pen circuit - active-laded CS amplifier R A -g r R in v - active-laded CE amplifier m r R A -g r R r in r p v m - bth vltage gains g m r à maximum gain btainable in a CS r CE amplifier à intrinsic gain A CNU EE 6.1-27

CNU EE 6.1-28 Intrinsic Gain A Intrinsic gain f BJT - Early vltage A : 5 ~ 35 (100 ~ 130), thermal vltage T : 25m @ rm temperature à A : 200 ~ 5000 / & independent f transistr junctin area & its bias current T A m C A T C m r g A I r I g Intrinsic gain f MOSFET - Overdrive vltage O : 0.15 ~ 0.3 à O /2 ~ 3 t 6 higher than T - A is increased by using a lnger L & lwer O à decrease in amplifier bandwidth à A : 20 ~ 40 /, an rder f magnitude lwer than a BJT O A O A D A D A D x n O D m L A I L I r I L W C I g / / 2 2 ) ( 2 2 m

Effect f Output Resistance f Current-Surce Lad Current-surce lad à PMOS transistr biased in the saturatin regin t prvide the required current I CNU EE 6.1-29

Effect f Output Resistance f Current-Surce Lad - Q 2 large-signal MOSFET mdel: I 1 m p 2 æw ö ( C ) ç [ - - ] x è L ø 2 DD G tp 2 r 2 A2 I - current-surce lad has a finite utput resistance r 2 such as (b) - ltage gain is reduced t g m1 (r 1 r 2 ) frm g m1 r 1 v A º -g ( r r ) v v i m1 1 2 - If Q 1 & Q 2 has the same Early vltage, r 1 r 2 & half gain A v 1-2 g m r - 1 2 A CNU EE 6.1-30

Increasing Gain f the Basic Cell Hw can we increase the vltage gain btained frm the basic gain cell? - raise the level f the utput resistance f bth the amplifying & lad transistr - CS amplifying Tr. Q 1 + utput equivalent circuit - A black bx between D f Q 1 & a new utput terminal d 2 - The black bx passes the same Q 1 utput current g m1 v i but with the utput resistance increased by a factr K à current buffer CNU EE 6.1-31

Increasing Gain f the Basic Cell The black bx passes the current g m1 v i right thrugh but raise the resistance level by a factr K à current buffer - Current buffer passes the current but raises the resistance level à cmmn gate (CG) r cmmn base (CB) amplifier : unity current gain - ltage buffer passes the vltage but lwers the resistance level à surce (CD) & emitter (CE) fllwer - Hw t raise the utput resistance f the amplifying transistr and current-surce lad à use a current buffer - Placing a CG (r CB) circuit n tp f the CS (r CE) amplifying transistr t implement the current-buffering actin à cascding CNU EE 6.1-32