IRF2204SPbF IRF2204LPbF HEXFET Power MOSFET

Similar documents
C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

TO-220AB. IRF3710ZPbF. 240 P C = 25 C Maximum Power Dissipation 160 Linear Derating Factor

IRF3808S IRF3808L HEXFET Power MOSFET

TO-220AB. IRF2807ZPbF. 350 P C = 25 C Maximum Power Dissipation 170 Linear Derating Factor

TO-220AB. IRF4104PbF. A I T C = 25 C Continuous Drain Current, V 10V (Package limited)

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

IRF2804PbF IRF2804SPbF IRF2804LPbF HEXFET Power MOSFET

TO-220AB. IRF3205ZPbF. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

TO-220AB. IRF540ZPbF A I DM. 140 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

IRFP2907PbF. HEXFET Power MOSFET V DSS = 75V. R DS(on) = 4.5mΩ I D = 209A. Typical Applications. Benefits

AUTOMOTIVE MOSFET. I D = 140A Fast Switching

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20

IRLR3915PbF IRLU3915PbF

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRFR24N15DPbF IRFU24N15DPbF

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

AUTOMOTIVE MOSFET TO-220AB IRFZ44VZ A I DM. 230 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET TO-220AB IRF P C = 25 C Maximum Power Dissipation 330 Linear Derating Factor

l Advanced Process Technology TO-220AB IRF640NPbF

IRFR4105ZPbF IRFU4105ZPbF

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET IRLZ44Z A I DM. 204 P C = 25 C Power Dissipation 80 Linear Derating Factor V GS Gate-to-Source Voltage ± 16

IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

TO-220AB IRF1404Z. Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

IRF530NSPbF IRF530NLPbF

V DSS R DS(on) max (mw)

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A

IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET. HEXFET Power MOSFET Wiper Control

V DSS R DS(on) max I D

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

IRFR540ZPbF IRFU540ZPbF

IRL3803VSPbF IRL3803VLPbF HEXFET Power MOSFET

HEXFET Power MOSFET V DSS = 40V. R DS(on) = Ω I D = 130A

V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. 240 P C = 25 C Power Dissipation 110 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

IRFZ48NS IRFZ48NL HEXFET Power MOSFET

l Advanced Process Technology TO-220AB IRF630N

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

SMPS MOSFET. V DSS R DS(on) max I D

IRL1404SPbF IRL1404LPbF

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRFR24N15D IRFU24N15D

SMPS MOSFET. V DSS R DS(on) max I D

IRFS4127PbF IRFSL4127PbF

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor.

IRFB260NPbF HEXFET Power MOSFET

V DSS R DS(on) max I D

V DSS R DS(on) max I D

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J

IRLS3034PbF IRLSL3034PbF

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

SMPS MOSFET TO-220AB IRL3713. Symbol Parameter Max V DS Drain-Source Voltage 30 V GS Gate-to-Source Voltage ± 20

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

SMPS MOSFET. V DSS R DS(on) max (mω) I D

IRFS3107PbF IRFSL3107PbF HEXFET Power MOSFET

TO-220AB IRFB4610. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 7.6

IRLR3110ZPbF IRLU3110ZPbF

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

IRFR1018EPbF IRFU1018EPbF

SMPS MOSFET. V DSS R DS(on) max I D

TO-220AB low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

TO-220AB IRFB4310. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 14

SMPS MOSFET. V DSS Rds(on) max I D

IRFR3806PbF IRFU3806PbF

V DSS. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

SMPS MOSFET. V DSS R DS(on) max I D. Absolute Maximum Ratings Symbol Parameter Max 20 V V GS A I DM. 90 W P A = 70 C Maximum Power Dissipation e

IRF1704 Benefits AUTOMOTIVE MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

IRFS3004-7PPbF HEXFET Power MOSFET

IRFP054V. HEXFET Power MOSFET V DSS = 60V. R DS(on) = 9.0mΩ I D = 93Aˆ. Absolute Maximum Ratings. Thermal Resistance PD

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 500V 0.125Ω 170ns 34A

l Advanced Process Technology

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

Transcription:

Typical Applications l Industrial Motor Drive Features l Advanced Process Technology l Ultra Low On-Resistance l Dynamic dv/dt Rating l 75 C Operating Temperature l Fast Switching l Repetitive Avalanche Allowed up to Tjmax l Lead-Free Description This HEXFET Power MOSFET utilizes the lastest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 75 C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. G IRF2204SPbF IRF2204LPbF HEXFET Power MOSFET D S D 2 Pak IRF2204SPbF PD - 9549A V DSS = 40V R DS(on) = 3.6mΩ I D = 70A TO-262 IRF2204LPbF Absolute Maximum Ratings Parameter Max. Units I D @ T C = 25 C Continuous Drain Current, V GS @ V 70 I D @ T C = C Continuous Drain Current, V GS @ V 20 A I DM Pulsed Drain Current 850 P D @T C = 25 C Power Dissipation 200 W Linear Derating Factor.3 W/ C V GS Gate-to-Source Voltage ± 20 V E AS Single Pulse Avalanche Energy 460 mj I AR Avalanche Current See Fig.2a, 2b, 5, 6 A E AR Repetitive Avalanche Energy mj T J Operating Junction and -55 to 75 T STG Storage Temperature Range C Soldering Temperature, for seconds 300 (.6mm from case ) Mounting Torque, 6-32 or M3 screw lbf in (.N m) Thermal Resistance Parameter Typ. Max. Units R θjc Junction-to-Case 0.75 C/W R θja Junction-to-Ambient 40 www.irf.com 07/22/

Electrical Characteristics @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions V (BR)DSS Drain-to-Source Breakdown Voltage 40 V V GS = 0V, I D = 250µA V (BR)DSS/ T J Breakdown Voltage Temp. Coefficient 0.04 V/ C Reference to 25 C, I D = ma R DS(on) Static Drain-to-Source On-Resistance 3.0 3.6 mω V GS = V, I D = 30A V GS(th) Gate Threshold Voltage 2.0 4.0 V V DS = V, I D = 250µA g fs Forward Transconductance 20 S V DS = V, I D = 30A I DSS Drain-to-Source Leakage Current 20 V µa DS = 40V, V GS = 0V 250 V DS = 32V, V GS = 0V, T J = 50 C I GSS Gate-to-Source Forward Leakage 200 V GS = 20V na Gate-to-Source Reverse Leakage -200 V GS = -20V Q g Total Gate Charge 30 200 I D = 30A Q gs Gate-to-Source Charge 35 52 nc V DS = 32V Q gd Gate-to-Drain ("Miller") Charge 39 59 V GS = V t d(on) Turn-On Delay Time 5 V DD = 20V t r Rise Time 40 I D = 30A ns t d(off) Turn-Off Delay Time 62 R G = 2.5Ω t f Fall Time V GS = V Between lead, D L D Internal Drain Inductance 4.5 6mm (0.25in.) nh G from package L S Internal Source Inductance 7.5 and center of die contact S C iss Input Capacitance 5890 V GS = 0V C oss Output Capacitance 570 pf V DS = 25V C rss Reverse Transfer Capacitance 30 ƒ =.0MHz, See Fig. 5 C oss Output Capacitance 8000 V GS = 0V, V DS =.0V, ƒ =.0MHz C oss Output Capacitance 370 V GS = 0V, V DS = 32V, ƒ =.0MHz C oss eff. Effective Output Capacitance 2380 V GS = 0V, V DS = 0V to 32V Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions D I S Continuous Source Current MOSFET symbol 70 (Body Diode) showing the A G I SM Pulsed Source Current integral reverse 850 (Body Diode) p-n junction diode. S V SD Diode Forward Voltage.3 V T J = 25 C, I S = 30A, V GS = 0V t rr Reverse Recovery Time 68 ns T J = 25 C, I F = 30A Q rr Reverse RecoveryCharge 20 80 nc di/dt = A/µs t on Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by L S L D ) 2 www.irf.com

I D, Drain-to-Source Current (Α) IRF2204S/LPbF I D, Drain-to-Source Current (A) 00 0 TOP BOTTOM VGS 5V V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 4.5V I D, Drain-to-Source Current (A) 00 0 TOP BOTTOM VGS 5V V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 4.5V 20µs PULSE WIDTH T J = 25 C 0. V DS, Drain-to-Source Voltage (V) 20µs PULSE WIDTH T J = 75 C 0. V DS, Drain-to-Source Voltage (V) Fig. Typical Output Characteristics Fig 2. Typical Output Characteristics 0.00 2.5 I D = 2A T J = 75 C 2.0.00 T J = 25 C V DS = 25V 20µs PULSE WIDTH.00 4.0 5.0 6.0 7.0 8.0 9.0.0 V GS, Gate-to-Source Voltage (V) R DS(on), Drain-to-Source On Resistance (Normalized).5.0 0.5 V GS = V 0.0-60 -40-20 0 20 40 60 80 20 40 60 80 T J, Junction Temperature ( C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3

I D, Drain-to-Source Current (A) C, Capacitance(pF) IRF2204S/LPbF 000 00 0 V GS = 0V, f = MHZ C iss = C gs C gd, C ds SHORTED C rss = C gd C oss = C ds C gd Ciss Coss Crss V GS, Gate-to-Source Voltage (V) 2 8 6 4 2 I = D 30A V DS V DS = 32V = 20V V DS, Drain-to-Source Voltage (V) 0 0 30 60 90 20 50 Q G, Total Gate Charge (nc) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 0 00 T J= 75 C 0 OPERATION IN THIS AREA LIMITED BY R DS (on) I SD, Reverse Drain Current (A) T = 25 J C V GS = 0 V 0. 0.0 0.5.0.5 2.0 2.5 V SD,Source-to-Drain Voltage (V) Tc = 25 C Tj = 75 C Single Pulse µsec msec msec V DS, Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com

75 LIMITED BY PACKAGE V DS R D 50 25 R G V GS D.U.T. - V DD I D, Drain Current (A) 75 50 V Pulse Width µs Duty Factor 0. % Fig a. Switching Time Test Circuit 25 0 25 50 75 25 50 75 T, Case Temperature ( C C) Fig 9. Maximum Drain Current Vs. Case Temperature V DS 90% % V GS t d(on) t r t d(off) t f Fig b. Switching Time Waveforms Thermal Response (Z thjc ) 0. D = 0.50 0.20 0. 0.05 0.02 0.0 SINGLE PULSE (THERMAL RESPONSE) 2. Peak T J = P DM x Z thjc T C 0.0 0.0000 0.000 0.00 0.0 0. t, Rectangular Pulse Duration (sec) Notes:. Duty factor D = t / t 2 P DM t t 2 Fig. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5

V GS(th) Gate threshold Voltage (V) IRF2204S/LPbF 5V V DS L DRIVER R G D.U.T I AS - V DD A 20V tp 0.0Ω Fig 2a. Unclamped Inductive Test Circuit V (BR)DSS tp E AS, Single Pulse Avalanche Energy (mj) 900 750 600 450 300 50 TOP BOTTOM 0 25 50 75 25 50 75 Starting Tj, Junction Temperature ( C) I D 52A 9A 30A I AS Fig 2b. Unclamped Inductive Waveforms Q G Fig 2c. Maximum Avalanche Energy Vs. Drain Current V Q GS Q GD 4.0 V G 3.5 Current Regulator Same Type as D.U.T. Charge Fig 3a. Basic Gate Charge Waveform 3.0 2.5 2.0 I D = 250µA 50KΩ 2V.2µF.3µF.5 V GS 3mA D.U.T. V - DS.0-75 -50-25 0 25 50 75 25 50 75 200 T J, Temperature ( C ) I G I D Current Sampling Resistors Fig 3b. Gate Charge Test Circuit Fig 4. Threshold Voltage Vs. Temperature 6 www.irf.com

Avalanche Current (A) E AR, Avalanche Energy (mj) IRF2204S/LPbF 0 Duty Cycle = Single Pulse 0.0 0.05 Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25 C due to avalanche losses 0..0E-07.0E-06.0E-05.0E-04.0E-03.0E-02.0E-0 tav (sec) Fig 5. Typical Avalanche Current Vs.Pulsewidth 500 400 300 200 0 TOP Single Pulse BOTTOM % Duty Cycle I D = 2A 25 50 75 25 50 75 Starting T J, Junction Temperature ( C) Notes on Repetitive Avalanche Curves, Figures 5, 6: (For further info, see AN-5 at www.irf.com). Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long ast jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 2a, 2b. 4. P D (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25 C in Figure 5, 6). t av = Average time in avalanche. D = Duty cycle in avalanche = t av f Z thjc (D, t av ) = Transient thermal resistance, see figure ) P D (ave) = /2 (.3 BV I av ) = DT/ Z thjc I av = 2DT/ [.3 BV Z th ] E AS (AR) = P D (ave) t av Fig 6. Maximum Avalanche Energy Vs. Temperature www.irf.com 7

Peak Diode Recovery dv/dt Test Circuit D.U.T* ƒ - Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - - V GS R G dv/dt controlled by R G I SD controlled by Duty Factor "D" D.U.T. - Device Under Test - V DD * Reverse Polarity of D.U.T for P-Channel Driver Gate Drive Period P.W. D = P.W. Period [ V GS =V ] *** D.U.T. I SD Waveform Reverse Recovery Current Re-Applied Voltage Body Diode Forward Current di/dt D.U.T. V DS Waveform Diode Recovery dv/dt Inductor Curent Body Diode Ripple 5% Forward Drop [ V DD ] [ ] I SD *** V GS = 5.0V for Logic Level and 3V Drive Devices Fig 7. For N-channel HEXFET power MOSFETs 8 www.irf.com

D 2 Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D 2 Pak (TO-263AB) Part Marking Information THIS IS AN IRF530S WITH LOT CODE 8024 ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L" INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE F530S PART NUMBER DATE CODE YEAR 0 = 2000 WEEK 02 LINE L OR INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE F530S PART NUMBER DATE CODE P = DESIGNATES LEAD - FREE PRODUCT (OPTIONAL) YEAR 0 = 2000 WEEK 02 A = ASSEMBLY SITE CODE Notes:. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9

TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL33L LOT CODE 789 ASSEMBLED ON WW 9, 997 IN THE ASSEMBLY LINE "C" INTERNATIONAL RECTIFIER LOGO AS S E MB L Y LOT CODE PART NUMBER DATE CODE YEAR 7 = 997 WEEK 9 LINE C OR INTERNAT IONAL RECTIFIER LOGO AS S E MBL Y LOT CODE PART NUMBER DATE CODE P = DES IGNAT ES LEAD-F REE PRODUCT (OPTIONAL) YEAR 7 = 997 WEEK 9 A = ASSEMBLY SITE CODE Notes:. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com

D 2 Pak Tape & Reel Information Dimensions are shown in millimeters (inches) TRR.60 (.063).50 (.059) 4. (.6) 3.90 (.53).60 (.063).50 (.059) 0.368 (.045) 0.342 (.035) FEED DIRECTION TRL.85 (.073).65 (.065).90 (.429).70 (.42).60 (.457).40 (.449) 6. (.634) 5.90 (.626).75 (.069).25 (.049) 5.42 (.609) 5.22 (.60) 24.30 (.957) 23.90 (.94) 4.72 (.36) 4.52 (.78) FEED DIRECTION 3.50 (.532) 2.80 (.504) 27.40 (.079) 23.90 (.94) 4 330.00 (4.73) MAX. 60.00 (2.362) MIN. NOTES :. COMFORMS TO EIA-48. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (.039) 24.40 (.96) 3 30.40 (.97) MAX. 4 Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. ). Starting T J = 25 C, L = 0.06mH R G = 25Ω, I AS = 30A. (See Figure 2). ƒ I SD 30A, di/dt 70A/µs, V DD V (BR)DSS, T J 75 C. Pulse width 400µs; duty cycle 2%. C oss eff. is a fixed capacitance that gives the same charging time as C oss while V DS is rising from 0 to 80% V DSS. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A. Limited by T Jmax, see Fig.2a, 2b, 5, 6 for typical repetitive avalanche performance. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (3) 252-75 TAC Fax: (3) 252-7903 Visit us at www.irf.com for sales contact information.07/20 www.irf.com