Lecture 4. Integrated Electronics

Similar documents
4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

Experiments #6. Differential Amplifier

CHARACTERIZATION OF OP-AMP

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Lecture 3: Transistors

Electronics - PHYS 2371/2 TODAY

Operational Amplifier BME 360 Lecture Notes Ying Sun

Linear IC s and applications

Lecture 14 Interface Electronics (Part 2) ECE 5900/6900 Fundamentals of Sensor Design

Concepts to be Reviewed

Lecture 01 Operational Amplifiers Op-Amps Introduction

Operational Amplifiers

Special-Purpose Operational Amplifier Circuits

Operational Amplifiers

Objective: To study and verify the functionality of a) PN junction diode in forward bias. Sl.No. Name Quantity Name Quantity 1 Diode

Integrated Circuit: Classification:

Operational Amplifiers

Operational Amplifiers

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

Transistor electronic technologies

Analytical Chemistry II

Linear electronic. Lecture No. 1

EE301 Electronics I , Fall

UNIT- IV ELECTRONICS

Electronics Prof D. C. Dube Department of Physics Indian Institute of Technology, Delhi

GATE SOLVED PAPER - IN

Operational Amplifiers

Operational amplifiers

Analog Circuits Part 3 Operational Amplifiers

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Chapter 10: Operational Amplifiers

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers

ELT 215 Operational Amplifiers (LECTURE) Chapter 5

ELECTRONICS. EE 42/100 Lecture 8: Op-Amps. Rev B 3/3/2010 (9:13 PM) Prof. Ali M. Niknejad

Emitter Coupled Differential Amplifier

ELECTRONICS. EE 42/100 Lecture 8: Op-Amps. Rev A 2/10/2010 (6:47 PM) Prof. Ali M. Niknejad

Lab 4. Transistor as an amplifier, part 2

Analog Electronic Circuits Code: EE-305-F

(a) BJT-OPERATING MODES & CONFIGURATIONS

Lab 1 - Revisited. Oscilloscope demo IAP Lecture 2 1

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections.

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

Improving Amplifier Voltage Gain

CENG4480 Lecture 02: Operational Amplifier 1

Concepts to be Covered

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit.

UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004

Assist Lecturer: Marwa Maki. Active Filters

Control System Circuits with Opamps

Signal Conditioning Systems

Instrumentation amplifier

ELC224 Final Review (12/10/2009) Name:

BJT Circuits (MCQs of Moderate Complexity)

OPERATIONAL AMPLIFIERS and FEEDBACK

Electronic Components (Elements)

Phy 335, Unit 4 Transistors and transistor circuits (part one)

Unit III FET and its Applications. 2 Marks Questions and Answers

or Op Amps for short

Description. Output Stage. 5k (10k) - + 5k (10k)

ME 4447 / 6405 Student Lecture. Transistors. Abiodun Otolorin Michael Abraham Waqas Majeed

Chapter 12 Opertational Amplifier Circuits

Experiment 1: Amplifier Characterization Spring 2019

Describe the basic DC characteristics of an op amp. Sketch a diagram of the op amp DC test circuit. Input Offset Voltage. Input Offset Current

Practical 2P12 Semiconductor Devices

Prof. Anyes Taffard. Physics 120/220. Diode Transistor

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-2012 SCHEME OF VALUATION

FET, BJT, OpAmp Guide

Operational Amplifier as A Black Box

Applied Electronics II

6. The Operational Amplifier

Operational Amplifiers

An electronic unit that behaves like a voltagecontrolled

Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved.

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017

Op-Amp Specifications

Gechstudentszone.wordpress.com

Lecture 2 Analog circuits. Seeing the light..

visit website regularly for updates and announcements

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS

Dimensions in inches (mm) .021 (0.527).035 (0.889) .016 (.406).020 (.508 ) .280 (7.112).330 (8.382) Figure 1. Typical application circuit.

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications

Chapter 2. Operational Amplifiers

Field Effect Transistors

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.

Chapter 9: Operational Amplifiers

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved.

EE 330 Lecture 34. Guest Lecture. Why are there so many Op Amps?

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

Lecture 4 Biopotential Amplifiers

Lecture #2 Operational Amplifiers

EE 332 Design Project

EE 210 Lab Exercise #5: OP-AMPS I

Electronics Lab. (EE21338)

Lab 2: Discrete BJT Op-Amps (Part I)

Operational Amplifiers. Boylestad Chapter 10

Physics of Bipolar Transistor

Lecture 4: Voltage References

Transcription:

Lecture 4 Integrated Electronics

P, N is the doping of silicon to carry P (+) or N (-) charge) DIODES -> Recitifier I P N If V > V ON of diode, V V ON I = R Forward bias, conducting I Von ~ 0.6 V Example: convert ac voltage into dc voltage; e.g. use a transformer, capacitor and a diode. I = 0 Reverse bias, non conducting Diodes are silicon based semiconductor devices with P and N junctions. They carry current through electrons or holes (+ charges) in one direction.

C E BIPOLAR JUNCTION TRANSISTORS I B I = β I E B B I C I E Base, Emitter, Collector I V E BE = = I B + I C IC 0.060 log 10 13 at 27 C Amplifying effect! => small change in base current IB has a large amplifying effect on currents IC and IE Transistors are active components with the ability to amplify electrical signal. Small current at the base B is amplified to produce large current at collector C and emitter E. Transistors are made typically from Silicon (Si) and they come in different categories: bipolar (typically analog, range of currents, voltages, frequencies field effect (both analog and digital; high impedance MOS or CMOS (digital, high speed and low power, respectively)

TRANSISTOR AS A SWITCH If V in is high, T is ON, switch is closed and V out is low. Digital 0 If V in is low, T is OFF, switch is open and V out is high. Digital 1 Switch function occurs when high base voltage (>0.7 V)saturates the transistor and it fully conducts current in the C-E path resulting in Vout =0. or when the the base voltage is negative. Then it cuts off the current in the C- E path and Vout =Vcc. This is the means by which digital or on/off switching can be accomplished and forms the basis for all digital circuits (including computers)

Transistors and IC s Silicon transistor (bipolar junction transistor) -> high gain, bandwidth, analog amplifier FET (field effect transistor)-> high input impedance, analog amplifier MOS FET (Metal Oxide Field Effect Transistor) - > digital, fast switching (preferred in computers, microprocessors) CMOS (Complementary Metal Oxide Semiconductor) Transistor -> low power, digital switching and analog (preferred in low power implanted devices)

Amplifier Properties: Ideal vs. Nonideal Gain (open loop) Bandwidth (frequency response Hz) Input impedance (interfacing to sensors) Output impedance (interfacing to load) Noise (uv/sqrt (Hz) or ua/sqrt (Hz) Common mode rejection (diff gain/comm on mode gain) Ideal α α α 0 0 α Nonideal 10 e 6 1 M Hz 100 Mohms 100 ohms 1 uv, 1 na 100,000 Example Microphone Ultrasound Piezoelectri c crystal Loud speaker EEG ECG, EMG, EEG

Operational Amplifier (OP AMP) Basic and most common circuit building device. Ideally, A 1. No current can enter terminals V + or V -. Called infinite input impedance. Vo = (A V + -A V ) = A (V - V ) + 2. V out =A(V + - V - ) with A 3. In a circuit V + is forced equal to V -. This is the virtual ground property - - 4. An opamp needs two voltages to power it V cc and -V ee. These are called the rails.

INPUT IMPEDANCE Input Circuit Output WHY? Impedance between input terminals = input impedance For an instrument the Z IN should be very high (ideally infinity) so it does not divert any current from the input to itself even if the input has very high resistance. e.g. an opamp taking input from a microelectrode. e.g. Microelectrode R=10 Mohm & therefore Rin=G Ohm!

OUTPUT IMPEDANCE Impedance between output terminals = output impedance WHY? Input Circuit Output For an instrument the Z OUT should be very low (ideally zero) so it can supply output even to very low resistive loads and not expend most of it on itself. e.g. a power opamp driving a motor or a loudspeaker

OPAMP: COMPARATOR V out =A(V in V ref ) A (gain) very high If V in >V ref, V out = + but practically hits +ve power supply = V cc If V in <V ref, V out = - but practically hits ve power supply = -V ee Application: detection of QRS complex in ECG V REF V cc V IN -V ee

OPAMP: ANALYSIS The key to op amp analysis is simple 1. No current can enter op amp input terminals. => Because of infinite input impedance 2. The +ve and ve (non-inverting and inverting) inputs are forced to be at the same potential. => Because of infinite open loop gain 3. These property is called virtual ground 4. Use the ideal op amp property in all your analyses

OPAMP: VOLTAGE FOLLOWER V + = V IN. By virtual ground, V - = V + Thus V out = V - = V + = V IN!!!! So what s the point? The point is, due to the infinite input impedance of an op amp, no current at all can be drawn from the circuit before V IN. Thus this part is effectively isolated. Very useful for interfacing to high impedance sensors such as microelectrode, microphone

OPAMP: INVERTING AMPLIFIER 1. V - = V + 2. As V + = 0, V - = 0 3. As no current can enter V - and from Kirchoff s Ist law, I 1 =I 2. 4. I 1 = (V IN - V - )/R 1 = V IN /R 1 5. I 2 = (0 - V OUT )/R 2 = -V OUT /R 2 => V OUT = -I 2 R 2 6. From 3 and 5, V OUT = -I 2 R 2 = -I 1 R 2 = -V IN (R 2 /R 1 ) 7. Therefore V OUT = (-R 2 /R 1 )V IN

OPAMP: NON INVERTING AMPLIFIER Approx. Vin I2 approx = I1 1. V - = V + 2. As V + = V IN, V - = V IN 3. As no current can enter V - and from Kirchoff s Ist law, I 1 =I 2. 4. I 1 = V IN /R 1 5. I 2 = (V OUT - V IN )/R 2 => V OUT = V IN + I 2 R 2 6. V OUT = I 1 R 1 + I 2 R 2 = (R 1 +R 2 )I 1 = (R 1 +R 2 )V IN /R 1 7. Therefore V OUT = (1 + R 2 /R 1 )V IN

DIFFERENTIAL AMPLIFERS V OUT = (V 1 V 2 )R 2 /R 1 Amplifies a difference. Thus, Ratio of what I want (Ad)over what I don t want: (Ac) Common noise sources add symmetrically to an opamp. Thus there is a differential (V1 V2) and a common mode (V1 + V2) component to the input. V OUT = A C (V 1 + V 2 ) + A D (V 1 V 2 ) A D :differential (signal) gain, A C :common mode (noise) gain. The ratio A D /A C (Common Mode Rejection Ratio CMRR) is a very important parameter. Ideally CMRR

SUMMING AMPLIFIER Recall inverting I f amplifier and I f = I 1 + I 2 + + I n V OUT = -R f (V 1 /R 1 + V 2 /R 2 + + V n /R n ) If R1=R2= =Rf, then Vout = V1 + V2 + +Vn Summing amplifier is a good example of analog circuits serving as analog computing amplifiers (analog computers)! Note: analog circuits can add, subtract, multiply/divide (using logarithmic components, differentiat and integrate in real time and continuously.

DRIVING OPAMPS For certain applications (e.g. driving a motor or a speaker), the amplifier needs to supply high current. Op amps can t handle this so we modify them thus Irrespective of the opamp circuit, the small current it sources can switch ON the BJT giving orders of magnitude higher current in the load. e.g. to drive a loud speaker or a motor Indeed, circuits exist to boost current as well as power

APPLICATION: Interfacing Strain Gauges in a Bridge Circuit We would like to measure small displacements or strains using strain gauges. These are variable resistances that respond to small changes in strain/stretch-contraction of the surface the sensor is mounted on. (i) suggest a suitable application. (ii) A useful design is to put the strain gauge in a bridge circuit design. Calculate the output of the following circuit for a very small dr changes with respect to the R values of the bridge elements. Hint: The output should be a relationship between V, R, dr, Rf and Vo. Strain Gauges Strain gauges are restistors whose value changes with strain of the material they are mounted on R R- dr Vs R R+dR V1 V2 Bridge circuit Differential amplifier Rf Vo When the bridge is balanced dr=0. When unbalanced due to strain, dr=/ 0 and hence V1-V2 gives proportional output. Then, of course, the op amp differential amplifier amplifies this small signal

2 k ohms 10 k ohms This is a circuit of a comparator (note the positive feedback). What would be the output of this circuit for the following input voltages: -5 V, -1 V, +1 V, and +5 V? The op amp is powered by + 10 V (that would also be the maximum swing of the output). You visit a hospital and see a state of the art ECG monitoring instrument. You open up the technical manual and the following circuit is presented to you. Ostensibly, this circuit is at the output of the ECG amplifier (i.e. the amplified ECG goes to this circuit) and the output (marked?) goes to a comparator. C= 1 uf and R=330Kohm. Draw the signal you expect to see at the point marked by a question mark. 1 sec C R?

For the following circuit, what is the input impedance and the output impedance. Now, calculate the closed loop gain. Use basic circuit analysis ideas using op amps to work through the analysis (Hint: identify the virtual ground, obtain currents in the input and the feedback paths, obtain inputoutput relationship). R1 R2 R3 R0 Vin

For the following circuit, calculate the input resistance. (i) First, calculate input resistance for an ideal amplifier. (ii) Next, calculate the input resistance of a non-ideal amplifier. Note that the input resistance of the op amp is R in (not shown, but your can assume such a resistance going to ground from each of the and + inputs). V in R1 Rf V out R2

Differential amplifier but with very high input impedance - So, you can connect to sensors INSTRUMENTATION AMPLIFIER Inverting amplifier Gain in the multiple stages: i.e. High Gain so, you can amplify small signals As a bonus, put some lowpass and high pass filters! Differential amplifier -> it rejects common-mode interference -> so you can reject noise Non-inverting amplifier

INSTRUMENTATION AMPLIFIER: STAGE 1 Recall virtual ground of opamps I 1 I 2 I 3 I 1 = (V 1 V 2 )/R 1 Recall no current can enter opamps and Kirchoff s current law I 2 = I 3 = I 1 Recall Kirchoff s voltage law V OUT = (R 1 + 2R 2 )(V 1 V 2 )/R 1 = (V 1 V 2 )(1+2R 2 /R 1 )

INSTRUMENTATION AMPLIFIER: STAGE 2 Recall virtual ground of opamps and voltage divider V - = V + = V 2 R 4 /(R 3 + R 4 ) I 1 I 2 I 3 Recall no current can enter opamps (V 1 V - )/R 3 = (V - V OUT )/R 4 Solving, V OUT = (V 1 V 2 )R 4 /R 3

INSTRUMENTATION AMPLIFIER: COMPLETE V OUT = (V 1 V 2 )(1 + 2R 2 /R 1 )(R 4 /R 3 ) Gain from Stage I and Stage II

INSTRUMENTATION AMPLIFIER: COMPLETE Features: Differential amp Very high gain Very high input R V OUT = (V 1 V 2 )(1 + 2R 2 /R 1 )(R 4 /R 3 ) Common mode rejection Gain from Stage I and Stage II (we also need filters)

APPLICATION: Fetal ECG Problem: Recorded ECG = mother s ECG + fetus ECG UP: mother ECG ampl. DN: fetus ECG ampl. mother ECG filters fetus ECG filters V OUT = mother s ECG fetus ECG

Problems Research commercial Op Amps e.g. 741 op amp (try company like Analog Devices or Texas Instruments, Maxim, Siliconix, Identify from the company catalogs op amps for specialized needs. E.g. for low noise, low power, ultra high bandwidth, ultrahigh input impedance Devise different applications for Integrator (e.g. charge integrator what sensor? Biopotential measurement.) and Differentiator, Logarithmic amplifier (draw circuits or look up applications in literature) Next, consider an application of driving an ultrasound transducer with very high voltage. Op amps work at small voltages. How would you boost the op amp output? Look up circuits/application notes e.g. Art of Electronics or company application notes). Properties of Op Amps in ideal conditions differ from the nonideal. What are the environmental considerations? E.g. How does the temperature or noise change? Look up these specifications in commercial devices.

More Problems, More Fun Analog Computing! How can we do it? We can add We can subtract We can do logarithm multiply and divide Can we integrate? Can we differentiate? Can we compare? IF WE CAN DO ALL THIS, WE HAVE AN ANALOG COMPUTER! Is Analog Computer or Digital Computer better? - What components (i.e. circuit components, chips) do you use for analog vs. digital computers? - What are the limitations of analog/digital computers - What one or two application each is best suited for?