ZXSC310EV4 ZXSC310EV4 EVALUATION BOARD USER GUIDE. ZXSC310EV4 User guide Issue 1 1/9 sep07. Figure 1: ZXSC310EV4 evaluation board

Similar documents
ZXSC310EV6 EVALUATION BOARD USER GUIDE

ZXCT1008EV1 ZXCT1008EV1. ISSUE 3 April protection from 110V transients and includes and additional current limiting resistor.

ZXCT1030EV2 Evaluation Board User Guide

ZXCT1050 Precision wide input range current monitor

ZDT1048 SM-8 Dual NPN medium power high gain transistors

ZXCT1030 High-side current monitor with comparator

ZXMN3G32DN8 30V SO8 dual N-channel enhancement mode MOSFET

ZXTP19060CZ 60V PNP medium transistor in SOT89

AN61 Designing with References - Extending the operating voltage range

ZXLD1360EV7 ZXLD1360EV7 EVALUATION BOARD USER GUIDE. Figure 1: ZXLD1360EV7 evaluation board

ZXMS6002G 60V N-Channel self protected enhancement mode IntelliFET MOSFET with status indication

ZXMP3A16G 30V P-CHANNEL ENHANCEMENT MODE MOSFET. SUMMARY V (BR)DSS = -30V: R DS(on) = DESCRIPTION FEATURES APPLICATIONS PINOUT

ZXLD1366EV1 USER GUIDE

ZXSC300 SINGLE OR MULTI CELL LED DRIVER SOLUTION Q1 FMMT617 LED1 WHITE LED R1 0.33R DESCRIPTION APPLICATIONS FEATURES TYPICAL APPLICATION CIRCUIT

ZXCT1010 ENHANCED HIGH-SIDE CURRENT MONITOR ORDERING INFORMATION

ZXSC300 SINGLE OR MULTI CELL LED DRIVER SOLUTION DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT ORDERING INFORMATION

ZXSC100 single cell DC-DC converter LED driving applications

ZXLD383 Single or multi cell LED driver with enable/rectifier input for solar charged lamp applications

ZXMS6004FF 60V N-channel self protected enhancement mode Intellifet MOSFET

ZXSC100 Power Supply for Digital Still Camera.

ZSM330 SUPPLY VOLTAGE MONITOR ISSUE 3 JULY 2006 DEVICE DESCRIPTION FEATURES APPLICATIONS SCHEMATIC DIAGRAM

ZSM300 SUPPLY VOLTAGE MONITOR ISSUE 3 JULY 2006 DEVICE DESCRIPTION FEATURES APPLICATIONS SCHEMATIC DIAGRAM

Application note for the ZXBM1004 and ZXBM2004 variable speed motor controllers - Interfacing to the motor windings

ZM33164 SUPPLY VOLTAGE MONITOR ISSUE 4 JULY 2006 DEVICE DESCRIPTION FEATURES APPLICATIONS SCHEMATIC DIAGRAM

ZXMP2120E5 200V P-CHANNEL ENHANCEMENT MODE MOSFET N/C N/C SOT23-5 PINOUT - TOP VIEW SUMMARY V (BR)DSS =-200V; R DS(ON) = 28

ZXCT1008 AUTOMOTIVE HIGH-SIDE CURRENT MONITOR APPLICATIONS

ZX5T2E6 20V PNP LOW SAT MEDIUM POWER TRANSISTOR IN SOT23-6. SUMMARY BV CEO = -20V : R SAT = 31m ; I C = -3.5A

ZXCT1032EV1 USER GUIDE

ZXTN2011G 100V NPN LOW SATURATION MEDIUM POWER LOW SATURATION TRANSISTOR IN SOT223. SUMMARY BV CEO = 100V : R SAT = 36m DESCRIPTION FEATURES

ZXTP2008Z 30V PNP LOW SATURATION MEDIUM POWER TRANSISTOR IN SOT89 SUMMARY. BV CEO = -30V : R SAT = 24m DESCRIPTION FEATURES APPLICATIONS PINOUT

ZXTN2010Z 60V NPN LOW SATURATION MEDIUM POWER TRANSISTOR IN SOT89. SUMMARY BV CEO = 60V : R SAT = 30m DESCRIPTION FEATURES APPLICATIONS PINOUT

40V SILICON HIGH CURRENT LOW LEAKAGE SCHOTTKY DIODE

ZXTP2008G 30V PNP LOW SATURATION TRANSISTOR IN SOT223. SUMMARY BV CEO = -30V : R SAT = 31m

DN82 Start up switches for switch mode power supplies Andy Aspinall, Systems Engineer, Zetex Semiconductors

ZXTP2012A 60V PNP LOW SATURATION MEDIUM POWER TRANSISTOR IN E-LINE. SUMMARY BV CEO = -60V : R SAT = 38m DESCRIPTION FEATURES APPLICATIONS

ZXTP2014Z 140V PNP LOW SATURATION MEDIUM POWER TRANSISTOR IN SOT89. SUMMARY BV CEO = -140V : R SAT = 85m ; I C = -3A

ZXTN2010A 60V NPN LOW SATURATION MEDIUM POWER TRANSISTOR IN E-LINE. SUMMARY BV CEO = 60V : R SAT = 34m ; I C = 4.5A DESCRIPTION FEATURES APPLICATIONS

HIGH SIDE CURRENT MONITOR

FMMT620 SUMMARY V CEO =80V; R SAT. = 90m ;I C = 1.5A SOT23. SuperSOT 80V NPN SILICON LOW SATURATION TRANSISTOR

ZXMN3A03E6 30V N-CHANNEL ENHANCEMENT MODE MOSFET SUMMARY V (BR)DSS = 30V; R DS(ON) = I D = 4.6A DESCRIPTION FEATURES APPLICATIONS PINOUT

ZXMN3A14F 30V N-CHANNEL ENHANCEMENT MODE MOSFET. SUMMARY V (BR)DSS =30V : R DS ( on )=0.065

ZSR SERIES 2.85 TO 12 VOLT FIXED POSITIVE LOCAL VOLTAGE REGULATOR DEVICE DESCRIPTION FEATURES VOLTAGE RANGE to 12 Volt

ZX5T851G 60V NPN MEDIUM POWER LOW SATURATION TRANSISTOR IN SOT223. SUMMARY BV CEO = 60V : R SAT = 35m DESCRIPTION FEATURES APPLICATIONS PINOUT

ZAMP MHz MMIC WIDEBAND AMPLIFIER LNA, 15dB Gain, Very Low Current

ZX5T949G 30V PNP LOW SATURATION TRANSISTOR IN SOT223. SUMMARY BV CEO = -30V : R SAT = 31m

ZX5T849G 30V NPN MEDIUM POWER LOW SATURATION TRANSISTOR IN SOT223. SUMMARY BV CEO = 30V : R SAT = 28m DESCRIPTION FEATURES APPLICATIONS PINOUT

ZXMP6A17E6 60V P-CHANNEL ENHANCEMENT MODE MOSFET SUMMARY V (BR)DSS = -60V; R DS(ON) = DESCRIPTION FEATURES APPLICATIONS PINOUT

Applications. Devices are identified by type. Colour of marking: BYP53- black, BYP54 red

ZXMN10A07Z 100V N-CHANNEL ENHANCEMENT MODE MOSFET. SUMMARY V (BR)DSS =100V : R DS(on) =0.7 DESCRIPTION FEATURES APPLICATIONS ORDERING INFORMATION

ZXM62P03E6 30V P-CHANNEL ENHANCEMENT MODE MOSFET SUMMARY V (BR)DSS =-30V; R DS(ON) =0.15

120V PNP SILICON HIGH VOLTAGE DARLINGTON TRANSISTOR

ZX5T851A 60V NPN LOW SATURATION MEDIUM POWER TRANSISTOR IN E-LINE. SUMMARY BV CEO = 60V : R SAT = 34m ; I C = 4.5A DESCRIPTION FEATURES APPLICATIONS

ZXCT1008 AUTOMOTIVE HIGH-SIDE CURRENT MONITOR APPLICATIONS

Applications. BYY57-75; ; BYY The package quantities for the different package

ZXRE4041 SOT23 MICROPOWER 1.225V VOLTAGE REFERENCE SUMMARY

ZXM62N03E6. Not Recommended for New Design Please Use ZXMN3A01E6TA 30V N-CHANNEL ENHANCEMENT MODE MOSFET

NOT RECOMMENDED FOR NEW DESIGN

Applications. BYY53-75; ; BYY The package quantities for the different package

ZXMP4A16G 40V P-CHANNEL ENHANCEMENT MODE MOSFET. SUMMARY V (BR)DSS = -40V: R DS(on) = DESCRIPTION FEATURES APPLICATIONS PINOUT

ZXMN2A14F 20V N-CHANNEL ENHANCEMENT MODE MOSFET. SUMMARY V (BR)DSS =20V : R DS ( on )=0.06 DESCRIPTION FEATURES APPLICATIONS PINOUT

ZXMN6A09G 60V N-CHANNEL ENHANCEMENT MODE MOSFET SUMMARY V (BR)DSS = 60V; R DS(ON) = I D = 5.1A DESCRIPTION FEATURES APPLICATIONS

ZXT849K 30V NPN LOW SATURATION TRANSISTOR IN D-PAK. SUMMARY BV CEO = 30V : R SAT = 33m. typical; I C = 7A DESCRIPTION FEATURES APPLICATIONS PINOUT

ZXMN10A07F 100V N-CHANNEL ENHANCEMENT MODE MOSFET. SUMMARY V (BR)DSS = 100V : R DS(on) = 0.7 I D = 0.8A DESCRIPTION FEATURES SOT23 APPLICATIONS

Applications. Device Quantity per box Options BYY57-75; ; BYY BYY58-75; ; BYY

MICROPOWER SC70-5 & SOT23-5 LOW DROPOUT REGULATORS

FSD270 SILICON DUAL VARIABLE CAPACITANCE DIODE. SUMMARY V BR =25V; I R =20nA; C d =33pF(Nom)

ZXT2M322. MPPS Miniature Package Power Solutions 20V PNP LOW SATURATION SWITCHING TRANSISTOR. SUMMARY V CEO = 20V; R SAT = 64m

ZXMN0545G4 450V N-CHANNEL ENHANCEMENT MODE MOSFET N/C SUMMARY V (BR)DSS = 450V; R DS(ON) = 50 ORDERING INFORMATION DEVICE MARKING ZXMN 0545

AL8805EV1 EVALUATION BOARD USER GUIDE

ZXLD1366EV3 USER GUIDE

ZXMC3A16DN8 COMPLEMENTARY 30V ENHANCEMENT MODE MOSFET

COMPLEMENTARY 100V ENHANCEMENT MODE MOSFET H-BRIDGE = 0.7 ; I D = 1.0 ; I D = -1.3A

ZXMHC3A01T8 COMPLEMENTARY 30V ENHANCEMENT MODE MOSFET H-BRIDGE

AP8802HEV2 USER GUIDE

ZXFV4089 VIDEO AMPLIFIER WITH DC RESTORATION

ZXMP3A17E6 30V P-CHANNEL ENHANCEMENT MODE MOSFET SUMMARY V (BR)DSS = -30V; R DS(ON) = 0.07 DESCRIPTION FEATURES APPLICATIONS PINOUT

ZXTAM322. MPPS Miniature Package Power Solutions 15V NPN LOW SATURATION TRANSISTOR. SUMMARY V CEO = 15V; R SAT = 45m ;I C = 4.5A

AL8811. Description. Pin Assignments. Features. Applications. Typical Application Diagram. Boost/Buck/Inverting DC-DC CONVERTER AL8811

The operating voltage for the evaluation board ranges from 8V to 28V maximum. Higher voltage means lower supply current.

ZXTDE4M832. MPPS Miniature Package Power Solutions DUAL 80V NPN & 70V PNP LOW SATURATION TRANSISTOR COMBINATION

ZXT1M322. MPPS Miniature Package Power Solutions 12V PNP LOW SATURATION SWITCHING TRANSISTOR. SUMMARY V CEO = -12V; R SAT = 60m ;I C = -4A DESCRIPTION

ZXTDC3M832. MPPS Miniature Package Power Solutions DUAL 50V NPN & 40V PNP LOW SATURATION TRANSISTOR COMBINATION

ZXMN3A04DN8 DUAL 30V N-CHANNEL ENHANCEMENT MODE MOSFET SUMMARY V (BR)DSS = 30V; R DS(ON) = 0.02 ;I D = 8.5A DESCRIPTION FEATURES SO8 APPLICATIONS

APPLICATION FOCUS. Exceptional Class D subwoofer amplifier solutions. Setting new benchmarks in performance, power and cost

ZXSC100X8 Obsolete Closest Alternative is ZXSC100N8 ZXSC100 SINGLE CELL DC-DC CONVERTER SOLUTION. Description. Pin Assignments. Features.

LDS8710. High Efficiency 10 LED Driver With No External Schottky FEATURES APPLICATION DESCRIPTION TYPICAL APPLICATION CIRCUIT

ZXMN4A06G 40V N-CHANNEL ENHANCEMENT MODE MOSFET SUMMARY V (BR)DSS = 40V; R DS(ON) = 0.05 DESCRIPTION FEATURES APPLICATIONS ORDERING INFORMATION

Driving 2W LEDs with ILD4120

LDS Channel Ultra Low Dropout LED Driver FEATURES APPLICATION DESCRIPTION TYPICAL APPLICATION CIRCUIT

Applications. 1. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied. See

n/a ZXRE125FFTA n/a ZXRE125ER 1.22V VOLTAGE REF (ZTX) n/a ZXRE125EF 1.22V SMD VOLTAGE REF (ZTX) Voltage and current reference

ZXLD1320EV3 USER GUIDE

ZXBM2001 ZXBM2002 ZXBM2003

LDS Channel Ultra Low Dropout LED Driver FEATURES APPLICATION DESCRIPTION TYPICAL APPLICATION CIRCUIT

High Voltage CMOS Boost White LED Driver

BAV99QA. 1. General description. 2. Features and benefits. 3. Applications. 4. Quick reference data

Micro Power Boost Regulator Series White LED Driver L1 D1 SP6691 GND

TLVH431 family. Low voltage adjustable precision shunt regulators

Low current peripheral driver Control of IC inputs Replaces general-purpose transistors in digital applications Mobile applications

SMP1321 Series: Low Capacitance, Plastic Packaged PIN Diodes

Transcription:

EVALUATION BOARD USER GUIDE DESCRIPTION The, Figure, is a double sided evaluation board for the ZXSC boost LED driver. The evaluation board is preset to drive about ma into a single LED from a single.v battery, or an external choice of LEDs There is provision on this evaluation board for the Lumileds REBEL LED (distributed by Future Lighting Solutions www.futurelightingsolutions.com) but this is not fitted by default. The operating voltage is nominally. volts, but can be up to 8 volts. The uh inductor used in the circuit is based on this nominal supply, which should be connected across the +VE and -VE pins, or, alternatively, a.v AA size battery can be inserted in the clips provided. The nominal input current for the evaluation board is 6mA. Note: The evaluation board does not have reverse battery protection. WARNING: Exposed battery connections exist on the front and back of the board. Do not cause the batteries to short-circuit by placing it on a conductive surface or allowing other conductive materials to come into contact with it. Figure : evaluation board User guide Issue /9 sep7

ZXSC DEVICE DESCRIPTION The ZXSC is a single or multi-cell LED driver designed for LCD backlighting applications. The input voltage range of the device is between.8v and 8V. This means that the ZXSC is compatible with single NiMH, NiCd or Alkaline cells, as well as multi-cell or Li-Ion batteries. The device features a shutdown control, resulting in a standby current less than µa, and an output capable of driving serial or parallel LEDs. The circuit generates a constant power output, which is ideal for driving single or multiple LEDs over a wide range of operating voltages. These features make the device ideal for driving LEDs, particularly in LCD backlight applications for Digital Still cameras and PDAs. The ZXSC is a PFM DC-DC controller IC that drives an external Zetex switching transistor with a very low saturation resistance. These transistors are excellent for this type of conversion, enabling high efficiency conversion with low input voltages. The drive output of the ZXSC LED driver generates a dynamic drive signal for the switching transistor. The ZXSC is offered in the SOT- package which, when combined with a SOT switching transistor, generates a high efficiency, small size circuit solution. The IC-and-discrete combination offers the ultimate costversus-performance solution for LED backlight applications. FEATURES: ZXSC DEVICE FEATURES 94% efficiency Minimum operating input voltage.8v Maximum operating input voltage 8V Standby current less than µa Programmable output current Series or parallel LED configuration Low saturation voltage switching transistor SOT- package DEVICE APPLICATIONS LCD backlights: Digital still camera PDA Mobile phone LED flashlights and torches White LED driving Multiple LED driving User guide Issue /9 sep7

ZXSC Device Packages, Pin and Definitions ZXSC Vcc Vdrive GND En 4 Vsense SOT- package ZXLD6 Device Pin Definition Name Pin No Description VCC Input Voltage GND Ground (V). Enable Tie high for normal operation, low to shutdown Vsense 4 From the sense resistor Vdrive Drive current output to transistor ORDERING INFORMATION EVALBOARD ORDER NUMBER DEVICE ORDER NUMBER ZXSCETA Please note: Evaluation boards are subject to availability and qualified sales leads. User guide Issue /9 sep7

EVALUATION BOARD REFERENCE DESIGN The may be configured in several ways; the default configuration as delivered is effectively configured to the reference design in Figure. The target application is a driver for torches or other high powered LED applications. The input voltage should be in the range.8v to 8V, with the board being laid out to include a single cell.v battery. The input current at.v will be about 6mA when driving a single white LED, and the LED current will be about ma. The operating frequency will be about khz under these circumstances. Design Procedure In this case, the objective is to drive the LED with the maximum current, subject to a reasonable efficiency and component cost. Fundamentally for this type of circuit the limiting factor is the peak current through the inductor. Using the ZXTN with the ZXSC at.v to.v the highest design current is about A. The threshold Voltage on the Isense pin is given as 9mV so a 9mR resistor could be used. The next highest preferred value is mr and the dissipation is only mw, so an 8 package is adequate. Other transistors could be used, but the ZXTN is optimised for this type of application and has an excellent combination of Vcesat and gain at A. If another transistor is used the value of the sense resistor will probably have to be increased, causing a reduction in output current. The choice of inductor is a compromise between size on the one hand and price on the other. The small uh is a good compromise here: a larger inductor value in the same case would have a higher series resistance and hence higher losses. The value is not critical: a higher value could be used with little change in performance. If the inductor is too small, not only is the power output reduced but the circuit could enter discontinuous mode, which is undesirable for e.m.c. and efficiency reasons. The Schottky diode needs to have low forward voltage at A: the ZHSC comes in a SOT package and has a Vf of about 4mV at A. The output capacitor could be regarded as not really necessary, as the flicker that results from it s omission is not visible, but it does help with respect to e.m.c. In this design the Enable pin is tied to the Vcc pin (via solder link P4), as it s functionality is not used. The Zener diode ZD is included to protect the circuit in case there is no load: without it, the output voltage would rise until something breaks over. For other reference designs or further applications information, please refer to the ZXSC datasheet, Application Notes and Design Notes at www.zetex.com. Schematic Diagram Vbatt L Vout D u ZHSC Batt U Vcc En GND Drive Sense 4 Q ZXTN Vs C u D K ZXSC: R6 mr Figure : Conceptual Schematic for the evaluation board User guide Issue 4/9 sep7

P P SL SL TP TP TP4 TP Vbatt GND Bat Batt C u boost option C u P4 TP SL L u P SL U Vcc En GND ZXSC: R Drive Sense 4 R k@c R4 R TP Q ZXTNEFH R mr D C u D Rebel SK 4 9 8 6 7 FUTURE 6X The zener is to protect the transistor in case the led is not fitted. ZD BZX84-C Figure : Actual schematic for ZXSC EV4 Differences between the Actual and Conceptual Schematics The actual board has several different configurations, some of which are not appropriate for this application. There are two points to note, firstly that R4 is not needed in this application, but as the PCB has a footprint in it s position it needs a low (or zero) value resistor fitted. Secondly the LED is not fitted for this application; rather it is fitted on an external PCB via SK. The zener diode is fitted to protect Q against high voltages that would be produced by the circuit of there was an open circuit load. It is not needed for applications where the LED is permanently connected. Solder Links For operation as described, solder links P and P4 should be shorted and P and P left open. User guide Issue /9 sep7

ZXSC Operation The ZXSC is a constant off-time converter (also known as PFM). It operates as follows:- On switch on, Q is switched on and the current through the inductor rises until the voltage across the sense resistor R6 reaches the threshold (set by the device to about mv). Q is then switched off for a constant time (determined by the internal device characteristics ) of about.us. During this time the inductor partially discharges into the load. After the off-time, the cycle repeats. It is worth noting that the frequency is determined by the ratio of the input voltage to the load voltage (and the fixed off-time) and does not depend on the inductor value. Test and Diagnostics With this type of circuit the performance is best evaluated by watching the waveform on the current sensing resistor. A test pad (TP) has been provided for this purpose. The voltage is normally -mv so a sensitive oscilloscope with fairly narrow bandwidth is ideal. This waveform with a corresponding inductor current waveform is shown schematically in Fig 4 88.8u 96.794u 7.964u I(L-P) / ma 9 8 7 6 4 Inductor current 8.69794m U-Vsense / mv Vsense 9.7m.474m 84 86 88 9 9 94 96 98 REF A Time/uSecs usecs/div Figure 4: Sample Waveforms Interpretation The upper curve is the inductor current and this is not easy to measure without disturbing the circuit operation. The lower curve is the voltage across the sense resistor which actually contains more information, but is less easy to interpret. This is the curve that can be seen from the test pad TP. The first thing to notice about this waveform is that the current starts from a non-zero value at the start of the on period. This shows that the circuit is operating in continuous mode. The current rise on the lower trace looks straight which shows that the inductor resistance is not very high: if the resistances were high, the trace would sag towards the high current end and the circuit efficiency would be poor. User guide Issue 6/9 sep7

The voltage in the off period is close to zero, which shows that the transistor Vcesat is not reducing the efficiency significantly. The ratio to on and off period is clearly defined showing that the circuit is operating cleanly. If the waveforms were not well defined there would be a fault in the operation; possibly too low an input Voltage The maximum Voltage is about mv showing that the peak current is at the design level. The minimum Voltage during the on period is about mv, so that the minimum current in this example is ma, and hence the average input current in this example is 7mA. ZXLD6EV6 Component list Designator Value Footprint Part No Manufacturer Quantity Bat Batt holder custom Rapid 8- Keystone C, C uf, V 8 GRMBR7AKAL Murata NMC8X7RK NIC C uf, 6V 8 GRMBR7CKAL Murata NMC8X7RK6 NIC D ZHCS SOT ZHCS ZETEX D Rebel Rebel basic LXML-PWC-4 Luxeon L uh.a NPIS7 NPIS7TMTRF NIC Q ZXTNEFH SOT ZXTNEFH ZETEX R k 8 SMD k@c 8 NTC Thermistor Generic R k 8 Resistor Generic R4 R 8 Resistor Generic R mr 8 Resistor Generic SK N/A DIL 6 way socket, 676- Tyco SW Slide switch, SPDT Slide sw Rapid 76-66 U ZXSCE SOT- ZXSCE ZETEX ZD BZX84-C mw SOTA Generic The solder pad on the underside of the LED is connected to a heat-dissipating copper plane on the top and bottom layers, and is electrically isolated from all other connections on the board. User guide Issue 7/9 sep7

7 6 8 9 4 Figure : Component layout ZXLD6EV6 Connection Point Definition Name Description +Ve Positive supply voltage. -Ve Supply Ground (V). TP TP SK To monitor the voltage across the current sense resistor R6 Can be used to supply an Enable voltage if solder link P4 is opened. The socket is designed to accept a Future Luxeon Series Module Board. The pins are:,6, 7, 8 = LED cathode (-ve) and,,, = LED anode (+ve). Pins, 4, 9, and are not used. ZXLD6EV6 Basic operation at.v WARNING: Exposed battery connections exist on the front and back of the board. Do not cause the batteries to short-circuit by placing it on a conductive surface or allowing other conductive materials to come into contact with it.. Connect a power supply to TP (+ve) and TP4 (-ve) or insert an AA size battery as depicted on the top of the board. Warning: The board does not have reverse battery/supply protection.. Set the PSU (if used), to.v. Connect a suitable Lumileds Luxeon emitter board to connector SK. (The LED must be capable of handling 6mA) 4. Turn on the PSU (if used), and the switch SW. The LED will illuminate and the current should be approximately 6mA. Warning: Do not look at the LED directly. User guide Issue 8/9 sep7

Definitions Product change Zetex Semiconductors reserves the right to alter, without notice, specifications, design, price or conditions of supply of any product or service. Customers are solely responsible for obtaining the latest relevant information before placing orders. Applications disclaimer The circuits in this design/application note are offered as design ideas. It is the responsibility of the user to ensure that the circuit is fit for the user s application and meets with the user s requirements. No representation or warranty is given and no liability whatsoever is assumed by Zetex with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Zetex does not assume any legal responsibility or will not be held legally liable (whether in contract, tort (including negligence), breach of statutory duty, restriction or otherwise) for any damages, loss of profit, business, contract, opportunity or consequential loss in the use of these circuit applications, under any circumstances. Life support Zetex products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Zetex Semiconductors plc. As used herein: A. Life support devices or systems are devices or systems which:. are intended to implant into the body or. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user. B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness. Reproduction The product specifications contained in this publication are issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. Terms and Conditions All products are sold subjects to Zetex terms and conditions of sale, and this disclaimer (save in the event of a conflict between the two when the terms of the contract shall prevail) according to region, supplied at the time of order acknowledgement. For the latest information on technology, delivery terms and conditions and prices, please contact your nearest Zetex sales office. Quality of product Zetex is an ISO 9 and TS6949 certified semiconductor manufacturer. To ensure quality of service and products we strongly advise the purchase of parts directly from Zetex Semiconductors or one of our regionally authorized distributors. For a complete listing of authorized distributors please visit: www.zetex.com/salesnetwork Zetex Semiconductors does not warrant or accept any liability whatsoever in respect of any parts purchased through unauthorized sales channels. ESD (Electrostatic discharge) Semiconductor devices are susceptible to damage by ESD. Suitable precautions should be taken when handling and transporting devices. The possible damage to devices depends on the circumstances of the handling and transporting, and the nature of the device. The extent of damage can vary from immediate functional or parametric malfunction to degradation of function or performance in use over time. Devices suspected of being affected should be replaced. Green compliance Zetex Semiconductors is committed to environmental excellence in all aspects of its operations which includes meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions. All Zetex components are compliant with the RoHS directive, and through this it is supporting its customers in their compliance with WEEE and ELV directives. Product status key: Preview Active Last time buy (LTB) Not recommended for new designs Obsolete Datasheet status key: Draft version Provisional version Issue Future device intended for production at some point. Samples may be available Product status recommended for new designs Device will be discontinued and last time buy period and delivery is in effect Device is still in production to support existing designs and production Production has been discontinued This term denotes a very early datasheet version and contains highly provisional information, which may change in any manner without notice. This term denotes a pre-release datasheet. It provides a clear indication of anticipated performance. However, changes to the test conditions and specifications may occur, at any time and without notice. This term denotes an issued datasheet containing finalized specifications. However, changes to specifications may occur, at any time and without notice. Europe Americas Asia Pacific Corporate Headquarters Zetex GmbH Kustermann-park Balanstraße 9 D-84 München Germany Telefon: (49) 89 4 49 49 Fax: (49) 89 4 49 49 49 europe.sales@zetex.com Zetex Inc 7 Veterans Memorial Highway Hauppauge, NY 788 USA Telephone: () 6 6 Fax: () 6 6 8 usa.sales@zetex.com Zetex (Asia Ltd) 7-4 Metroplaza Tower Hing Fong Road, Kwai Fong Hong Kong Telephone: (8) 6 6 Fax: (8) 4 494 asia.sales@zetex.com Zetex Semiconductors plc Zetex Technology Park, Chadderton Oldham, OL9 9LL United Kingdom Telephone (44) 6 6 4444 Fax: (44) 6 6 4446 hq@zetex.com 6 Published by Zetex Semiconductors plc. User guide Issue 9/9 sep7