III-V CMOS: Quo Vadis?

Similar documents
Towards Sub-10 nm Diameter InGaAs Vertical nanowire MOSFETs and TFETs

Nanoscale III-V CMOS

Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs

III-V Channel Transistors

III-V Vertical Nanowire FETs with Steep Subthreshold Towards Sub-10 nm Diameter Devices

InGaAs MOSFET Electronics

Vertical Nanowire InGaAs MOSFETs Fabricated by a Top-down Approach

A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a Scalable Tight-Pitch Process

InGaAs MOSFETs for CMOS:

Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

III-V CMOS: the key to sub-10 nm electronics?

Nanometer-Scale InGaAs Field-Effect Transistors for THz and CMOS Technologies

InGaAs Nanoelectronics: from THz to CMOS

Zota, Cezar B.; Lindelow, Fredrik; Wernersson, Lars Erik; Lind, Erik

InAs Quantum-Well MOSFET for logic and microwave applications

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth

InGaAs is a promising channel material candidate for

CMOS beyond Si: Nanometer-Scale III-V MOSFETs

FinFET Devices and Technologies

MOS Capacitance and Introduction to MOSFETs

Vertical InAs/GaAsSb/GaSb tunneling field-effect transistor on Si with S = 48 mv/decade and Ion = 10 A/m for Ioff = 1 na/m at VDS = 0.

Single suspended InGaAs nanowire MOSFETs

Integration of III-V heterostructure tunnel FETs on Si using Template Assisted Selective Epitaxy (TASE)

Acknowledgments: This work was supported by Air Force HiREV program and the DTRA Basic Research Program.

EECS130 Integrated Circuit Devices

In principle, the high mobilities of InGaAs and

Electrical Characterization and Modeling of Gate-Last Vertical InAs Nanowire MOSFETs on Si

Scaling of InGaAs MOSFETs into deep-submicron regime (invited)

Self-aligned, gate-last process for vertical InAs nanowire MOSFETs on Si

EECS130 Integrated Circuit Devices

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

Drain. Drain. [Intel: bulk-si MOSFETs]

Enabling Breakthroughs In Technology

SEVERAL III-V materials, due to their high electron

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

Experimentally reported sub-60mv/dec

SUPPLEMENTARY INFORMATION

Beyond Transistor Scaling: New Devices for Ultra Low Energy Information Processing

CMOS Scaling Beyond FinFETs: Nanowires and TFETs

Device architectures for the 5nm technology node and beyond Nadine Collaert

Session 10: Solid State Physics MOSFET

Alternative Channel Materials for MOSFET Scaling Below 10nm

Electronic, Magnetic, Superconducting, and Neuromorphic Devices

Eigen # Hole s Wavefunctions, E-k and Equi-Energy Contours from a P-FinFET. Lecture 5

Nanometer-Scale III-V MOSFETs

NW-NEMFET: Steep Subthreshold Nanowire Nanoelectromechanical Field-Effect Transistor

Fully Depleted Devices

Transistors for VLSI, for Wireless: A View Forwards Through Fog

FinFET-based Design for Robust Nanoscale SRAM

CMOS Logic Technology IEEE EDS DL

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007

Alternatives to standard MOSFETs. What problems are we really trying to solve?

6.012 Microelectronic Devices and Circuits

Scaling of Vertical InAs GaSb Nanowire Tunneling Field-Effect Transistors on Si

Scaling and Beyond for Logic and Memories. Which perspectives?

NAME: Last First Signature

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology

High-Performance Si Nanowire FET with a Semi Gate-Around Structure Suitable for Integration

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

FinFET vs. FD-SOI Key Advantages & Disadvantages

Transistor Scaling in the Innovation Era. Mark Bohr Intel Senior Fellow Logic Technology Development August 15, 2011

Sub-Threshold Region Behavior of Long Channel MOSFET

Tunnel FET architectures and device concepts for steep slope switches Joachim Knoch

Comparative Study of Silicon and Germanium Doping-less Tunnel Field Effect Transistors

Active Technology for Communication Circuits

Advanced PDK and Technologies accessible through ASCENT

Ultra High-Speed InGaAs Nano-HEMTs

Challenges and Innovations in Nano CMOS Transistor Scaling

The 3 D Tri Gate transistor is a variant of the FinFET developed at UC Berkeley, and is being used in Intel s 22nmgeneration. microprocessors.

DESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

Semiconductor Physics and Devices

Performance Evaluation of MISISFET- TCAD Simulation

Design & Performance Analysis of DG-MOSFET for Reduction of Short Channel Effect over Bulk MOSFET at 20nm

Acknowledgements. Curriculum Vitæ. List of Figures. List of Tables. 1 Introduction Si MOSFET Scaling... 2

FETs with Sub-10-nm Channel Formed by Directed Self-Assembly A MoS 2. van der Waals Heterojunction Tunnel Diode MoS 2

1020 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 3, MARCH 2016

Performance Analysis of InGaAs Double Gate MOSFET

Design and Analysis of Double Gate MOSFET Devices using High-k Dielectric

INTRODUCTION: Basic operating principle of a MOSFET:

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

Sub-micron technology IC fabrication process trends SOI technology. Development of CMOS technology. Technology problems due to scaling

A 90 nm High Volume Manufacturing Logic Technology Featuring Novel 45 nm Gate Length Strained Silicon CMOS Transistors

problem grade total

Innovation to Advance Moore s Law Requires Core Technology Revolution

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations

Fundamentals of III-V Semiconductor MOSFETs

Introduction to VLSI ASIC Design and Technology

Nanowire Tunnel Field Effect Transistors at High Temperature

DUAL MATERIAL PILE GATE APPROACH FOR LOW LEAKAGE FINFET. Sanjay S. Chopade 1*, Dinesh V. Padole 1

Silicon Single-Electron Devices for Logic Applications

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

A Review of Low-Power VLSI Technology Developments

Supporting Information

Low-Power VLSI. Seong-Ook Jung VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering

Transcription:

III-V CMOS: Quo Vadis? J. A. del Alamo, X. Cai, W. Lu, A. Vardi, and X. Zhao Microsystems Technology Laboratories Massachusetts Institute of Technology Compound Semiconductor Week 2018 Cambridge, MA, May 29-June 1, 2018 Acknowledgements: Former students and collaborators: D. Antoniadis, E. Fitzgerald, J. Grajal, J. Lin Sponsors: Applied Materials, DTRA, KIST, Lam Research, Northrop Grumman, NSF, Samsung, SRC Labs at MIT: MTL, EBL

Quo Vadis? = Where are you going? 2

III-V CMOS: The Promise Scaling: Voltage Current density Performance Current density of n-mosfets at nominal voltage: Source injection velocity: Si vs. InGaAs FETs del Alamo, Nature 2011 v inj (InGaAs) > 2v inj (Si) at less than half V DD high current at low voltage 3

Transconductance of Planar Si vs. InGaAs MOSFETs n-mosfets in Intel s nodes at nominal voltage Comparisons always fraught with danger 4

Transconductance of Planar Si vs. InGaAs MOSFETs n-mosfets in Intel s nodes at nominal voltage Comparisons always fraught with danger InGaAs stagnant for a long time 5

Transconductance of Planar Si vs. InGaAs MOSFETs n-mosfets in Intel s nodes at nominal voltage Comparisons always fraught with danger Rapid recent progress InGaAs exceeds Si 6

Transconductance of Planar Si vs. InGaAs MOSFETs n-mosfets in Intel s nodes at nominal voltage MIT (V DS =0.5 V) Comparisons always fraught with danger Rapid recent progress InGaAs exceeds Si Lin, IEDM 2014 EDL 2016 7

Many requirements for a successful logic technology 1. ON current 2. OFF current 3. Scalability 4. Stability 5. Manufacturing robustness 6. Si integration 8

Evolution of transistor structure for improved scalability Planar bulk MOSFET Thin-body SOI MOSFET FinFET Nanowire MOSFET Enhanced gate control improved scalability 9

Evolution of transistor structure for improved scalability FinFET Enhanced gate control improved scalability 10

Transconductance of planar Si vs. InGaAs MOSFETs 11

Transconductance of Si vs. InGaAs FinFETs 12

Transconductance of Si vs. InGaAs FinFETs W f g m normalized by fin width FinFET: large increase in current density per unit footprint over planar MOSFET 13

Transconductance of Si vs. InGaAs FinFETs W f MIT (V DS =0.5 V) g m normalized by fin width Best InGaAs FinFETs nearly match 14 nm Si MOSFETs 14

Transconductance of Si vs. InGaAs FinFETs 10 nm node Intel (V DS =0.7 V) W f g m normalized by fin width 10 nm node Si MOSFETs a great new challenge! 15

InGaAs FinFETs @ MIT Key enabling technologies: BCl 3 /SiCl 4 /Ar RIE + digital etch Sub-10 nm fin width Aspect ratio > 20 Vertical sidewalls Vardi, DRC 2014, EDL 2015, IEDM 2015 16

InGaAs FinFETs @ MIT High-K SiO 2 W/Mo n + -InGaAs L g Mo HSQ InGaAs δ - Si InAlAs InP HSQ High-K InGaAs Mo InP Vardi, IEDM 2017 Si-compatible process Contact-first, gate-last process Fin etch mask left in place double-gate MOSFET 17

Most aggressively scaled FinFET W f =5 nm, L g =50 nm, H c =50 nm (AR=10), EOT=0.8 nm: 150 V GS =-0.2 to 0.5 V V GS =0.1 V 1E-3 1E-4 L g =50 nm W f =5 nm V DS =500 mv 50 mv 1E-5 I d [µa/µm] 100 50 I d [A/µm] 1E-6 1E-7 1E-8 S sat =75 mv/dec S lin =65 mv/dec Normalized by conducting gate periphery = 2H c Vardi, IEDM 2017 0 0.0 0.1 0.2 0.3 0.4 0.5 V GS [V] At V DS =0.5 V: g m =565 µs/µm R on =660 Ω.µm S sat =75 mv/dec DIBL=22 mv/v g m [µs/µm] 1E-9 700 600 500 400 300 200 100-0.2 0.0 0.2 0.4 0.6 0.8 V DS =0.5 V L g =50 nm W f =5 nm V GS [V] 0-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 V GS [V] g m,max =565 µs/µm 18

Fin-width scaling of ON-state current 2.0 Vardi, IEDM 2017 1.5 Normalized by conducting gate periphery = 2H c in planar MOSFETs expect g m independent of W f down to W f =7 nm In planar MOSFET (x=0.53) expect g m ~ 2.2 ms/µm Missing performance hints at sidewall damage g m [ms/µm] 2.2 ms/µm 0.5 L g =40-60 nm R on [Ω-µm] 1.0 0.0 0 5 10 15 20 25 W f [nm] 1000 800 600 400 200 V DS = 0.5 V 0 0 5 10 15 20 25 W f [nm] 19

Fin-width scaling of OFF-state current I d [A/µm] 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 1E-9 L g =50 nm V DS =500 mv W f =5 nm 50 mv S sat =75 mv/dec S lin =65 mv/dec -0.2 0.0 0.2 0.4 0.6 0.8 V GS [V] S [mv/dec] 120 100 80 S sat (V DS = 0.5 V) S sat S lin S lin (V DS = 50 mv) 60 L g =40-60 nm 40 0 5 10 15 20 25 W f [nm] Excellent subthreshold swing scaling behavior From long L g devices: D it ~ 8x10 11 cm -2.eV -1 Vardi, IEDM 2017 20

Excess OFF-state current Band-to-band tunneling (BTBT) at drain end of channel Zhao, EDL 2018 Classic BTBT behavior in long-channel devices 21

Excess OFF-state current Current multiplication through parasitic bipolar transistor -1 slope Large BJT current gain (up to ~100) Short L g : β ~ 1/L g Long L g : β ~ exp(-l g /L d ), L d 2-4 µm Zhao, EDL 2018, CSW 2018 22

Manufacturing robustness: impact of fin width on V T InGaAs doped-channel FinFETs: 50 nm thick, N D ~10 18 cm -3 Vardi, IEDM 2015 T=90K Strong V T sensitivity for W f < 10 nm; much worse than Si Due to quantum effects Big concern for future manufacturing 23

MOSFET threshold voltage stability Planar InGaAs MOSFETs under forward-gate stress (V gs >0): 2.5 nm HfO 2 V t : power law in time and stress voltage Typical of PBTI (Positive Bias Stress Instability) Cai, IEDM 2016 24

MOSFET stability due to oxide traps Planar InGaAs MOSFETs under forward-gate stress: time to 30mV shift (s) 10 9 10 7 10 5 10 3 V gt =0.4 V @ 10 years 10 1 0.4 0.6 0.8 1 1.2 V gt,stress (V) g m,max and V t,lin correlated Negligible change in S 30 mv shift in 10 years for V gt = 0.4 V Oxide traps = O vacancies in HfO 2 Cai, IEDM 2016 Excellent review by Franco, IEDM 2017 25

Other manifestations of oxide traps C-V frequency dispersion g m frequency dispersion Pulsed vs. DC Cai, CSW 2018 Also: Johansson, ESSDERC 2013 Frequency dispersion in C g and g m Pulsed I-V DC I-V DC underestimates transistor potential Also: Cartier, ESSDERC 2017 26

InGaAs Vertical Nanowire MOSFETs VNW MOSFET Vertical NW MOSFET: uncouples footprint scaling from L g, L spacer, and L c scaling 27

InGaAs VNW-MOSFETs by top-down approach @ MIT Lu, EDL 2017 Top-down approach: flexible and manufacturable Critical technologies: precision RIE + alcohol-based digital etch 28

D=7 nm InGaAs VNW MOSFET I d (µa/µm) 800 700 600 500 400 300 200 100 V gs = 0 V to 0.8 V in 0.1 V step D = 7 nm Top contact = Drain 0 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) Single nanowire MOSFET: L ch = 80 nm 2.5 nm Al 2 O 3 (EOT = 1.3 nm) g m,pk =1700 µs/µm Top contact = key problem Zhao, IEDM 2017 I d (A/µm) I d (µa/µm) 10-3 D = 7 nm 10-4 10-5 10-6 10-7 10-8 10-9 60 40 20 V ds =0.5 V V ds =0.05 V S lin /S sat = 85/90 mv/dec DIBL = 222 mv/dec -0.2 0.0 0.2 0.4 0.6 V gs (V) 100 Vgs = 0 V to 0.8 V in 0.1 V step D = 7 nm 80 Top contact = Source 0 0.0 0.1 0.2 0.3 V ds (V) 0.4 0.5 29

Benchmark with Si/Ge VNW MOSFETs Peak g m of InGaAs (V DS =0.5 V), Si and Ge VNW MOSFETs MIT @ V DS =0.5 V Zhao, IEDM 2017 First sub-10 nm diameter VNW FET of any kind on any material system InGaAs competitive with Si [hard to add strain] 30

InGaAs Vertical Nanowires on Si by direct growth Au seed InAs NWs on Si by SAE Vapor-Solid-Liquid (VLS) Technique Selective-Area Epitaxy (SAE) Riel, MRS Bull 2014 VNW MOSFETs: path for III-V integration on Si for future CMOS Riel, IEDM 2012 31

Conclusions 1. Great recent progress on planar, fin and nanowire InGaAs MOSFETs 2. Device performance still lacking for 3D architecture designs severe oxide trapping masks true transistor potential 3. Serious challenges identified: excess off-current, stability, manufacturability, integration with Si 4. Vertical Nanowire MOSFET: ultimate scalable transistor; integrates well on Si 32